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Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

UMA INVESTIGAÇÃO DE RTO COM USO DE MEDIDAS TRANSIENTES NA
AUSÊNCIA DE UMMODELO DINÂMICO RIGOROSO DE PROCESSO

Pedro de Azevedo Delou

Agosto/2024

Orientadores: Argimiro Resende Secchi
Maurício Bezerra de Souza Júnior

Programa: Engenharia Química

A otimização em tempo real (RTO) sofre com longas esperas por estado esta-
cionário. O RTO híbrido (HRTO) resolve esta desvantagem combinando uma es-
timação dinâmica com otimização estacionária. Este trabalho visa explorar novas
formas de lidar com o HRTO na ausência de um modelo dinâmico rigoroso. Pro-
pusemos uma estrutura Hammerstein que combina o modelo estático e ummod-
elo dinâmico linear identificado com dados da planta. Esta estrutura foi avali-
ada em diversas arquiteturas de HRTO. As arquiteturas com dinâmica fixa su-
peraram as atualizadas devido ao surgimento de modos oscilatórios indesejáveis.
Introduzimos um HRTO integrando objetivos econômicos em um MPC adapta-
tivo de horizonte infinito usando princípios de controle auto-otimizante (SOC).
A abordagem preservou a observabilidade e superou o RTO clássico com menor
custo computacional. Abordamos a incerteza estrutural no modelo estático us-
ando adaptação por modificadores (MA), processo gaussiano (GP) e conceitos
de região de confiança. Uma MA de saída (MAy) baseado em GP foi proposto
em uma estrutura HRTO empregando um NMPC Hammerstein. A abordagem
apresentou desempenho semelhante ao MA-GP, com a flexibilidade adicional de
utilizar os modificadores de saída em diferentes cálculos baseados em modelos,
como no NMPC. Finalmente, avaliamos um controlador baseado em Aprendiza-
gem por Reforço (RL) e o comparamos com um NMPC ideal. Ambos os con-
troladores atingem os objetivos de controle com pequenas diferenças de desem-
penho. As diferentes alteranitvas de HRTO ampliam as oportunidades para a sua
implementação, mesmo em cenarios sem um modelo dinâmico rigoroso.
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The classic Real-time optimization (RTO) suffers from long waits for steady
operation. The hybrid RTO (HRTO) addresses this drawback by combining dy-
namic estimation with static economic optimization. This work aims to explore
newways to deal withHRTO in the absence of a rigorous dynamic processmodel.
Weproposed aHammerstein structure combining the staticmodel and a linear au-
toregressive exogenous (ARX) model identified from plant data. This structure
is evaluated across various HRTO architectures, including uncertain parameters.
The fixeddynamics architectures outperformed the dynamically updated ones be-
cause of the rise of undesirable oscillatorymodes. We introduced anHRTO frame-
work integrating economic objectives via self-optimizing control (SOC) principles
in an adaptive infinite-horizon MPC. The approach preserved observability and
outperformed the classic RTO with a lower computational cost. We addressed
structural uncertainty in the static model using modifier adaptation (MA), Gaus-
sian process (GP), and trust-region concepts. An output MA (MAy) based on
GPwas proposed in an HRTO framework employing a Hammerstein NMPC. The
approach presented a similar performance to the MA-GP, with the added flexibil-
ity of using the output modifiers in different model-based layers. Finally, we as-
sessed a Reinforcement Learning (RL) actor-critic-based controller and compared
it with an ideal NMPC. Both controllers effectively achieved control objectives un-
der unmeasured disturbances with minor performance differences. The different
developed HRTO alternatives expand the opportunities for its implementation,
including scenarios without rigorous dynamic models.
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Chapter 1

Introduction

In the field of process system engineering (PSE), real-time optimization (RTO) is
a well-known technique of adaptive optimization algorithms that are applied to
optimize process operations in real-time. In a very general way, these algorithms
have the goal of achieving a certain number of objectives, often economic, such as
minimizing cost or maximizing profit, while respecting a set of constraints, which
can be related to the process physics, operational limits, safety, and so on. In the
real-time approach, the optimization algorithm is executed in an iterative way
in order to cope with the process changes, price fluctuations, and disturbances.
Although a complete RTO framework is composed of several elements and calcu-
lation stages, the mathematical process model is its main component. This model
is often a rigorous first-principles model, but it could also be a data-driven one
or a combination of first-principles and data-driven models, the so-called hybrid
models.

In the context of computer-aided process engineering (CAPE), RTO is not a
new technology. The first successful algorithm that found broad acceptance in
the industry was proposed by Jang and coworkers in 1987 (JANG et al., 1987). It
consists of four main stages:

i. Steady-state detection (SSD);

ii. Simultaneous data reconciliation and parameter estimation;

iii. Model updating;

iv. Economic optimization with the updated model.

As a static process model is used in the main stages of the algorithm, ii-iv,
its use is limited to continuous processes where the operation results in a clear
steady-state point, otherwise, the optimal solution of the static economic opti-
mization would never be achievable by the plant.

1



Another important concern is how to implement the optimal solution in the
plant. Sending a new setpoint simultaneously for all optimizing variables to the
plant would trigger a dynamic behavior that is not known beforehand since RTO
has no dynamic information. If this is done indiscriminately, it could result in
dynamic trajectories that could exceed the variables’ safety limits, leading to un-
safe operation and possible shutdown of the whole plant. For this reason, RTO is
often included as one layer in the hierarchical control structure, in which, a super-
visory control (SC) layer and a regulatory control layer are present to support the
decision-making process (MARLIN and HRYMAK, 1997; NAYSMITH and DOU-
GLAS, 1995).

In a typical hierarchical control structure, the regulatory control layer is com-
posed of PID loops to reject the high-frequent disturbances while manipulating
directly the final control elements, such as valve actuators, and pump drives.
Above it, there is the SC layer, also called as advanced process control (APC)
layer, which is responsible for making decisions over the setpoints of the PID con-
trollers. Usually, the SC layer uses strategies able to cope with the cross-coupled
multi-variable system dynamics in order to reject low-frequency disturbances and
sudden changes in multiple setpoints. The most used strategy in the industry is
model predictive control (MPC), which is a model-based optimization problem
to minimize the quadratic deviation between the predictions of an approximated
dynamic model (typically linear) and reference values while respecting a set of
constraints. These reference values are typically desired operational points or, in
the case where an RTO layer is present, they are the optimal solution of the eco-
nomic optimization problem (DARBY et al., 2011).

When the process has no SC layer, it is also a common industrial practice to
have an RTO in an open loop as an advisor system for guiding the operation team
to achieve the process goals (PANTELIDES andRENFRO, 2013). It is important to
emphasize that, in any case, the success of anyRTOproject is extremely dependent
on the close participation of the operating team to guarantee the long-term benefit
of the application (DARBY et al., 2011).

Over the years, companies have faced more and more pressure to enhance op-
erational efficiency due to an increasingly competitive global market. The general
goal is to produce more using less, hence there is a need for reducing feedstock
waste, better use of energy, higher process efficiency, and productivity increase.
Moreover, with the aggravation of the environmental crisis, society has been pres-
suring governments for more stringent environmental standards, which are im-
posed on companies to reduce their environmental impact, especially related to
reducing carbon emissions, the by-production of polluting waste, and effluents.
The environmental goals and restrictions can also be part of the RTO problem ei-
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ther in the objective function or in the constraints. Therefore, the importance of
reliable control and optimization layers has increased over the past few decades.

Although most industrial operating teams are well experienced, the operation
of any process subjected to so many different objectives is a challenging activ-
ity. Often, the optimal operation is close to the bounds of the constraints, which
can result in a significant economic loss if the active constraints are not operated
within their optimal setpoint. Alternatively, awell-designed control strategy, with
an RTO layer, is able to conciliate all the different objectives and guarantee a safe
operation (GRACIANO et al., 2015). Despite this fact, there are still several chal-
lenges to be tackled in the RTO design that deserve close attention. The following
topics are of particular interest to this thesis:
i. Use of transient measurement;

ii. Model adequacy;

iii. Model structural uncertainty.
Recently, different research groups have proposed to incorporate transient

measurements in a static RTO framework by replacing the stage of simultaneous
data reconciliation and parameter estimation with a dynamic Bayesian observer,
such as the extended Kalman filter (EKF) (KRISHNAMOORTHY et al., 2018b;
MATIAS andLEROUX, 2018; VALLURU et al., 2015). This strategy has been called
hybrid RTO (HRTO) or RTO with persistent parameter adaptation (ROPA). It is
an interesting approach with high potential for real applications. However, there
are still some limitations that must be addressed. To name a few, the concern of
updating a static model with dynamic parameters data (KRISHNAMOORTHY
et al., 2018b), the kind of systems that can benefit from this strategy (VALLURU
and PATWARDHAN, 2019), the dynamic behaviors that can be covered and the
ones that cannot (CURVELO et al., 2021), the HRTO run frequency (MATIAS and
LE ROUX, 2018), and the requirement of having a dynamic process model avail-
able to enable its application (DELOU et al., 2021b,c). Here, the former one is
considered the bottleneck for an industrial HRTO application, as no typical static
RTO design project contemplates the development of a dynamic model, and in-
cluding it could significantly increase the time and cost of this kind of project.

Another important topic, which has been the focus of research in the RTO field
since the 90s, is the model adequacy issue. The main idea is that the static process
model must guarantee the observability of the uncertain parameters and unmea-
sured disturbances to the point that, when the model is updated it will result in
an economically optimal solution thatmatches the plant’s optimal solution, under
the hypothesis that the model is detailed enough to do so (FORBES and MAR-
LIN, 1994; FORBES et al., 1994). However, this hypothesis is not always true since

3



the modeling activity naturally involves approximations, andmany times it could
present unmodeled phenomena, badly posed by modeling assumptions, or dis-
turbances not considered, for example. In these cases, a mismatch between the
model and plant arises due to model structural uncertainty (MARCHETTI et al.,
2016).

There are several approaches in the literature to overcome model structural
uncertainty, such as the integrated system optimization and parameter estima-
tion (ISOPE) (ROBERTS, 1979), the constraint adaptation (CA) (CHACHUAT
et al., 2008a; MARCHETTI et al., 2007) and the modifier adaptation (MA)
(MARCHETTI et al., 2009; TATJEWSKI, 2002). In general, they all include cor-
rection terms to the optimization problem that aim to shift the model-based op-
timization solution toward the true plant optimal solution. Some of these meth-
ods, e.g. CA, MA, and variations, require estimating plant gradients from noisy
measurements, which is not an easy task and there is no current reliable method.
Due to these reasons, these methods find little space for real industrial applica-
tions. However, a few research groups have recently proposed to make use of
data-driven models, such as regression models (GAO et al., 2016b) and machine
learning (ML)models (DEAVILAFERREIRA et al., 2018;MATIAS and JÄSCHKE,
2019) to fit the model-plant mismatch and to use this information in the economic
optimization to compensate the effect of the structural modeling errors.

An alternative to the classic control hierarchy, where the optimization and con-
trol layers are separate, is integrating the economic goals into a single optimizing
control layer. The so-called economicMPC (DEGOUVÊA andODLOAK, 1998) is
amodel-based optimizationmethod that introduces an economic term to theMPC
objective function or a tracking term to drive the economic objective function gra-
dient to zero (DE SOUZA et al., 2010). In the RTO implicit/direct methods, an op-
timization problem is not solved online. In such methods, the economic goals are
translated into control objectives and handled by the direct manipulation of the
input. Some examples of such methods are the extremum-seeking control (MO-
ROSANOV, 1957), the neighboring-extremal control (PESCH, 1989), the NCO
tracking (FRANÇOIS et al., 2005; SRINIVASAN et al., 2003), the self-optimizing
control (SKOGESTAD, 2000), and Reinforcement Learning (HOSKINS and HIM-
MELBLAU, 1992). These methods lack direct handling process constraints, there
is usually an extra strategy to deal with changes in the active set of constraints.

1.1 Objective

The main objective of this thesis is to investigate the use of transient data in static
RTO frameworks and to propose a way of implementing a Hybrid RTO without
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the requirement of having a rigorous dynamic process model. The main assump-
tion is that a rigorous static processmodel is available, but a rigorous dynamic pro-
cess model is not. Furthermore, the development of a rigorous dynamic process
model is avoided for the sake of minimizing the costs associated with an HRTO
design project. The removal of such a requirement is believed to potentially in-
crease the HRTO applicability in large-scale industrial processes.

1.2 Thesis structure

This thesis is organized as a collection of papers that were produced and pub-
lished during the doctoral candidacy. A common Introduction and Literature Re-
view are presented in Chapters 1 and 2, respectively. Chapters 3 to 7 present a
version of the produced papers that were either published in academic journals
or conferences. The contributions of each paper are presented in the next section.
Finally, Chapters 8 and 9 present overall final remarks and suggestions for future
research, respectively.

1.3 Main scientific contributions of the thesis

The main scientific contributions of this work are the new methodologies and
approaches in the context of real-time optimization algorithms. The worth-
mentioning contributions are topic-wise summarized below. All of them are well
in-depth discussed in Chapters 3 to 7.

Chapter 3:

• A new dynamic Hammerstein structure that can be used adequately in the
dynamic state and parameter estimation stage of an HRTO architecture, re-
moving the availability requirement of a rigorous first-principle dynamic
model;

• Proposition of three HRTO architectures based on the new dynamic Ham-
merstein structure, one with fixed dynamic matrix, one with a simultaneous
adaptation of the dynamic matrix in the Hammerstein-EKF approach, and
the last with a separate adaptation of the dynamic matrix in a Recursive Ex-
tended Least Squares (RELS) estimator with forgetting factor;

• Demonstration of the performance of the proposed architectures in a CSTR
case study, comparing them with the original HRTO using the rigorous dy-
namic model and the classic RTO with steady-state detection stage.
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Chapter 4:

• A new adaptive self-optimizing infinite-horizon MPC (IHMPC) based on
the previously proposed dynamic Hammerstein structure;

• A new reconfiguration of the self-optimizing H-matrix algorithm under
changes in the active set of constraints is proposed;

• The proposition of a complete HRTO framework coupledwith the proposed
adaptive self-optimizing IHMPC, that presents full model compatibility be-
tween all control layers by the use of the dynamicHammerstein structure, no
requirement of a first-principle dynamic model, no steady-state wait time,
naturally handling changes in the active set of constraints, and finally, the ca-
pability of achieving minimum possible economic loss even in the scenario
of inaccurate disturbance estimation by the use of self-optimizing control
concepts;

• The proposition is demonstrated in a CSTR case study, where two
Hammerstein-EKF tunings are compared with the RTO framework pro-
posed by GRACIANO et al. (2015).

Chapter 5:

• The application of the Hammerstein RTO/ROPA in a lab-scale experimental
rig, which proved the concept of the previously proposed methodology in
an actual lab setup. This result opens the possibilities for large-scale systems
and increases the industrial applicability of Hybrid RTO strategies.

• The demonstration that the static model can be directly used in the EKF al-
gorithms when the system presents fairly fast dynamics. For this kind of
system, there is no need to develop a dynamic mechanistic model, and the
Hammerstein RTO/ROPA can be directly applied.

Chapter 6:

• Proposition of a Gaussian Process (GP) based output modifier adaptation
(MAy-GP) considering trust-region concepts and comparison;

• A new nonlinear MPC (NMPC) formulation based on an extension of the
previously proposed dynamic Hammerstein structure by combining the
available static model with the MAy-GP correction terms in the presence
of plant-model mismatch;
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• Comparison of the proposed MAy-GP with the previously proposed GP-
based modifier adaptation (MA-GP) in a CSTR case study in the presence
of plant-model mismatch;

• Demonstration of the proposed Hammerstein-NMPCwith MAy-GP correc-
tion terms in the same CSTR case study in the presence of a plant-model
mismatch.

Chapter 7:

• The comparison of a Reinforcement Learning actor-critic-based controller
using linear combinations of radial basis functions as an alternative to neu-
ral networks with a nonlinear model predictive controller coupled with an
Extended Kalman filter in the Van de Vusse case study;

• A hyperbolic function is proposed to work as a maximization activator term
once the control goal is satisfied in the reward function, as opposed to the
previously proposed logistic activator function.

• A thorough sensitivity analysis on some of the RL training parameters is
done to guide practitioners in the training process. The effect of the num-
ber of training episodes, the effect of the training exploration, and the effect
of the maximization term width and weight in the reward function are pre-
sented.
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Chapter 2

Literature Review

2.1 Steady-state Optimization Formulation

Given a continuous process in the steady-state condition, observed by a set of
output variables, and an existing set of decision variables, the optimization prob-
lem consists of determining the optimal decision variables that minimize a certain
performance index, or cost function, subject to a set of constraints. The static op-
timization of a process, or a plant, can be mathematically formulated as follows:

u∗
p = arg min

u
Jp(u) := J (u,yp(u))

s.t. Gp,i(u) := gp,i(u,yp(u)) ≤ 0, ∀ i ∈ Z+
≤ng

(2.1)

in which, u ∈ Rnu are the decision variables of the problem, also called input
variables; yp ∈ Rny are the measured output variables; J : Rnu × Rny → R is the
cost function to be minimized; and gp,i : Rnu × Rny → R for i ∈ [1, ng] are the
inequality constraints dependent on the input and output variables.

Considering that the gradients of the active constraints set are linearly inde-
pendent and that functions Jp and Gp are continuous and differentiable at u∗

p,
there is a unique set of Lagrangian multipliers µ∗

p such that the first-order nec-
essary condition of optimality (NCO) or Karush-Kuhn-Tucker (KKT) condition
holds (BIEGLER, 2010):

Lp(u,µp) := Jp(u) + µT
pGp (2.2a)

∇uLp = ∇uJp +∇uGpµp = 0 (2.2b)
Gp ≤ 0 (2.2c)
µT

pGp = 0 (2.2d)
µp ≥ 0 (2.2e)
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In which, Lp and µp are the Lagrangian function and Lagrangian multipliers
of the plant optimization problem, respectively.

Furthermore, the second-order necessary condition of optimality for localmin-
imum states that the reduced Hessian of the Lagrangian function must be posi-
tive semi-definite at u∗

p: ∇2
rLp(u

∗
p) ⪰ 0, while the sufficient condition states that

it should be positive definite for a strict local minimum: ∇2
rLp(u

∗
p) ≻ 0. Wherein,

the reduced Hessian of the Lagrangian function is defined as:

∇2
rLp(u

∗
p) := ZT

[
∂2Lp

∂u2
(u∗

p,µ
∗
p)

]
Z (2.3)

WhereZ is a null-spacematrix such that
[
∂Ga

∂u
(u∗

p)

]T
Z = 0. The superscript ( · )a

indicates the set of active constraints.
This formulation assumes the hypothesis that the cost and constraints func-

tions are known and can be directly calculated from the information of u and yp.
However, the real input-output mapping of the plant yp(u) is not available, which
turns the plant optimization problem formulated in Equation 2.1 to be intractable
(MARCHETTI et al., 2016). Frequently, only an approximated steady-state non-
linear model is at hand and not the real input-output mapping of the plant yp(u).
This model can be mathematically represented as:

0 =F(x,u,θ) (2.4a)
y =H(x,u,θ) (2.4b)

in which, x ∈ Rnx are the state variables, θ ∈ Rnθ are model parameters and y ∈
Rny are the predicted output variables. The function F : Rnx × Rnu × Rnθ → Rnx

is an implicit nonlinear algebraic system of equations that can be solved to obtain
the value of x for a given set of (u,θ). In addition, the function H : Rnx × Rnu ×
Rnθ → Rny is an explicit algebraic system of equations. Therefore, for the sake of
simplicity, the input-output mapping can be written as:

y(u,θ) := H(x(u,θ),u,θ) (2.5)

Considering this notation, one can formulate a model-based optimization
problem analogous to the plant problem formulated in Equation 2.1:

u∗ = arg min
u
J (u,θ) := J (u,y(u,θ))

s.t. Gi(u,θ) := gi(u,y(u,θ)) ≤ 0, ∀ i ∈ Z+
≤ng

(2.6)
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Analogously to what was shown for the problem in Equation 2.1, the NCO
conditions for the model-based optimization problem can be stated as follows:

L(u,µ) := J (u) + µTG (2.7a)
∇uL = ∇uJ +∇uGµ = 0 (2.7b)
G ≤ 0 (2.7c)
µTG = 0 (2.7d)
µ ≥ 0 (2.7e)

Inwhich,L andµ are the Lagrangian function andmultipliers of themodel-based
optimization problem, respectively.

These conditions also assume that the gradient of the active constraints set is
linearly independent, and functions J and G are continuous and differentiable
at u∗. In addition, the sufficient condition for a strict local minimum state that
∇2

rL(u∗) ≻ 0.
The problem of plant-model mismatch arises in this kind of model-based for-

mulation because it is desirable that the optimal decision variable of the problem
in Equation 2.6, u∗, to be the same of the problem in Equation 2.1, u∗

p. If this were
true, it would be guaranteed that the solution of the model-based optimization
problem would drive the plant to its optimal point, but that does not necessarily
happen. In fact, there are many issues related to the model-based optimization
problem as it was presented. Besides the optimality problem, which is the capa-
bility of the model-based optimum to converge to the plant optimum, the conver-
gence effort is also a decisive matter for real-time applications (QUELHAS et al.,
2013) in terms of time duration for convergence. In addition, the feasibility and
stability of the RTO architecture are also important features for real-time appli-
cations (CHACHUAT et al., 2009; MARCHETTI et al., 2009). Therefore, it is most
desired that an RTO architecture presents all the following characteristics to be
considered satisfactory for real-time application:

• Optimality;

• Feasibility;

• Stability;

• Fast convergence.
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2.2 Static RTOMethods Classification

Several strategies aim to achieve plant optimality. Many authors proposed some
sort of classification of the existing static optimization methods (CHACHUAT
et al., 2009; ELLIS et al., 1988; FRANÇOIS et al., 2012; MARCHETTI et al., 2016;
ZHANG and FORBES, 2008). Here we adopt a modern classification that divides
the methods by the role of measurements, use of the models, and uncertainty
source (CHACHUAT et al., 2009; MARCHETTI et al., 2016). Figure 2.1 illustrates
this classification.

Classification of RTO Methods

Uses 
measurement?

Robust 
Optimization

Adaptive
Optimization

yes

no

Model role
Implicit / direct 

methods
Explicit / indirect

methods

ISOPE and variations, 
CA, MA

Two-step approach,
HRTO

Evolutionary 
optimization, ESC, 

NCO tracking, NEC, 
SOC, Reinforcement 

Learning

Input Adaption

Parametric Adaption Problem Adaption

Uncertainty
StructuralParametric

Figure 2.1: RTO classification flowcharts. HRTO: hybrid real-time optimization;
ISOPE: integrated system optimization and parameter estimation; CA: constraint
adaptation;MA:modifier adaptation; ESC: extremum-seeking control; NCO:Nec-
essary condition of optimality; NEC: neighboring-extremal control; SOC: self-
optimizing control.

The major classes of methods are divided by the role of measurements. When
measurements are not available, conservatism takes place in a robust optimization
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(MÖNNIGMANNandMARQUARDT, 2003). On the other hand, the use of mea-
surements enables the reduction of conservatism by making adjustments to pro-
cess changes and disturbances (FRANÇOIS et al., 2005). This kind of method is
called adaptive optimization. Frequently, the term real-time optimization (RTO)
refers solely to this type of method.

The class of the adaptive methods can be further subdivided into the role of
the model in the adaptation scheme. When the model is used explicitly in an
adaptive optimization problem, the method is called explicit or indirect, other-
wise, it is called implicit or direct method. In fact, the use of the model configures
the primary source of uncertainty in the majority of RTO techniques (BONVIN,
1998). According to MARCHETTI et al. (2016), there are three main sources of
uncertainty:

i. parametric uncertainty: values of the model parameters do not correspond
to the real process;

ii. model structural uncertainty: oversimplified models, absence of important
phenomenon description or neglected dynamics;

iii. process disturbances: unmodeled or unmeasured disturbances.

In order tominimize the detrimental effects of uncertainty, RTOmethodsmake
use of measurements in different adaptation strategies. The explicit methods can
be divided into two main adaptation approaches. At the level of the model, there
is the parametric adaptation, and at the level of the optimization problem there is
the problem adaptation:

i. parametric adaptation: in simplified terms, this method needs to have a
proper model that satisfies the model-adequacy condition (FORBES and MAR-
LIN, 1994; FORBES et al., 1994), and an identification stage is carried out in
order to adjust the model parameters so that it could represent the plant
satisfactorily in a subsequent optimization stage. This is the procedure of
the "two-step approach". According to CHEN and JOSEPH (1987), the al-
gorithm was first proposed by JANG et al. (1987) and turned out to be the
most widespread RTO algorithm in industrial applications and commercial
software (CÂMARA et al., 2016; NAYSMITH and DOUGLAS, 1995; TRIER-
WEILER, 2014). However, some authors reported the difficulty of the two-
step approach to converge to the plant optimum (FRANÇOIS et al., 2005;
MATIAS et al., 2018; MENDOZA et al., 2016), to obtain a proper model in
an affordable time (BONVIN, 1998), and to achieve and to verify the model-
adequacy conditions (CHACHUAT et al., 2009; MARCHETTI et al., 2016);
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ii. problem adaptation: the main idea in this strategy is to add modifiers to
the optimization cost function and/or constraints in order to match the KKT
conditions of the model-based problem to the plant problem. The first al-
gorithm that appeared in this direction was called integrated system opti-
mization and parameter estimation (ISOPE) (BRDYŚ et al., 1986; ROBERTS,
1979). In fact, ISOPE has also an identification step to estimate model param-
eters using plant measurements, making its optimization framework similar
to the two-step approach. However, plant measurements are also used to es-
timate the gradients of the plant outputs with respect to the inputs, which
enables the computing of the plant cost gradient. These gradients are used
in a modified optimization problem in which input-affine terms are added
to the problem in Equation 2.6 so that the plant NCO may be satisfied upon
the model-based optimization convergence. Another strategy is known as
constraint adaptation (CA), in which plant measurements are used to shift
the constraints of the original model-based optimization without any param-
eter estimation step (CHACHUAT et al., 2008a). In fact, an RTO algorithm
with a fixed model, i.e. without any model adaptation step, is only possible
if measurement-based adaptation is carried out in the cost function and/or
in the constraints in a modified optimization framework. Another strategy
that makes use of this philosophy is the so-called modifier adaptation (MA),
in which input-affine modifiers are added to the optimization cost function
and constraints so that plant NCO conditions are satisfied upon convergence
(CHACHUAT et al., 2008b; MARCHETTI et al., 2008);

Last, implicit or direct approaches, also known as implicit optimization or op-
timizing control, use measurement to perform the adaptation directly at the input
variables, in a control-inspired way:

iii. input adaptation: there are several strategies to perform input adaptation.
Evolutionary operation is a sampling technique, where improved steady-
state operation periods are successively determined by implementing the
Nelder-Mead algorithm to get closer to the optimum (BOX, 1957; BOX and
DRAPER, 1969). In extremum-seeking control (ESC), a dynamic perturba-
tion approach is used to estimate plant cost gradient online (ATTAandGUAY,
2019; GUAY and ZHANG, 2003; KRSTIĆ, 2000; KRSTIĆ and WANG, 2000;
MARCOS et al., 2004; MOROSANOV, 1957). Neighboring-extremal control
(NEC) combines output measurements with model variational analysis to
ensure meeting plant NCO (GROS et al., 2006, 2009; PESCH, 1989). In the so-
called self-optimizing control (SOC), a sensitivity analysis betweenmodel pa-
rameters and output measurements is performed to generate the linear com-

13



binations of the outputs that are invariant to model parameters, so that these
combinations can be controlled at their nominal values to reject uncertainty at
a minimum acceptable loss (JÄSCHKE et al., 2017; MORARI et al., 1980; SKO-
GESTAD, 2000). NCO tracking uses measurements to estimate plant NCO
and a control algorithm is used to enforce these conditions (FRANÇOIS et al.,
2005; JÄSCHKE and SKOGESTAD, 2011; SRINIVASAN and BONVIN, 2007;
SRINIVASAN et al., 2008). Finally, a more recent approach, that has been get-
ting attention in the past few years, is the use of self-learning algorithms for
control purposes, such as Reinforcement Learning (RL). These algorithms
are able to learn with the process operation and adapt their internal empiri-
cal models to perform some objectives (BADGWELL et al., 2018; SHIN et al.,
2019b; SUTTON and BARTO, 2018a). Although most of the attention is di-
rected to process control, CASSOL et al. (2018a) and DELOU et al. (2021a)
showed that optimization is a promising feature of this kind of algorithm as
well.

2.3 The two-step approach

The two-step approach is the most widespread RTO method in industrial appli-
cations and commercial software (CÂMARA et al., 2016).

The first step is composed of a static parameter estimation, which is an opti-
mization problem formulated as a simultaneous data reconciliation and parame-
ter estimation problem.

θ̂k = arg min
θ
Jid := ||yp − y(θ)||2V (2.8)

in which, the subscript k denotes the kth run of the RTO, θ̂k is the set of optimal
parameters, Jid : Rny → R is the identification objective function, yp is the set of
measurements of the output variables, y is the set of predicted outputs obtained
by the steady-statemodel. V is a square, diagonal weightingmatrix that can be ei-
ther arbitrarily assigned or based on the covariance of the measurement errors. If
V is arbitrarily assigned, the formulation becomes a weighted least squared esti-
mation; ifV is themeasurement covariancematrix, then the formulation becomes
a maximum likelihood estimation (BARD, 1970).

The second step is the economic optimization based on the adapted model
using the updated parameters:

u∗
k = arg min

u
J (u, θ̂k) := J(u,y(u, θ̂k))

s.t. G(u, θ̂k) := g(u,y(u, θ̂k)) ≤ 0
(2.9)
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Despite being the most widespreadmethodology in the industry, the two-step
approach requires some caution regarding the assurance of optimality and sta-
bility. These subjects are addressed in the following topics. Beyond those, the
method presents some vulnerabilities, as discussed by QUELHAS et al. (2013),
regarding lack of process information, unknownmeasurement error sources, and
numerical aspects of the optimization solvers. Despite those, it has proved eco-
nomic return in several applications (MARLIN and HRYMAK, 1997). Some suc-
cessful implementations of the two-step RTO can be found in CAMOLESI et al.
(2008); CAMPOS et al. (2012); DELOU et al. (2021d); LIPORACE et al. (2009).

2.3.1 Model Adequacy

The problem ofmodel adequacy in amodel-based optimizationwas addressed by
BIEGLER et al. (1985) by the proposition of some criteria. The authors introduced
and compared two optimization problems, one considering a rigorous process
model and the other replacing it with a simplified model. They suggested the
analysis of the Karush-Kuhn-Tucker (KKT) conditions of both optimal points and
argued that the simplified model would be adequate if their optimal points and
gradients at the optimal point match with the rigorous model:

u∗ = u∗
p

∇uy(u
∗,θ) = ∇uyp(u

∗
p)

∇θy(u
∗,θ) = ∇θyp(u

∗
p)

(2.10)

However, this criterion is very tight and implies that no simple model would
be adequate except the rigorous model, which is not particularly helpful. Also,
these conditions are not easy to verify since the optimal points are not previously
known to check whether they are KKT points, and, furthermore, estimating the
plant gradients from plant noisy data is not a simple task.

Later, FORBES et al. (1994) proposed a more appropriate approach for deter-
mining model adequacy based on the concept of reduced space (FRANCOIS and
BONVIN, 2013), which reduces the optimization problem by removing the equal-
ity constraints and the active inequality constraints, remaining only the degrees
of freedom that determine the optimum point location within the decision space.
This approach also relies on the KKT optimality conditions and is based on the
following definition.

Definition 2.3.1 (Point-wisemodel adequacy). Ifu∗
p is a unique optimum point of the

plant, then for a point-wise adequate process model there is at least one set of parameters
θ̂ such that the model-based optimization has an optimum at u∗ = u∗

p. In addition, if the

15



model-based optimum is unique, then the model is said to be strongly point-wise adequate.

Based on Definition 2.3.1, FORBES et al. (1994) developed a simple criterion
for point-wise model adequacy which was later extended by FORBES and MAR-
LIN (1994) for a bias-modified problem. However, in essence, model adequacy is
proved if there is a set of parameters θ̂ that satisfies the following equations:

∇rJid(u
∗
p,y(u

∗
p, θ̂)) = 0 (2.11a)

∇2
rJid(u

∗
p,y(u

∗
p, θ̂)) ≻ 0 (2.11b)

∇rJ (u∗
p,y(u

∗
p, θ̂)) = 0 (2.11c)

∇2
rJ (u∗

p,y(u
∗
p, θ̂)) ≻ 0 (2.11d)

Gi(u
∗
p,y(u

∗
p, θ̂)) ≤ 0, ∀i ∈ Z+

≤ng
(2.11e)

in which, ∇rJid and ∇rJ are the reduced gradient vectors, ∇2
rJid and ∇2

rJ are
the reduced Hessian matrices of the identification problem and the economic ob-
jective function, respectively. The criteria imposed by Equations 2.11a and 2.11b
are the sufficient conditions for θ̂ being a local strict minimum of the identifica-
tion problem in the operational point u∗

p. Equations 2.11c and 2.11d are the suffi-
cient conditions for u∗

p being a local strict minimum of the economic optimization
problem described in Equation 2.6. In addition, Equation 2.11e is the feasibility
condition. If all these conditions are satisfied, the plant operational point u∗

p is a
local minimum of the model-based problem for the set of parameters θ̂.

However sufficient, these conditions are not necessary for model adequacy, i.e.
the case in which the reducedHessianmatrices are positive semi-definite. Finally,
a weakness of these conditions is that they impose the a priori knowledge of the
plant optimum u∗

p, which is rarely the case. So, ensuring Equations 2.11a to 2.11e
can be an unpractical task (CÂMARA et al., 2016; MARCHETTI et al., 2009).

It is worth mentioning that the definition of a reduced Hessian matrix is given
by:

∇2
rJ = ZT

(
∂2J
∂u2

)
Z (2.12)

in which Z ∈ Rnu×(nu−ng
u) is the null space matrix and na

g is the number of active
inequality constraints.

2.3.2 Stability Conditions

Thematter of the two-step RTO stability has great importance for its application in
real processes. However, this topic is not broadly exploited in literature. FORBES
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andMARLIN (1996) andQUELHAS et al. (2013) have considerably contributed to
the stability discussion in the two-step approach. Here, some aspects are outlined.

QUELHAS et al. (2013) proposed to consider the RTO as a recursive system
in terms of uk, so the set of optimal solutions can be represented by a nonlinear
mapping of the degrees of freedom: uk+1 = Γ(uk). Then, the stability criteria lie
in the fact that the resultant series of the nonlinear mapping must be a Cauchy
series, that is, it has guaranteed convergence. Firstly, the concept of contraction
must be defined.

Definition 2.3.2 (Contraction). Given a metric spaceU provided with the metric d such
that U = (U, d), a contraction in U can be represented by a mapping Γ : U → U if there
is a real number α ⊂ (0; 1) such that the following relation is true:

d(Γ(un),Γ(um)) ≤ αd(un,um), ∀un,um ∈ U (2.13)

in which the lower value of α is known as the Lipschitz constant. With that said,
the convergence conditions and the stability conditions can be determined by the
Banach fixed-point theorem, stated as follows:

Theorem 2.3.1 (Banach fixed-point theorem). Given a complete metric space U =

(U, d) with U ⊂ Rnu , if Γ is a contraction in U, the following are true:

i. Γ admits an unique fixed point in U, giving by u∞ such that Γ(u∞) = u∞;

ii. for any u0 ∈ U the series given by uk+1 = Γ(uk) converges to u∞;

iii. the a priori error can be estimated in k by: d(u∞,uk) ≤
αk

1− α
d(u1,u0)

With this approach the RTO system can be interpreted as a particular case of
the generic fixed point problem of a discrete series, therefore the aforementioned
properties can be used to predict the stability conditions and the convergence ve-
locity (QUELHAS et al., 2013).

FORBES and MARLIN (1996) discuss the criteria of point-wise stability in
terms of an RTO system, they also consider it to be a recursive series to state the
local stability definition:

Definition 2.3.3 (Point-wise stability). A recursive system of algebraic equations
uk+1 = Γ(uk) is asymptotically stable at a fixed point u∞, if it is Lyapunov stable and
there exists a constant ε > 0, such that:

∥u∞ − uk∥ ≤ ε (2.14)
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therefore,

lim
k→∞
∥u∞ − uk∥ = 0 (2.15)

For Lyapunov stability the following definition takes place:

Definition 2.3.4 (Lyapunov Stability). Given the metric space U = (U, d) and the
contraction Γ : U→ U, a pointu∞ ∈ U is said to be Liapunov stable if there exists a β > 0

and an ε > 0 so that for any uk ∈ U, d(u∞,uk) < ε and ∀n ∈ N, d(Γn(u∞),Γn(uk)) <

β. In which, Γn(uk) represents the nth recursion of Γ, such that uk+n = Γn(uk).

With that said, the closed-loop point-wise stability of the two-step RTO ap-
proach can be evaluated at the true plant optimumu∗

p by considering each element
(identification, optimization, and plant) an independent nonlinear mapping and
taking linear approximations around a small neighborhood of the optimal points
(FORBES and MARLIN, 1996):

yp = yp(u) ∴ δyp ≈
∂yT

p

∂u
(u∗)δu (2.16a)

θ = θ(yp) ∴ δθ ≈ ∂θT

∂yp

(yp(u
∗))δyp (2.16b)

u∗ = u∗(θ) ∴ δu∗ ≈ ∂u∗T

∂θ
(θ̂)δθ (2.16c)

Considering that the partial derivatives of the nonlinear mappings exist, the
linearized system can be further reduced into the following iterative process:

δu∗
k+1 ≈

∂u∗T

∂θ
(θ̂)

∂θT

∂yp

(yp(u
∗))

∂yT
p

∂u
(u∗)δu∗

k (2.17)

Therefore, the RTO system is stable at the true plant optimum u∗
p in the face of

small disturbances in the degrees of freedom u if:∥∥∥∥∥λ
(
∂u∗T

∂θ
(θ̂)

∂θT

∂yp

(yp(u
∗))

∂yT
p

∂u
(u∗)

)∥∥∥∥∥ < 1 (2.18)

In which, λ(·) represents the eigenvalues of the matrix (·). It is important to
highlight that to attend the local stability criterion in Equation 2.18, the sensitivity
matrices must be computed in the plant optimum u∗ which is not known a priori.
Furthermore, the determination of the gradient matrices aforementioned is not
trivial and can be subjected to uncertainties, not only associated with measure-
ment but also with the numerical methodology. Finally, this criterion cannot be
used to determine global optimum as it is only valid for local optimality.
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2.4 The ISOPE approaches

A drawback of the two-step approach previously presented is that it can only en-
sure plant optimality if the model adequacy conditions are guaranteed, in other
words, if the plant-model mismatch source is only parametric. In the presence
of structural plant-model mismatch, the methodology may fail to provide an op-
timal operation. To overcome this issue, several methodologies were then pro-
posed in order to modify the model-based optimization problem to enforce plant
optimality. The first noteworthy methodology was the ISOPE, an acronym for In-
tegrated System Optimization and Parameter Estimation, proposed by ROBERTS
(1979). This methodology was the first to introduce the concept of modifiers,
which would later be the basis for the rise of the MA approaches. The ISOPE is
also a two-step approach, but the key element is the inclusion of a gradient correc-
tion term to the cost function of the economic optimization problem so that plant
optimality is enforced upon convergence.

Several works extended the original proposal of ROBERTS (1979). BRDYŚ
et al. (1986) extended the methodology to cope with inequality constraints in a
constrained optimization problem. ZHANG and ROBERTS (1991) proposed to
include the inequality constraint portion directly into the cost function in order
to solve an unconstrained optimization problem. Despite being a simpler ap-
proach, it generates an infeasible path. TATJEWSKI et al. (2001) and TATJEWSKI
(2002) proposed to remove the estimation step and ensure themodel adequacy by
adding a bias correction error between the measurements and the model output
variables in an unconstrained case. Expanding this concept, GAO and ENGELL
(2005) proposed to use the inequality constraints in an extra optimization step to
decide whether an extra input perturbation is required to ensure a better gradient
estimation.

2.4.1 Original ISOPE methodology

The original methodology of the ISOPE approach proposed by ROBERTS (1979)
was a two-step approach. At a kth RTO iteration, it is considered that the identifi-
cation step is capable of estimating the set of parameters θk so that the following
condition is met:

y(uk,θk) = yp(uk) (2.19)

This is known as the output-matching condition, which is required in order to
match the gradient of the modified cost function to the plant gradient. Then, the
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modified economic optimization problem solved is:

u∗
k+1 = arg min

u
J(u,y(u,θk)) + λT

ku

s.t. ulb ≤ u ≤ uub
(2.20)

in which, λk ∈ Rnu is the ISOPEmodifier and the superscripts lb and ub stands for
lower bound and upper bound, respectively. The modifier is updated by the fol-
lowing formula, considering that the gradient of the measurements with respect
to the inputs is available:

λk =

[
∂yp

∂u
(uk)−

∂y

∂u
(uk,θk)

]
∂J

∂y
(uk,y(uk,θk)) (2.21)

Finally, the solution of the problem stated in Equation 2.20 is then filtered in
order to determine the new operating point by a first-order exponential filter:

uk+1 = uk +K(u∗
k+1 − uk); (2.22)

2.4.2 ISOPE coping with Inequality Constraints

The methodology proposed by BRDYŚ et al. (1986) is an expansion of the ISOPE
algorithm proposed by ROBERTS (1979) to cope with process-dependent con-
straints. It is also a two-step approach that assumes the output-matching condi-
tion in Equation 2.19. The modified optimization problem is:

u∗
k+1 = arg min

u
J(u,y(u,θk)) + λT

ku

s.t. gi(u,y(u,θk)) ≤ 0, ∀ i ∈ Z+
≤ng

(2.23)

The updated modifier is calculated by:

λk =

[
∂yp

∂u
(uk)−

∂y

∂u
(uk,θk)

] [
∂J

∂y
(uk,y(uk,θk)) +

∂g

∂y
(uk,y(uk,θk)) µk

]
(2.24)

in which, µ is the Lagrangian multipliers of the problem in Equation 2.23 asso-
ciated with the inequality constraints. The next inputs are calculated by the ex-
ponential filter presented in Equation 2.22 and the next Lagrange multipliers are
obtained from:

µi,k+1 = max{0, µi,k + bi(µ
∗
i,k+1 − µi,k)

}
, ∀ i ∈ Z+

≤ng
(2.25)
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in which, µ∗
k+1 is the optimal value of the Lagrangian multipliers and bi is the

tuning parameter of the exponential filter associated with the constraint i.

2.4.3 ISOPE with bias correction term

TATJEWSKI (2002) proposed that the output-mapping condition could be re-
spected without the need to adjust the set of parameters θ by adding a bias cor-
rection term in the model outputs, εk. With this modification, the RTO algorithm
is carried out in a single step with a fixed model.

εk := yp(uk)− y(uk,θ) (2.26)

The modified problem with the bias correction term is:

u∗
k+1 = arg min

u
J(u,y(u,θ) + εk) + λT

ku

s.t. ulb ≤ u ≤ uub
(2.27)

The modifiers are calculated by:

λk =

[
∂yp

∂u
(uk)−

∂y

∂u
(uk,θ)

]
∂J

∂y
(uk,y(uk,θ) + εk) (2.28)

Note that this approach can be applied to all ISOPE algorithms that require
the output-mapping condition in Equation 2.19. With the proper adjustments,
the identification step can be removed by adding the bias correction term in Equa-
tion 2.26. With this consideration, the name ISOPE is no longer adequate and the
nameModifier adaptation is more appropriate (MARCHETTI et al., 2016). There-
fore, the work of TATJEWSKI (2002) was a pioneer in the development of the MA
methodology giving birth to a new generation of single-step RTO algorithms. The
next section is dedicated to outlining some aspects of the MA methodology.

2.5 Modifier adaptation

The main idea of RTO algorithms based on the MA methodology is to introduce
correction terms to modify the model-based economic optimization problem so
that it matches plantNCOupon convergence (TATJEWSKI, 2002). Themainmoti-
vation for MA is that the two-step approach relies on the parameter adjustment of
a first-principles model to guarantee plant NCO. However, frequently the model
adequacy conditions might not be respected in the face of high disturbances or
structural uncertainties, which could lead to sub-optimal and possible infeasible
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operation (MARCHETTI et al., 2009). In contrast to the two-step approach, MA
does not rely on parameter estimation, instead, it uses measurements to update
the modifiers in the successive RTO iterations (MARCHETTI et al., 2016).

In the kth iteration of the RTO, the basic MA approach consists of adding
zeroth-order (εJk , εgik ∈ R) and first-order modifiers (λJ

k , λ
gi
k ∈ Rnu) to the cost

function and to the constraints, in contrast with the original proposition of (TAT-
JEWSKI, 2002) which considered the correction terms in the output variables.
Therefore, the modified optimization problem becomes:

u∗
k+1 = arg min

u
Jm(u) := J(u) + (λJ

k )
T (u− uk) + εJk

s.t. Gi := gi(u) + (λgi
k )

T (u− uk) + εgik ≤ 0, ∀ i ∈ Z+
≤ng

(2.29)

Note that the constant term εJk − (λJ
k )

Tuk does not change the optimal solution
of the problem in Equation 2.29, therefore it is usually suppressed from the for-
mulation and amore common formulation of themodified cost function considers
only the first-order term: J(u) + (λJ

k )
T (u).

Assuming that the gradients of the cost function and the constraints with re-
spect to the inputs are available, the modifiers can be updated by the following
expressions:

εJk = Jp(uk)− J(uk) (2.30a)

εgik = gp,i(uk)− gi(uk), ∀ i ∈ Z+
≤ng

(2.30b)

λJ
k =

∂Jp
∂u

(uk)−
∂J

∂u
(uk) (2.30c)

λgi
k =

∂gp,i
∂u

(uk)−
∂gi
∂u

(uk), ∀ i ∈ Z+
≤ng

(2.30d)

The optimal inputs can be directly applied to the plant. However, this strategy
can result in aggressive correction and high sensitivity to process noise, which
could negatively impact the algorithm’s convergence (MARCHETTI et al., 2016).
Therefore, it is a common practice to apply first-order exponential filters to update
the inputs and the modifiers.

uk+1 = uk +K(u∗
k+1 − uk) (2.31a)

εgk = (Ing −Kε)εgk−1 +Kε (gp(uk)− g(uk)) (2.31b)

λJ
k = (Inu −KJ)λJ

k−1 +KJ

(
∂Jp
∂u

(uk)−
∂J

∂u
(uk)

)
(2.31c)

λgi
k = (Inu −Kgi)λJ

k−1 +Kgi

(
∂gp,i
∂u

(uk)−
∂gi
∂u

(uk)

)
, ∀ i ∈ Z+

≤ng
(2.31d)
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in which the filter matrices K, Kε, KJ and Kgi are usually selected as diagonal
matrices with eigenvalues between 0 and 1.

Figure 2.2 illustrates the linear transformations applied in the basic MA
scheme.

Figure 2.2: Visual representation of the MA approach at kth RTO iteration: (a)
Modified cost function; (b) Modified generic constraint i.

Filtering can be applied to any RTO structure, but it is especially found
in MA literature as an inheritance from the ISOPE’s previous developments.
MARCHETTI et al. (2016) argue that it can be interpreted as a way of expanding
the domain of attraction and a way of dealing with process noise and avoiding
large correction steps based on local information.

One can observe that a single run of the MA algorithm would rarely achieve
plant optimality, however, the most interesting propriety of the approach is that it
has the ability to reach a plant KKT point upon convergence, as stated in the KKT
convergence theorem (GAO and ENGELL, 2005):

Theorem 2.5.1 (MA convergence to plant KKT point). Considering that the input
and modifiers are filtered and the gain matrices of the filter are non-singular. If the MA
algorithm converges to a fixed point u∞ := limk→∞ uk and this point is a KKT point of
the modified optimization problem, then u∞ is also a KKT point of the plant problem.

2.5.1 Model Adequacy

As discussed in Section 2.3, FORBES and MARLIN (1996) proposed some crite-
ria for model adequacy in the RTO scheme, which is stated in Definition 2.3.1.
MARCHETTI et al. (2009) proposed that this definition can be applied to the MA
scheme by the observation of the first and second-order plant NCO upon the con-
vergence of the modified model-based optimization problem. MA guarantees
first-order KKT conditions upon convergence, as stated in Theorem 2.5.1, then

23



only the second-order NCO must be assured for model adequacy. That is, en-
suring that the reduced Hessian of the Lagrangian is positive semi-definite at u∗

p.
Therefore, MARCHETTI et al. (2009) proposed the following conditions:

Definition 2.5.1 (Model adequacy for MA). Considering that u∗
p is a regular point

for the constraints and a single plant optimum, then:

i. If∇2
rL(u∗

p) ≻ 0, then the model is adequate;

ii. If∇2
rL(u∗

p) ⪰ 0, then the second-order condition is not conclusive;

iii. If∇2
rL(u∗

p) ⪯ 0 or∇2
rL(u∗

p) ≺ 0, then the model is not adequate.

2.5.2 Stability Conditions

The stability conditions are frequently discussed in the MA literature as sufficient
conditions for convergence. Theorem 2.5.1 indicates a property upon convergence,
but no consideration is made about the conditions in which the convergence is
achieved.

The convergence conditions of the MA scheme lie in the same principles dis-
cussed for the two-step approach in Section 2.3, in which the RTO is considered a
recursive system that can be represented by a nonlinear mapping: uk+1 = Γ(uk).
Therefore, the convergence conditions are determined by the contraction charac-
teristics of the domain U.

For the sake of simplifying notation, let Λ ∈ RnΛ be the collection of all modi-
fiers, where nΛ = (nu + 1)(ng + 1):

Λk :=
(
εJk , (λ

J
k )

T , εg1k , (λg1
k )T , ..., ε

gng

k , (λ
gng

k )T
)T (2.32)

The algorithm represented by Equations 2.29 to 2.31 can be stated as:

uk+1 = (1− α)uk + αu∗(uk,Λk) (2.33)

in which, u∗(uk,Λk) represents the minimizer of the problem in Equation 2.29.
With that said, the convergence conditions can be stated as (FAULWASSER and
BONVIN, 2014):

Theorem 2.5.2 (Convergence conditions of MA). Considering the RTO problem in
Equation 2.33 and assuming that it is feasible, and has a single minimum, all functions are
continuously differentiable onU and α ∈ (0, 1). If the mapping Γ(u) : u→ u∗(u,Λ(u))

contracts in the meaning of Definition 2.3.2 and has a fixed point on U, then the sequence

24



uk converges to a fixed point:

lim
k→∞
∥u∗(uk,Λk)− uk∥ = 0 (2.34)

There are several alternatives to the MA scheme. Then, the following topics
are dedicated to outlining these variations.

2.5.3 MA variations

2.5.3.1 Constraint adaptation

The constraint adaptation algorithm was proposed before MA and it is notewor-
thy that the development of CA made the theoretical foundations for the ad-
vent of MA. The adaptation is made by a simple zeroth-order modifier added to
the inequality constraints and no modification is carried out in the cost function
(CHACHUAT et al., 2008a; MARCHETTI et al., 2007). The CA can be interpreted
as a particular case of MA approaches, in which more importance is given to fea-
sibility rather than to optimality. The modified problem of the CA approach is:

u∗
k+1 = arg min

u
J(u)

s.t. Gi := gi(u) + εgik ≤ 0, ∀ i ∈ Z+
≤ng

(2.35)

in which each εgik is calculated in the same way as the original MA approach and
it is also updated with an exponential filter.

It is important to note that CA is not able to converge to a plant KKT point.
However, it is able to produce a plant feasible point upon convergence.

This approach was successfully applied to a laboratory scale Solid Oxide Fuel
Cell system (MARCHETTI et al., 2011).

2.5.3.2 MA with output modification

This approach recaptures the model shift proposed by TATJEWSKI (2002). The
strategy consists of modifying the output variables instead of the cost and con-
straints by introducing the zeroth-order modifier εyk ∈ Rny and the first-order
modifier λy

k ∈ Rnu×ny . So the modified problem is defined as:

u∗
k+1 = arg min

u
J(u,ym,k(u))

s.t. gi(u,ym,k(u)) ≤ 0, ∀ i ∈ Z+
≤ng

ym,k(u) = y(u) + (λy
k)

T (u− uk) + εyk

(2.36)
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in which, the modifiers are calculated by:

εyk = yp(uk)− y(uk) (2.37a)

λy
k =

∂yp

∂u
(uk)−

∂y

∂u
(uk) (2.37b)

It is important to highlight that this approach also results in a KKT point upon
convergence, so Theorem 2.5.1 holds (MARCHETTI et al., 2009).

PAPASAVVAS et al. (2019) explored the performance of output MA, called
MAy by the authors, in several numeric examples. It is shown that MAy is able
to outperform MAwhen cost and constraint functions are nonlinear with respect
to inputs and outputs. Another interesting MAy formulation proposed by PA-
PASAVVAS and FRANÇOIS (2020) is the addition of a filter-based constraint to
the modified optimization problem.

2.5.3.3 MA with Lagrangian modification

This approach is inspired by the ISOPE coping with inequality constraints pro-
posed by BRDYŚ et al. (1986). It introduces a first-order modifier to the cost func-
tion,λL

k ∈ Rnu , and a zeroth-ordermodifier to the inequality constraint, εLk ∈ Rnng .
The modified problem is:

u∗
k+1 = arg min

u
J(u) + (λL

k )
Tu

s.t. gi(u) + εLk ≤ 0, ∀ i ∈ Z+
≤ng

(2.38)

in which, the modifiers can be calculated as:

εLk = gp,i(uk)− gi(uk) (2.39a)

λL
k =

∂Lp

∂u
(uk,µk)−

∂L
∂u

(uk,µk) (2.39b)

Due to the lack of the first-ordermodifier for the constraints, this approach fails
to guarantee convergence to a KKTpoint. It can result in a slower convergence and
more frequent constraint violation before convergence. However, it presents the
advantage of requiring only one gradient estimation.

2.5.3.4 Directional MA

The directional modifier adaptation (D-MA)was proposed to reduce the number
of plant gradients to be estimated in each RTO iteration (COSTELLO et al., 2015;
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COSTELLO et al., 2016). Reliable gradient estimation is still an open challenge
in the RTO context (BUNIN et al., 2013), and more aspects of this topic are well
reviewed in MARCHETTI et al. (2016). Independently of the method, gradient
estimation is experimentally expensive and it is the main limiting aspect for MA
implementation, as the number of experiments increases linearlywith the number
of inputs and MA may be impracticable for large-scale processes (MARCHETTI
et al., 2016).

The main idea of D-MA is to estimate the gradient only in nr < nu privileged
input directions and use it for deriving the full gradients. To do so, the matrix
Ur ∈ Rnu×nr is the matrix of privileged input directions and it is defined as Ur =

[δu1 δu2 ... δur]. The selection of these directions is typically made of orthonormal
vectors that span a linear subspace of nr dimensions.

The directional derivatives are calculated as:

∇UrJp :=
∂Jp
∂r

(uk +Urr)

∣∣∣∣
r=0

(2.40a)

∇Urgp,i :=
∂gp,i
∂r

(uk +Urr)

∣∣∣∣
r=0

, ∀ i ∈ Z+
≤ng

(2.40b)

Hence, the full gradients of the plant can be estimated by:

∇Jk = (Inu −UrU
†
r )
∂J

∂u
(uk) + (U †

r )
T∇UrJp (2.41a)

∇gi,k = (Inu −UrU
†
r )
∂gi
∂u

(uk) + (U †
r )

T∇Urgp,i, ∀ i ∈ Z+
≤ng

(2.41b)

in which r ∈ Rnr , Inu is an nu-dimensional identity matrix and the (·)† is the
Moore-Penrose pseudo-inverse. That said, the original first-order modifiers pre-
sented in Equation 2.30 are altered by replacing the plant gradients with the esti-
mated gradient presented in Equation 2.41.

D-MA is unable to drive the system to a KKT point of the plant upon conver-
gence, therefore Theorem 2.5.1 is not applicable. However, D-MA reaches a point
that is optimal for the privileged directions upon convergence (COSTELLO et al.,
2016). The great contribution of D-MA is for the case that nr ≪ nu which would
greatly simplify the gradient estimation task.

This approach was successfully applied to an Experimental Crosswind Power
Kite system as reported by COSTELLO et al. (2016) and COSTELLO et al. (2018).

Lastly, the selection of the privileged direction has great importance in a D-
MA application and it is still an open matter. SINGHAL et al. (2017) proposed
an adaptive strategy for each RTO iteration based on parametric perturbation on
the Lagrangian gradient to determinemore significant directions. SINGHAL et al.
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(2018) validated this approach in a run-to-run optimization in two different semi-
batch reactors. SINGHAL et al. (2020) reevaluated the previously proposed ap-
proach by suggesting that it is computationally expensive due to the need to com-
pute the matrix of second partial derivatives of the Lagrangian function with re-
spect to model parameters and inputs. So they proposed a new approach based
on obtaining gradient values at random parameter samples.

2.5.3.5 Second-order MA

The second-order MAwas proposed by FAULWASSER and BONVIN (2014) with
the introduction of second-order modifiers into the optimization problem in-
spired by second-order ISOPE (GOLDEN and YDSTIE, 1989) as a way to assess
the sufficient plant NCO. The proposed modified cost and constraints are:

Jm(u) := J(u) + (u− uk)
TΘJ

k (u− uk) + (λJ
k )

T (u− uk) + εJk (2.42a)

Gi := gi(u) + (u− uk)
TΘgi

k (u− uk) + (λgi
k )

T (u− uk) + εgik ≤ 0, (2.42b)
∀ i ∈ Z+

≤ng

in which ΘJ
k ∈ Rnu×nu and Θgi

k ∈ Rnu×nu are the second-order modifiers of the
cost and constraint, respectively. They can be calculated by the difference between
plant and model Hessians:

ΘJ
k :=

∂2Jp
∂u2

(uk)−
∂2J

∂u2
(uk) (2.43a)

Θgi
k :=

∂2gp,i
∂u2

(uk)−
∂2gi
∂u2

(uk), ∀ i ∈ Z+
≤ng

(2.43b)

Assuming that the modified second-order MA problem is feasible for all iter-
ations, has a unique optimum and all plant and model functions are twice contin-
uously differentiable at U, then not only Theorem 2.5.1 holds for a fixed point u∞

upon convergence but also:

i. cost and constraint gradients and Hessians match at u∞;

ii. if the problem has a strict local minimum at u∞, then Jp(u∞) is a strict local
minimum of Jp(u).

However promising, the second-order MA is evenmore difficult to implement
for real applications due to the difficulties in constructing reliableHessian approx-
imations from noisy measurements, it is also an open issue in the RTO context.
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2.5.3.6 Nested MA

Nested MA was proposed by NAVIA et al. (2015) as a way of eliminating the
need to estimate plant gradients, instead, a higher-level optimization problem
is proposed to directly identify the first-order modifiers. Therefore, the nested
MA algorithm is composed of two nested optimization problems: a higher fre-
quency optimization to estimate the inputs at an iteration k; and a lower frequency
derivative-free optimization to estimate the modifiers at an iteration j. The fol-
lowing derivative-free unconstrained optimization problem is solved to calculate
first-order modifiers for the modified economic problem:

λ∗
j+1 = arg min

λ
Jp(u

∗
∞(λj)) + (µ∗

∞(λj))
TGp(u

∗
∞) (2.44)

in which λj is the group of first-order modifiers defined by λj :=
[
λJ

j λg1
j ... λ

gng

j

],
u∗

∞ and µ∗
∞ are the converged fixed inputs and Lagrangian multipliers, respec-

tively, of the modified economic problem.
The modified economic problem is solved for a fixed j:

u∗
k+1 = arg min

u
J(u) + (λJ

j )
Tu

s.t. gi(u) + (λgi
j )

T (u− uk) + εgik ≤ 0, ∀ i ∈ Z+
≤ng

(2.45)

NAVIA et al. (2015) showed that the Nested MA has the ability to converge to
a plant KKT point, therefore Theorem 2.5.1 holds. However, this convergence is
potentially slow due to the many optimization cycles needed.

2.5.3.7 Dual MA

Dual MA arises inspired in the dual ISOPE (BRDYS and TATJEWSKI, 2005) and
the main motivation is to ensure reliable gradient estimation. In this formulation,
a duality constraint is added to the problem to ensure sufficient variability in data
for accurate gradient estimation, in which techniques that use measurements of
the current and past operating points are employed (MARCHETTI et al., 2016).
There are several dualMApropositions, differingmainly in the following aspects:

i. gradient estimation approach;

ii. choice of the duality constraint.

Most gradient estimation approaches require computing the matrix of past in-
put differences, more known as the matrix of simplex directions, which is defined
byUk := [uk−uk−1, uk−uk−2, ..., uk−uk−nu ] ∈ Rnu×nu . In addition, there is the
requirement that Uk must be a regular matrix.
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If the last nu − 1 columns of the matrix of simplex direction at k + 1, Uk+1,
are linearly independent, then they constitute a basis for the construction of a
hyperplane Hk = {u ∈ Rnu : nT

ku = bk, where bk = nT
kuk}, in which nk ⊥ Hk.

So, in order to ensure that Uk+1 is regular, the point uk must not belong to Hk.
This constraint produces two disjoint feasible regions and, because of that, dual
MA schemes solve two modified problems, one for each side of the hyperplane
Hk.

In addition, the following general duality constraint to ensure regularity of
Uk+1 is added to position the next RTO point taking into consideration the last nu

most recent points:

Dk(u) := D(u, uk, uk−1, ..., uk−nu+1) ≤ 0 (2.46)

Finally, the modified problem of a generic dual MA scheme for each half of
hyperplaneHk are:

u+
k+1 = arg min

u
Jm(u) := J(u) + (λJ

k )
T (u− uk) + εJk

s.t. Gi := gi(u) + (λgi
k )

T (u− uk) + εgik ≤ 0, ∀ i ∈ Z+
≤ng

Dk(u) ≤ 0

nT
ku ≥ bk

(2.47)

and

u−
k+1 = arg min

u
Jm(u) := J(u) + (λJ

k )
T (u− uk) + εJk

s.t. Gi := gi(u) + (λgi
k )

T (u− uk) + εgik ≤ 0, ∀ i ∈ Z+
≤ng

Dk(u) ≤ 0

nT
ku ≤ bk

(2.48)

Hence, the next operating point is determined by:

uk+1 = arg min
u

{
Jm(u

+
k+1),Jm(u

−
k+1)

} (2.49)

Several authors proposed different approaches to dual MA algorithms:

i. The original dual ISOPE proposed by BRDYŚ and TATJEWSKI (1994) calcu-
lates gradients by finite-difference approach (FDA) and introduces the fol-
lowing duality constraint to avoid ill-conditioning in FDA:

Dk(u) = φκk(u)− 1 ≤ 0 (2.50)

30



in which κk(u) is the condition number at kth iteration of the squared ma-
trix Ūk(u) := [u− uk, u− uk−1, ..., u− uk−nu+1] ∈ Rnu×nu and φ is a lower
bound to the inverse of the condition number κk(u);

ii. GAO and ENGELL (2005) also used FDA for gradient estimation and the
same approach based on the conditioning number κk(u). However, they did
not use Dk(u) as a constraint, instead, it is used to determine if additional
input perturbation is required. Also, they proposed a methodology to deter-
mine the magnitude of this additional perturbation by minimizing the condi-
tion number.

iii. MARCHETTI et al. (2010) also used FDA for gradient estimation, but the au-
thors showed that bounding the inverse of the condition number κk(u) has
no effect on the accuracy of the gradient. Therefore, the authors proposed
the following dual constraint that bounds the Lagrangian gradient error:

Dk(u) =
σmax

2

∥∥Ū−1
k diag (ŪkŪ

T
k

)∥∥+ δnoise
ℓmin

≤ ϵupper (2.51)

in which the first term copes with truncation error and the second with mea-
surement noise, σmax is an upper bound of the processmodelHessian spectral
radius, δnoise is the noise level, ℓmin is the nearest complement affine subspaces
distance (see MARCHETTI et al. (2010) for its complete formulation), and
ϵupper is the desired upper bound of the gradient error norm.

iv. RODGER and CHACHUAT (2011) calculated the gradients by Broyden’s ap-
proach and they proposed a dual MA scheme with output modification. The
authors observed that a poor estimation in Broyden’s approach may lead to
a sub-optimal point upon convergence, so they recommended two duality
constraints to keep small gradient variance and small step length between
iterations, they are, respectively:

D1,k(u) = (u− uk)
T (ΣTΣ)−1(u− uk) ≥ 1 (2.52a)

D2,k(u) = (u− uk)
T (ΓTΓ)−1(u− uk) ≤ 1 (2.52b)

in which matrices Σ and Γ should be carefully chosen to avoid making the
dual problem infeasible;

v. NAVIA et al. (2012) used the same dual scheme proposed by GAO and EN-
GELL (2005) to suggest a method to deal with infeasibilities. The authors
recommended PI controllers to correct the input variables by controlling the
infeasibility error and the error of the inverse of the condition number.
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vi. MARCHETTI (2013) introduced a dualMA schemeusing linear interpolation
to estimate gradients. The authors proposed a different way of calculating the
first-order modifiers by accounting for the present and past operating points,
approximating the plant in a larger input space. A new duality constraint
is added to limit the Lagrangian gradient error estimated in the polyhedral
set constituted by the present and past operating points. This constraint pre-
sented a larger feasible region, and so, faster convergence:

Dk(u) =
∥∥ϵf (u,v∗)

∥∥+ δnoise
ℓmin

≤ ϵupper (2.53)

in which ϵf (u,v) is the gradient error due to truncation evaluated at point
v, and v∗ is determined as the point that minimizes the gradient error norm
within the polyhedral set.

2.5.3.8 MA with Trust-Region formulation

Instead of using filtering to stabilize convergence, BIEGLER et al. (2014) and
BUNIN (2014) proposed an approach inspired by trust-region methods.

In this method, the following trust-region constraint is added to the modified
problem in Equation 2.29:

u ∈ B(uk,∆k) := {u ∈ Rnu : |u− uk| ≤ ∆k} , ∆k ≥ 0 (2.54)

in which ∆k is the radius of the ball function B(uk,∆k). This radius is updated
based on tuned scalar constants 0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 by the
following rule:

∆k+1 ∈


[∆k,∞) if ρk ≥ η2

[γ2∆k,∆k] if η1 ≤ ρk < η2

[γ1∆k, γ2∆k] if ρk ≤ η1

(2.55)

The performance criteria, ρk, is a measurement of how the plant is performing
in relation to model prediction, defined as:

ρk :=
Jp(uk)− Jp(uk+1)

Jm,k(uk)− Jm,k(uk+1)
(2.56)

Then, the next input to be applied at the plant is defined as follows:

uk+1 :=

{
u∗

k+1 if ρk ≥ η1

uk if ρk < η1
(2.57)
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Note that to compute ρk and verify conditions in Equation 2.55 in order to up-
date the ball radius, ∆k, it is required to apply uk+1 to the plant, and, if condition
ρk ≤ η1 is verified, uk is then re-applied, as stated in Equation 2.57. Therefore, a
too-large trust region can result in successive experiments with no contribution to
improving plant cost. This limitation in the nominal case, however, can serve to
improve gradient estimation in real applications.

Convergence in this method is observed by the following theorem:

Theorem 2.5.3 (Convergence condition of trust-region basedMA (BIEGLER et al.,
2014)). Considering the RTO problem in Equation 2.29 with the addition of the trust-
region constraint of Equation 2.54. Assuming that the problem is feasible, and has a single
minimum, all functions are continuously differentiable on U, plant cost function and its
Hessian are, respectively, lower- and upper-bounded on Rnu , and for all k there exists a
constant κ ∈ [0, 1) and a sequence βk > 1, such that the Cauchy decrease condition is
observed:

Jm,k(u
∗
k)− Jm,k(u

∗
k+1) ≥ κ∥∇Jm,k(uk)∥ min

{
ρk,
∥∇Jm,k(uk)∥

βk

}
(2.58)

then,

lim
k→∞
∥∇Jp(uk)∥= 0 (2.59)

2.5.4 MA using Approximate Models

2.5.4.1 Convex approximations

FRANÇOIS and BONVIN (2013) proposed the use of convex approximations of
the process model in themodified optimization problem in order to ensuremodel
adequacy conditionswithout prior knowledge of the plant optimum. The authors
proposed the construction of the convex approximation for the cost function, Jc,
and constraints,Gc, as follows:

Jc(u) = J(u∗) + aT
J (u− u∗) + 1/2(u− u∗)TQJ(u− u∗)

Gi,c(u) = Gi(u
∗) + aT

Gi
(u− u∗), ∀ i ∈ Z+

≤ng

(2.60)

in which the vector, aJ and aGi
and the matrix QJ are obtained from the process

model by a least squared estimation with constraints to ensure that the matrix
QJ is symmetric and positive. Unlike other common techniques for constructing
convex approximations (FLEURY, 1989; ZHANG and FLEURY, 1997), in which
the approximation is updated with the evolution of the process in an SQP-like
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approach, here they are kept fixed, and the plant-modelmismatch is compensated
by the modifiers of the adapted optimization problem.

The authors showed that the scheme is able to drive the system to a KKT point
upon convergence, depending on the domain of attraction associated with the
initial point. Also, they pointed out that convergence can be delayed depending
on the quality of the approximation.

2.5.4.2 Subscript to refer to quadratic approximations

GAO et al. (2016b) proposed a framework to estimate plant gradients from noisy
measurements by fitting quadratic surrogate models to past operation points.
This framework was called Modifier Adaptation with Quadratic Approximation
(MAWQA).

The scheme added some interesting features to GAO and ENGELL (2005):

i. Selection of past points: a proposed screening algorithm to select only a set of
points near the actual operating point under some criteria over all collected
data;

ii. Limiting movement: an ellipsoid trust-region constraint is added based on
the covariance matrix of the selected points used in the regression, limiting
the movement under a space in which the approximation is valid;

iii. Globalization: switching betweenmodel-based and data-driven optimization
by tracking process model and quadratic approximated model accuracy.

The proposed screening algorithm, latterly called Geometry Optimizing Point
Selection (GOPS), has the objective to ensure that the set of points selected for
regression at a kth RTO iteration, Ur,k, is well-distributed and has sufficiently dis-
tant points. In addition, the authors pointed out that many points selected in
the neighborhood of the actual operating point can improve the accuracy of the
estimation. Therefore, the regression set is constructed by the union of a neigh-
borhood set and a distant set, Ur,k = Un,k ∪ Ud,k, as:

Un,k := {u : ∥u− uk∥≤ ∆u; u ∈ Uc} (2.61)

in which ∆u is a screening parameter that controls the size of the neighborhood
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ball space, Uc is the set of all collected past operating points; and,

Ud,k := arg min
Ud

1

φ (Ud)
∑
u∈Ud

∥u− uk∥

s.t. size (Ud) =
1

2
(nu + 1)(nu + 2)− 1

Ud ⊂ Uc \ Un,k

(2.62)

inwhichφ (Ud) is theminimumangle between all possible vectors that are defined
by (u − uk). The screening optimization problem in Equation 2.62 to obtain the
distant set can be approximated by a recursive algorithm presented in GAO et al.
(2016b). After selecting the nr past operating point to compose the regression set
Ur,k = {u1, u2, ..., unr}, the following ng + 1 regression problems are solved:

min
Pf

∑
i∈Ur,k

(fp(ui)− fqa(ui,Pf ))
2 , ∀ f ∈

{
J, g1, g2, ..., gng

} (2.63)

in which the subscript (·)qa stands for quadratic approximation and P =

{a1,1, ..., anu,nu , b1, ..., bnu , c} is the set of coefficients of the quadratic approxima-
tion function as follows:

fqa(u,Pf ) =
nu∑
i=1

i∑
j=1

afi,juiuj +
nu∑
i=1

bfi ui + cf , ∀ f ∈
{
J, g1, g2, ..., gng

} (2.64)

With the fitted functions at hand, plant gradients are evaluated at uk analyti-
cally from the approximations,∇Jqa and∇Gqa. In order to improve the reliability
of the estimation, an ellipsoid search space is defined using the covariance matrix
of the regression set, Σqa = cov (Ur,k), to define a new constraint to be added to
the modified optimization problem in Equation 2.29, such that:

u ∈ Bqa(uk,∆qa) :=
{
u ∈ Rnu : (u− uk)

TΣ−1
qa (u− uk) ≤ ∆qa

} (2.65)

in which ∆qa is a scaling factor of the nu-axial ellipsoid, Bqa(uk,∆qa), centered
at uk. The scaling factor can be updated at each iteration in a trust-region-like
strategy or it may be kept constant. It is interesting to highlight that the ellipsoid
axes are aligned with the eigenvectors of Σqa and the length of the semi-axes are
related to the eigenvalues of Σqa.

In addition, the accuracies of themodel and the regression are tracked in order
to define which optimization problem will run at iteration k. The accuracies are
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defined as:

ρk = max
f

∣∣∣∣1− fk − fk−1

fp,k − fp,k−1

∣∣∣∣ , ∀ f ∈ {J, g1, g2, ..., gng

} (2.66a)

ρad,k = max
f

∣∣∣∣1− fad,k − fad,k−1

fp,k − fp,k−1

∣∣∣∣ , ∀ f ∈ {J, g1, g2, ..., gng

} (2.66b)

in which ρk is the accuracy of the process model and ρad,k is the accuracy of the
fitted quadratic approximation. If ρk ≤ ρad,k, then the model-based optimization
considering the elliptical trust-region constraint is solved. Otherwise, the follow-
ing data-based optimization is solved:

u∗
k+1 = arg min

u
Jqa(u)

s.t. gqa,i(u) ≤ 0, ∀ i ∈ Z+
≤ng

u ∈ Bqa(uk,∆)

(2.67)

The authors argued that global convergence is ensured by running a sequence
of data-based optimizations, which is a reasonable conclusion based on the as-
sumption that the objective function is convex andbounded frombelow. However,
this is a rather strong assumption. In addition, GAO et al. (2016b) argued that, for
that reason, the use of convex approximations as proposed by FRANÇOIS and
BONVIN (2013) would not be necessary. However, convex approximation was
proposed to ensure model adequacy for the model-based problem, and conver-
gence to global optimum is observed if the plant functions are also convex, which
is also valid for quadratic approximation which is, in fact, a particular case of con-
vex approximation. Therefore, a more careful investigation should be addressed
to this issue in case of non-convexity since the plant convexity assumption is hard
to verify and fulfill in practice.

WENZEL et al. (2015) proposed another screening algorithm called Nearest
Axis Point Separation (NAPS). The algorithm divides the data by the sign con-
figuration and proximity to the nu · 2nu segments. NAPS visits each segment se-
lecting the closest points to uk until at least (nu + 1)(nu + 2)/2 points are selected.
The performances of NAPS and GOPS were later compared by WENZEL et al.
(2017). The authors concluded that GOPS outperforms NAPS but with the cost
of a higher computational effort. Hence, they propose to use NAPS as a fast pre-
screening stage and GOPS as a refinement algorithm. Besides a new screening
algorithm, WENZEL et al. (2015) also discussed the problem of processes under
frequent disturbances. In this case, the authors proposed the inclusion and eval-
uation of an aging parameter, which, depending on its tuning, would remove old
points from the collected data set, Uc.
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GAO et al. (2016a) proposed the use of exploitative moves in the MAWQA
scheme. This stage has the aim of improving gradient estimation based on the
evaluation of the quadratic nature of the plant, measurement noise, and distribu-
tion of the regression set. For the case of large dimension problems, HERNÁN-
DEZ et al. (2017) proposed a unified framework that integrates the ideas of direc-
tional MAwithMAWQA. However, both of the previous propositions require the
application of plant perturbations. The first aims to explore the input space, while
the second requires the evaluation of process sensitivity in input directions.

HERNÁNDEZ and ENGELL (2017) studied the effect of highly noisy mea-
surements on the MAWQA scheme. They proposed to combine Stochastic Ap-
proximation (SA) to exploit the inherent stochastic behavior of the process. De-
spiteMAWQAbeing able towell handle noisymeasurements, the authors showed
that their approach presented improved convergence properties for highly noisy
measurements.

Finally, HERNANDEZ et al. (2018a) andHERNANDEZ et al. (2018b) reported
a successful application of a realmini plant of a transitionmetal complex catalyzed
hydroformylation process. The authors included steady-state detection and data
reconciliation before the MAWQA scheme.

2.5.4.3 Gaussian Process

Gaussian process (GP), or Kriging, regression is a method capable of capturing
complex unknown functions even under measurement noise. It is a very com-
mon approach used in the field of machine learning, but the first applications
in the PSE field were PALMER and REALFF (2002a) and PALMER and REALFF
(2002b). These works applied Gaussian process in the context of surrogate opti-
mization, where a GPmetamodel is trained on data generated by a physics-based
model that would demand too much computational cost for the direct optimiza-
tion. In the context of RTO, GOMES (2007) was the first to propose the use of
GP approximations of the rigorous steady-state model in a real-time iterative op-
timization approach. The author reported reduced computational cost from the
use of the approximation methods when the rigorous model would demand a
prohibitive computational cost for a real-time application.

In the context of MA, DE AVILA FERREIRA et al. (2018) were the first to pro-
pose estimating plant-model mismatch by the use of GP as a higher-order approx-
imation rather than relying on the zeroth- and first-order modifiers.

The idea is to describe an unknown function f : Rnu → R using some observa-
tions that might have a noise part, y = f(u+ ν), in which ν ∼ N (0, σ2

ν) is a white
noise with variance σ2

ν and zero-mean. GP is a generalized multivariate Gaussian
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distribution that can be represented by

f(·) ∼ GP(m(·), k(·, ·)) (2.68)

in whichm(·) is a mean function and k(·, ·) is a covariance function that takes into
account the correlation between the function values. It is common to choose the
mean function as a constant, m(u) := c, and the squared-exponential covariance
function:

k(u, ū) := σ2
n exp

{
−1

2
(u− ū)TΛ(u− ū)

}
(2.69)

in which σ2
n is the magnitude of the covariance and the scaling matrix is defined

as Λ := diag{λ1, λ2, ..., λnu}.
The regression technique usually employed is the maximum log-likelihood

and the predicted distribution of f(u) follows the normal distribution f(u) ∼
N (µf (u), σ

2
f (u)), with:

µf (u) := r(u,U)K(U)−1y + c

σ2
f (u) := σ2

n − r(u,U)K(U)−1r(u,U)T
(2.70)

in which the pair (U ,y) is the input-output data formed by N observations,
Ki,j(U) := k(ui,uj) + σ2

νδi,j for each pair (i, j) ∈ 1, ..., N2, δi,j is the Kronecker
delta function and r(u,U) := [k(u,u1), ..., k(u,uN)]. Here, µf is interpreted as
the prediction of the GP, and σ2

f is the uncertainty around this predictor.
DE AVILA FERREIRA et al. (2018) proposed ng + 1MISO GPs to estimate the

plant-model mismatch for the cost function and the constraint functions:

fp − f ∼ (GP)f (u,U ,y), ∀ f ∈
{
J, g1, g2, ..., gng

} (2.71)

For the sake of simplifying notation, the indication for the input-output
data, (U ,y), was dropped in the following discussion. To prevent overfitting,
DEAVILAFERREIRA et al. (2018) proposed to proceedwith the estimationwith a
limited number of past points within a certain radius from the actual point. How-
ever, no more details were discussed on how to obtain a reliable data set, such
as the screening algorithm proposed by GAO et al. (2016b), or the presence of
frequent disturbances.

The authors proposed to solve the following high-order modified problem,

38



referred here as MA-GP (DE AVILA FERREIRA et al., 2018):

u∗
k+1 = arg min

u
J(u) + µJ(u)

s.t. gi(u) + µgi(u) ≤ 0, ∀ i ∈ Z+
≤ng

(2.72)

The scheme was compared to a standard MA approach showing the great po-
tential of the MA-GP to drive the plant to its optimum point. The MA-GP out-
performed the standard MA in convergence time, stability around the optimum,
feasible path taken, and suppression of noise. However, very little attention was
given to the standardMA implementation and no mathematical foundation is yet
available to support this better performance.

DEL RIO CHANONA et al. (2019) extended the MA-GP scheme proposed by
DE AVILA FERREIRA et al. (2018) based on trust-region ideas. They proposed a
simple approach to update the radius based on the accuracy of the GP predictors,
called MA-GP-ITR:

u∗
k+1 = arg min

u
J(u) + µJ(u)

s.t. gi(u) + µgi(u) ≤ 0, ∀ i ∈ Z+
≤ng

∥u− uk∥ ≤ ∆k

(2.73)

in which∆k is the radius of a ball trust-region constraint, updated considering the
constants 0 < η1 ≤ η2 < η3 < 1 and 0 < γ1 < 1 < γ2, as:

∆k+1 ∈


γ1∆k if ρk+1 < η2 or gp,i(uk+1) > 0, ∀ i ∈ Z+

≤ng

min{γ2∆k, ∆̄} if ρk+1 > η3 and ∥u− uk∥= ∆k

∆k otherwise
(2.74)

in which, ∆̄ is an upper bound for ∆k and the performance criteria is evaluated
as presented in Equation 2.56. It is interesting to highlight that this approach is
slightly different from the formulation presented in Section 2.5.3.8, mainly be-
cause of the addition of a "backtrail" mechanism in the radius updating strategy
to reduce the trust-region size whenever a constraint is violated. This approach
is capable of minimizing infeasible paths by taking actions to drive the path back
to feasibility whenever a violation is detected. In addition, radius increase is only
possible if the trust-region constraint is active.

DEL RIOCHANONA et al. (2019) proposed another approachwheremultiple
trust regions are defined based on the GP predictors variance. The approach,
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called MA-GP-MPTR, solves the following modified problem:

u∗
k+1 = arg min

u
J(u) + µJ(u)

s.t. gi(u) + µgi(u) ≤ 0, ∀ i ∈ Z+
≤ng

σJ,k(u) ≤ ∆J,k

σgi,k(u) ≤ ∆gi,k, ∀ i ∈ Z+
≤ng

(2.75)

in which∆f,k are the radius of each separated trust region defined from the stan-
dard deviation of each GP predictor considering f ∈ {J, g1, ..., gng}. The radius
updating associated with the cost function is:

∆J,k+1 ∈


γ1∆J,k if ρk+1 < η2

min{γ2∆J,k, ∆̄J} if ρk+1 > η3 and σJ,k = ∆J,k

∆k otherwise
(2.76)

And, radius updating associated with each constraint i ∈ Z+
≤ng

is:

∆gi,k+1 ∈


γ1∆gi,k if gp,i(uk+1) > 0

min{γ2∆gi,k, ∆̄gi} if gp,i(uk+1) < 0 and σgi,k = ∆gi,k

∆k otherwise
(2.77)

In both proposed algorithms, the input updating criterion is:

uk+1 ∈

{
uk if ρk+1 < η1 or gp,i(uk+1) > 0, ∀ i ∈ Z+

≤ng

uk+1 otherwise (2.78)

Note that the evaluation of ρk+1 imposes the need to apply uk+1 to the plant
and if the updating criteria does not hold, uk is then reapplied. This is an un-
wanted issue of the algorithm that might produce unnecessary points that do not
contribute to cost decreases or are infeasible. In contrast with the trust-region for-
mulation presented in Section 2.5.3.8, the "backtrail" approach would be able to
drive the system back to a cost-decreasing and feasible path, no strategy is intro-
duced to prevent spurious solutions from being applied to the plant.

The authors argued the formulation of MA-GP-MPTR is more flexible and re-
silient to poor scaling in large problems. Also, they highlighted that the dispersed
measurements across the entire feasible region can prevent convergence to a local
minimum. However, it comes with the cost of adding extra nonconvexity to the
problem. The results showed that MA-GP followed an infeasible path, in contrast
with the results presented by DEAVILA FERREIRA et al. (2018), MA-GP-ITR and
MA-GP-MPTR initially violate the constraint but then the "backtrail" strategy was
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able to drive them back to a feasible path. All the approaches were able to reach
the truly constrained optimum,which confirmed the potential of the GP approach
to describe plant-modelmismatch even under the presence ofmeasurement noise.
The authors claimed that MA-GP-ITR performs faster and is easier to tune than
MA-GP, due to the absence of filtering. Also, an advantage of the MA-GP-MPTR
is that it guarantees that the extrapolation errors of cost and constraint functions
are always under control.

DEL RIOCHANONA et al. (2021) applied the concept of acquisition functions
to enhance the exploration capabilities of MA-GP. The idea behind the acquisition
functions is to select the next acquired point by making use of the past selected
points and the uncertainty in the decision space, it provides a tradeoff between
exploration and exploitation (SHAHRIARI et al., 2016). The authors proposed
the use of the lower confidence bound (LCB) and the expected improvement (EI)
functions:

ALCB[µf , σf ](u) := µf (u)− γσf (u) (2.79)

AEI [µf , σf , fL](u) := − [fL − µf (u)] Φ (NEI)− σf (u)ϕ (NEI) ,

NEI :=
fL − µf (u)

σf (u)

(2.80)

in which γ is an exploration weight, Φ(·) is the cumulative normal distribution
function, ϕ(·) is the standard normal probability function and fL is a tuning pa-
rameter that works as a target for the objective function, for which the authors
proposed to use the best-observed value.

Thus, the authors proposed to solve the following optimization problem con-
sidering the use of an acquisition function:

u∗
k+1 = arg min

u
A[J(u) + µk

J , σ
k
J , ·](u)

s.t. gi(u) + µk
gi
(u) ≤ 0, ∀ i ∈ Z+

≤ng

∥u− uk∥ ≤ ∆k

(2.81)

inwhichA[·, ·, ·](u) is one of the discussed acquisition functions, lower confidence
bound (ALCB) or expected improvement (AEI).

DEL RIO CHANONA et al. (2021) applied the proposed approach in an illus-
trative example, in the Williams-Otto reactor, and a batch-to-batch bioreactor. In
all of the cases, both acquisition functions presented a very similar performance.
In the illustrative example, the authors presented the benefit of using an acqui-
sition function, which shows that the problem converges to the plant’s optimum
point more frequently than without it, and the benefit of knowing the process
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noise, which considerably decreases the GP uncertainty and improves the mod-
ified optimization results. Also in the illustrative example, the authors showed
the benefit of using the uncertain model as opposed to no model at all, which
proved to have reduced the uncertainty of the GP approximation and faster con-
vergence to the plant optimum. In the Williams-Otto reactor, the authors only
compared the performance of the use of EI and LCB acquisition functions, but
the result considering no additional exploration was not presented. However, no
other acquisition functions were tested such as the probability of improvement,
Thompson sampling, entropy search, and knowledge-gradient policy (SHAHRI-
ARI et al., 2016). In addition, it has been pointed out that no single functionwill be
capable of addressing every application and, therefore, one might consider using
a pool of various acquisition functions (HOFFMAN et al., 2010). However, such
an idea was not explored in the context of RTO to this data. Finally, in a batch-
to-batch bioreactor, DEL RIO CHANONA et al. (2021) compared the approach
with and without the knowledge of the process model, which confirmed that the
prior use of an uncertain model produced a better GP approximation, faster, and
more consistent convergence to the plant’s optimal point, although the model-
free results demonstrate a potential of a completely data-driven approach using
GP approximations.

2.5.4.4 RBF Neural Network

The idea of modeling plant-model mismatch by a Radial Basis Function Network
goes back to the work of JOHANSEN and FOSS (1992). However, the introduc-
tion of this idea into a MA scheme was only recently proposed by MATIAS and
JÄSCHKE (2019). The approach takes advantage of the RBFN structure to extract
its gradients analytically.

The main idea is to model the plant cost and constraint functions in two por-
tions, one from the rigorous model and the other the plant-model mismatch, ε,
that might be subject to noise, ν:

fp(u) = f(u) + εf (u,ν), ∀ f ∈
{
J, g1, g2, ..., gng

} (2.82)

The portion of the plant-modelmismatch is thenmodeled by theRBFNand the
plant gradient is estimated by taking the gradient of the model and the gradient
of the RBFN approximation:

∇ufp(u) = ∇uf(u) +∇uεf (u,ν), ∀ f ∈
{
J, g1, g2, ..., gng

} (2.83)

Each of the nn neurons of an RBFN is a Gaussian-like function centered at a
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given input value, µ:

ϕi(u) = exp{−ω∥u− µi)∥}, ∀ i ∈ Z+
≤nn

(2.84)

in which ω is a scaling parameter that controls the width of the Gaussian curve.
To improve accuracy, the activation function is the normalization of all ϕi between
0 and 1:

ri(u) =
ϕi(u)∑nn

j=1 ϕj(u)
, ∀ i ∈ Z+

≤nn
(2.85)

The authors proposed to construct ng+1MISO RBFNs by taking the weighted
sum of all nn activation functions applied to each of the nr points in the regression
set for all f ∈ {J, g1, g2, ..., gng

}:
εf,1

εf,2
...

εf,nr

 =


1 rf,1(u1) rf,2(u1) ... rf,nn(u1)

1 rf,1(u2) rf,2(u2) ... rf,nn(u2)
... ... ... . . . ...
1 rf,1(unr) rf,2(unr) ... rf,nn(unr)




wf,0

wf,1

...
wf,nm

 (2.86)

Addressing these matrices as Ef = Rf ·Wf , it is possible to determine the
weights of each RBFN by a recursive least squared estimation as follows:

Wf = (RT
f Rf )

−1RfYf (2.87)

The authors show that the gradients of the RBFN can be analytically evaluated
by:

∇uεf = −2β
(
W̄ · diag{R̄} ·M − R̄ ·MT · W̄ · K̄T

) (2.88)

in which

M(u) = [(u− µ1), (u− µ2), ..., (u− µnn)]
T

R̄(u) = [r1(u), r2(u), ..., rnn(u)]
T

W̄ (u) = [w1, w2, ..., wnn ]
T

(2.89)

On every iteration, the neurons are repositioned in the input space by the K-
means clustering strategy SCHWENKER et al. (2001) and the network is retrained.
Also, a probing policy similar to GAO et al. (2016b) is applied. The idea is to guar-
antee a well-distributed with sufficiently distant points in Rf and to explore the
neighborhood region for increased accuracy of gradient estimation. The authors
tested the methodology in a gas-lift well simulation and reported good results
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even for a significant amount of noise. However, they did not compare the results
to other MA approaches, the standard MA, or the MAWQA (in which this frame-
work is very similar). In addition, the plant-model mismatch introduced to the
simulation was only from a parametric source, no structural uncertainty was ex-
plored. The approach could be better explored in order to clarify its performance
compared to other MA strategies and for a variety of mismatch sources.

2.6 Use of Transient Measurement

As current RTO industrial practice mainly relies on the use of static models in
the optimization, data reconciliation, and parameter estimation steps, the require-
ment of acquiring steady data is mandatory. Otherwise, using transient data di-
rectly could inject significant error into the optimization solution, which could
lead to a sub-optimal operation or even potential instabilities (ENGELL, 2007). In
an attempt to reject transient measurements, an SSD step is included in the classic
RTO framework to ensure the subsequent stages are only triggered when a steady
state is detected, otherwise, the execution stays on hold. Figure 2.3 illustrates the
classic RTO execution steps and how it is located in the control hierarchy.

Disturbances, 𝜽
Plant

𝒖

Measurements, 𝒚

Supervisory Control (SC) / 
Distributed Control System (DCS)

Steady
state? no

waitEconomic optimization

Simultaneous data reconciliation 
and parameter estimation

𝜽∗

𝒚∗, 𝒖∗

yes

𝒚

Figure 2.3: Classic static RTO framework scheme.

There are several SSD methodologies available (KELLY and HEDENGREN,
2013; RHINEHART, 2013; TURAN and JÄSCHKE, 2023), and most of them
are based on statistical quantities taken from real-time measurements to detect
whether the current point represents a steady state with a certain degree of con-
fidence. However, the reality of industrial-scale application shows that moments
of steady-state conditions are an idealization rather than a frequent reality. Con-
sequently, the waiting times for RTO executions can be very long, which usually
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results in the necessity of tweaking the SSD tuning to allow formore frequent RTO
execution, whichwill ultimately allow for runs to occur during transientmoments
and potentially degrade the RTO performance.

This becomes even more of an issue in continuous processes with frequent
and/or slowly drifting disturbances, which makes SSD even rarer. Moreover, in
between every RTO execution, the plant needs to continuously move from one
operating point to another which may result in sub-optimal solutions for most of
the operation time. In fact, the RTO’s long wait time has been reported as one
of its major issues for the last three decades (BROOKS, 2003; DARBY et al., 2011;
ENGELL, 2007; FRIEDMAN, 2005, 1995, 1998).

2.6.1 Parameter adaptation schemes

In the context of parameter adaptation schemes, such as the two-step approach
(JANG et al., 1987), one of the first alternatives to incorporate transient measure-
ments was the proposition of the so-called DRTOwhere a dynamic model is used
in the RTO problem (BIEGLER, 1984a; POLLARD and SARGENT, 1970; SAR-
GENT and SULLIVAN, 1978). Themain incentive for usingDRTO is that dynamic
models allow a more frequent re-optimization of plant economics since there is
no need to wait for the plant to reach a steady state. Over the last decades, the
DRTO scheme has been applied to a wide variety of chemical processes, for exam-
ple, processes that exhibit long transient dynamics such as integrated plants with
recycle streams (TOSUKHOWONG et al., 2004), bio-ethanol processes (OCHOA
et al., 2010), FCC converter unit (ALMEIDA NT and SECCHI, 2011), polymer-
ization industries (PONTES et al., 2015), and autocatalytic esterification reactors
(ROHMAN et al., 2019), to name a few. Although extensively adopted in chemi-
cal engineering research papers, DRTO has not yet found broad acceptance in the
process industry (CÂMARA et al., 2016; CAMPOS et al., 2009), and only a few
applications to real systems have been reported in the literature (e.g., AHO et al.
(2009), HUANG (2010), and MÜLLER et al. (2017)). Some of the reasons hin-
dering DRTO implementation in an industrial environment are the fact that the
dynamic models are not so common in industry (PISTIKOPOULOS et al., 2021)
and that the resulting dynamic nonlinear optimization problem is much more
complex than its static counterpart, which may raise several numerical issues in
online applications.

Over the years, several authors made efforts to make changes and adjustments
to the static two-step approach so that it can incorporate the use of transient data.
Moreover, these kinds of frameworks present an economic performance close to
the DRTOwith much less computational effort for continuous processes (KRISH-
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NAMOORTHY et al., 2018b), which has driven significant attention and interest
to them. The next paragraphs discuss the main recent developments in the use of
transient data in the context of the two-step RTO schemes.

2.6.1.1 Seminal works

One of the first ideas to overcome the steady-state wait time in the context of the
two-step RTO was reported by BESL et al. (1998) in an application commissioned
in 1996 to a light-naphtha isomerization plant. The authors reported that the pro-
cess presented relatively slow dynamics with a wait time of 3 hours for a steady
state after a step disturbance in the distillation reflux flow rate and 8-10 hours after
changes in the feed characteristics, which occurred at least twice a day. Therefore,
the classic RTO would present a very low frequency and would fail to keep the
plant in a near-optimal performance. BESL et al. (1998) point out that static data
reconciliation and parameter estimation is the critical step where the dynamic
data would have the most significant impact. Therefore, the authors proposed
to change the classic two-step approach by the inclusion of a second verification
loop, in which if the data is not steady only the optimization would run using the
offsets and parameters estimated by the last data reconciliation run and the data
reconciliation step would only run when the data was found to be in steady state.
Their optimization approach could be comparable with an ISOPE in which only
the zeroth-order corrections were applied. Figure 2.4 illustrates the RTO frame-
work proposed by BESL et al. (1998). With this simple change in the frequency of
each step of the classic RTO scheme, the authors reported a productivity increase
of 14 % and an economic benefit greater than $1.5 million per year compared to
the classic scheme. However, this methodology would only be valid when all or
most of the critical disturbances and parameters are measured or known. Since
there are long waiting periods for the model adaptation, the plant parameters
would continuously drift between each parameter estimation execution, and the
optimization solutions would be sub-optimal for most time of the operation.
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Figure 2.4: Besl’s RTO framework scheme (BESL et al., 1998).

PRIOR and LOPEZ (1999) reported an RTO schemewithout the use of steady-
state detection applied to an ethylene plant. The data reconciliation, parameter es-
timation, and optimization ran in a modular way, in which none of these steps de-
pended on the others to run. This is made possible by a common database where
the steps share information. The parameter estimationwas done in threemodules,
where the model was partitioned to allow for an asynchronous model update,
each running within 15-minute period. Figure 2.5 illustrates the RTO framework
proposed by PRIOR and LOPEZ (1999).
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Figure 2.5: Prior and Lopez’s RTO framework scheme (PRIOR and LOPEZ, 1999).

In Prior and Lopez’s application, the data reconciliation ran with a 10-minute
period associated with a strategy to compensate for dynamic effects and the opti-
mizer ran with a 10-minute period too. The authors claimed that a more frequent
approach overcomes the classic RTO as seeking "90 % of the benefits in 50 % of the
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time would be better than achieving the optimum". As a result, the frequent RTO
improved the plant throughput by 3-4%,which resulted in a benefit of £1.5million
per year. Unfortunately, the proposed methodology to compensate for the plant
dynamics was not disclosed in detail, which makes the proposition unpractical
and prevents its replicability. The authors indicated that there was a proprietary
interest in it, which would be the main significance of their work.

SEQUEIRA et al. (2002) and SEQUEIRA et al. (2004), also in an attempt to
increase the RTO frequency, proposed a new framework that the authors called
real-time evolution (RTE), as it does not perform the economic optimization step.
In replacement to the optimization step, an approach based on sensitivity anal-
ysis runs frequently in order to continuously improve the actual operating point
in the direction of decreasing the objective function. However, steady-state detec-
tion was still kept for the data reconciliation and parameter estimation steps. The
authors claimed that the RTE outperforms RTO in the presence of drifting distur-
bances, but they considered the disturbances to be perfectly measured, which is
rarely the case. Later, HUANG et al. (2011) claimed that RTE has no way of deal-
ing with local optimum trap and proposed an "Improved" RTE by performing an
economic optimization using a global solver, such as particle swarm optimization
(PSO) or genetic algorithm (GA). However, this methodology change mischarac-
terized the RTE, whose main aspect is not to run a proper optimization, and ends
up resembling more the approach proposed by BESL et al. (1998) than the actual
RTE.

DARBY et al. (2011) reported that ARISTA et al. (2006) deployed an RTO in
an Ultra-low Sulfur Diesel plant without the steady-state detection step. The au-
thors proposed the use of the empirical Hammerstein–Wiener dynamic model to
predict the process steady-state to be used in the data reconciliation and parame-
ter estimation step. Unfortunately, no more details were found available. Despite
the little information about the work, the idea behind it is very clear. An extra
processing step is included between acquiring the plant measurement and the
model adaption stage to translate the dynamic measurement on its static point
once the plant settles. This translation would be done via a data-driven model,
which would be restricted to the domain where the model was trained and vali-
dated. Therefore, this kind of technique would remove the extrapolation capabil-
ity of a rigorous-mechanistic-model-based RTO.

2.6.1.2 HRTO or ROPA

VALLURU et al. (2015) proposed a completely separated control and opti-
mization framework for processes with slow dynamics or frequent distur-
bances/parameters driftingwithout the steady-state detection step. Themain idea
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is to use a common Bayesian dynamic state and parameter estimator, e.g. EKF, for
the economic optimization and an adaptive Nonlinear Model Predictive Control
(NMPC). Another common aspect between the proposed layers is the use of the
same dynamic model in the controller and in the observer and its steady form in
economic optimization. Therefore, no model compatibility issues arise from the
separate layers. In addition, the authors proposed a variable economic optimiza-
tion frequency based on a pre-defined threshold for each disturbance or parame-
ter being estimated by the EKF. Figure 2.6 illustrates the RTO framework proposed
by VALLURU et al. (2015). The authors applied the proposed methodology in a
Reactive Distillation process and reported significant operational improvements
compared to the classic RTO scheme, especially during the transient periods.

Figure 2.6: Valluru et al.’s RTO framework scheme (VALLURU et al., 2015).

In 2018, two independent works were published almost simultaneously, both
unaware of the work of VALLURU et al. (2015), claiming that they had proposed
an RTO methodology that can use transient data, although both methodologies
were identical to each other and very similar to Valluru et al.’s methodology.
MATIAS and LE ROUX (2018) called it ROPA and KRISHNAMOORTHY et al.
(2018b) called it HRTO. Despite none of them having actually been the first to
propose the methodology, they have the merit of bringing more attention to the
methodology and some enlightening discussions over the topic. 1

MATIAS and LE ROUX (2018) evaluated ROPA by applying it in a model of
the Williams-Otto reactor and comparing it with the classic RTO approach. The
authors emphasized the elimination of the steady-state waiting time and more
freedom on the possibility of running the optimization at any desired time in-
stant as the main benefits of ROPA. They also discussed that running RTO using
transient data results in a continuous improvement of the objective function as

1Throughout the text of the present thesis, the reader will notice several references to ROPA
and HRTO, in order to prevent confusion it is important to clarify that the use of these acronyms
refers in fact to the same optimization strategy where the parameter estimation is carried out in a
dynamic framework followed by a static economic optimization.
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the estimated parameters gradually converge to their expected values and, there-
fore, there is no difference between the final steady-state optimum reached by the
classic RTO and by ROPA. Nonetheless, the authors also highlight that ROPA can
destabilize the plant if the algorithm is not well-tuned, which is one important
disadvantage of the methodology. The authors argue that the EKF tuning activity
cannot be neglected and point to the execution frequency, optimal decision filter-
ing, and EKF parameters as the main factors related to stability.

KRISHNAMOORTHY et al. (2018b) evaluated the ROPA algorithm in a sim-
ulated oil and gas production network and compared it to the classic RTO and
to a DRTO approach. The main conclusion of the work was that ROPA is capa-
ble of presenting a similar economic performance to DRTO with a computational
time similar to the classic RTO. The authors highlighted that there is no clear un-
derstanding of when to use static or dynamic optimization, although some pro-
cesses present a dynamic nature that imposes the use of dynamic optimization,
e.g. batch processes, cyclic operations, frequent grade changes, start-up, shut-
down, etc. However, a dynamic problem can be considerably larger than its static
counterpart because of the inclusion of the time dimension. For instance, in their
case study, the dynamic NLP presented 139 times more decision variables than
the static NLP. If a large-scale system were considered, this would be an even
more dramatic issue, that could generate numeric issues and computational de-
lays for the DRTO approach, resulting in performance degradation and possible
closed-loop instabilities. KRISHNAMOORTHY et al. (2018b) also discussed other
possibilities for the dynamic estimation methods, such as filtered bias update or
implicit dynamic feedback (IDF) for simple one-to-one measurements to param-
eter relation, other variants of Bayesian methods, such as the UKF or the parti-
cle filter, or even more complex optimization-based methods such as the MHE.
However, they highlighted the benefits of using EKF, as it is simple to implement,
has low computational cost compared to the others, and corresponds to the max-
imum likelihood estimator for uncorrelated Gaussian white noise. However, the
authors have not mentioned the lack of a clear method for EKF tuning for large-
scale systems. Finally, the authors also outlined some concerns about modeling
structural uncertainty andproposed the use of a bias term in the dynamic observer
to cope with unmodelled effects. Nevertheless, no further results and compar-
isons were provided to support the effectiveness of this method, which appears
to be insufficient to cope with the model-adequacy condition (CHACHUAT et al.,
2009; MARCHETTI et al., 2016) considering that no input-affine correction was
proposed to modify the original optimization problem.

In 2019, VALLURU and PATWARDHAN (2019) published a new research ar-
ticle that unveiled their work on RTO using transient data from 2015, showing
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that they had proposed the methodology which would later be called ROPA or
HRTO. The work does not bring novelty to the methodology proposed in 2015
but increases the discussion and the study cases. The authors thoroughly re-
viewed Bayesianmethods that can be used in the parameter estimation stage with
special attention to systems of differential-algebraic equations (DAEs). More-
over, three simulation case studies were carried out in the Williams-Otto reac-
tor, a CSTR with input multiplicity and in an ideal reactive distillation column.
The results confirmed that the proposed HRTO coupled with adaptive NMPC
can maintain the system at its economic optimum even under significant drifting
disturbances/parameters.

SHAMAKI and ODLOAK (2020) tested the HRTO methodology with a well-
established zone-control infinite-horizon MPC proposed by GONZÁLEZ and
ODLOAK (2009) in a simulated gas-lift system. The authors considered an EKF
for estimating the gas-to-oil ratio of the wells and the HRTO approach showed
great synergy with the proposed control strategy, keeping the system in its opti-
mal condition even after uncertain parameters step changes.

SANTOS et al. (2021) proposed the use of an Unscented Kalman Filter (UKF)
and considered the objective function of the economic optimization as one of the
controlled variables in an adaptive linear MPC approach and applied the pro-
posed methodology to the Williams-Otto reactor benchmark. The controller ob-
jective was to keep the output variables within a desirable zone while tracking a
setpoint for the economic objective function, in which the setpoint comes from the
HRTO. The authors showed that the proposed adaptation strategy considerably
reduces the model mismatch across the control and optimization layers. They
claim that their approach can deal with structural uncertainty, but there is no ev-
idence that this issue is tackled since no information about the plant gradients or
mismatch modeling is used in the algorithm.

CURVELO et al. (2021) further investigated the use of HRTO in a wide range
of dynamic behaviors. The authors confirmed that the HRTO strategy can in fact
approach the economic benefits of the DRTO for most dynamic behaviors tested.
However, special attention must be given to systems with considerably high dead
times. In this case, the authors reported the arising of oscillatory modes that can
even destabilize the system depending on the mismatch between the model and
plant dead time. They proposed that a compensationmethodology could be used
to overcome this issue, such as a Smith predictor, but no further results were pre-
sented to support this claim. To this date, no research work has further explored
ways to overcome the presence of dead time plant-model mismatch in HRTO.

MATIAS et al. (2022) applied the ROPA strategy in a real experimental rig and
were the first authors to confirm the previous theoretical results in a true experi-
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mental system. The authors implemented the classic RTO, ROPA, and DRTO ap-
proaches to the same experimental rig. They confirmed the close DRTO economic
benefit and provided some guidelines for the practical implementation of ROPA.

The commonbottleneck of all the previousworks related to theHRTOorROPA
approaches is that all of them consider the availability of a rigorous dynamic pro-
cess model, which is one of the main drawbacks of the HRTO since, in most real
RTOapplications, this assumption is not true. MATIAS andLEROUX(2020)were
the first to address this issue by proposing an asynchronous ROPA, where the
problem is decomposed into static and dynamic sections and dynamic observers
that rely on the rigorous dynamic model are used for the dynamic sections and
steady-state detection is used for the static section. Based on this, a combination
of steady-state and dynamic estimators is used asynchronously. The approach
proposed by MATIAS and LE ROUX (2020) is more realistic to enable the appli-
cation of ROPA in a plant-wide optimization scope. However, the availability of
rigorous dynamicmodels is still mandatory for the process sections where the dy-
namic estimation takes place. Moreover, even though the authors have presented
some guidelines, the activity of separating the whole plant into sections based on
its dynamic behavior is not straightforward.

2.6.2 Problem adaptation schemes

In the context of MA, in which several iterations are required to achieve the real
plant optimum, it is a significant improvement to use the transient measurements
in order to speed up the optimization procedure.

FRANÇOIS and BONVIN (2014) highlight that the use of transient measure-
ment in the MA scheme is a way to benefit from the two main advantages of the
implicit and explicit RTOmethods, that is fast convergence and explicitly handling
with nonlinear constraints, respectively.

Themain challenge in this context is how to estimate accurate steady-state gra-
dients from transient data. Some authors proposed different methodologies in
order to tackle this attempt, even outside the context of MA.

2.6.2.1 Seminal works

BAMBERGER and ISERMANN (1978) proposed a framework of identification
and optimization in an implicit approach. The authors proposed the use of a non-
linear Hammerstein structure that is affine in the parameters to be estimated and
nonlinear in the inputs, more specifically they chose a second-order input depen-
dence, composed by ny MISO models. The identification procedure was done
by imposing a pseudo-random binary sequence (PRBS) perturbation to the plant
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and a recursive algorithm based on least squared regression was used to estimate
the parameters of theHammersteinmodel. With the identifiedmodel at hand, the
gradients andHessianwere calculated analytically from themodel and used in an
implicit optimization algorithm based on Newton’s method. The authors tested
the approach in a simulation case and an actual cooling water pilot plant. They
reported a fast convergence to the plant optimum, without oscillatory behavior
around it, and disturbances were successfully rejected. The main disadvantage of
this approach is the requirement of imposing a PRBS perturbation to the plant,
which is not well received by plant operators and managers. LEE and LEE (1985)
proposed a cascade control and optimization of a fixed-bed reactor based on the
methodology proposed by BAMBERGER and ISERMANN (1978). GOLDEN and
YDSTIE (1989) extended the methodology proposed by BAMBERGER and ISER-
MANN (1978) in an adaptive extremum control combining a rigorous steady-
state processmodelwith the identification of a second-orderHammersteinmodel,
including a forgetting factor in the regression scheme.

ZHANG and ROBERTS (1990) proposed a similar strategy to an ISOPE ap-
proach. A process identification during the transient stages was proposed based
on a linear autoregressive exogenous (ARX) model structure. This linear ARX
model can be interpreted as a special case of the Hammerstein model proposed
by BAMBERGER and ISERMANN (1978), in which the model is affine in the pa-
rameters and the inputs. A Recursive Least Square (RLS) with a forgetting factor
was proposedwith a bootstrap correction to avoid biased estimationwhen noise is
correlated (ROWE, 1970). Again, PRBS perturbation was imposed on the plant to
guarantee accurate gradient estimation, which is themain drawback of the propo-
sition.

2.6.2.2 Fast RTO or fast MA

In the context of MA, FRANÇOIS and BONVIN (2014) were the first to pro-
pose the use of transient measurements to speed up convergence. The strategy
is frequently called "fast RTO" in recent literature (DE AVILA FERREIRA et al.,
2019a,b,c; MARCHETTI et al., 2016), but the name "fast MA" would be more accu-
rate to define the approach. The main idea is to estimate the steady-state modifier
using the transient data aiming to achieve the plant’s true optimum in a single
settling time. The MA problem using transient data in a jth iteration during the
transient phase is:

u∗
j+1 = arg min

u
Jm(u) := J(u) + (λ̂J

j )
T (u− uj) + ε̂Jj

s.t. Gi := gi(u) + (λ̂gi
j )

T (u− uj) + ε̂gij ≤ 0, ∀ i ∈ Z+
≤ng

(2.90)

53



with:

ε̂Jj = Ĵp(uj)− J(uj) (2.91a)
ε̂gij = ĝp,i(uj)− gi(uj), ∀ i ∈ Z+

≤ng
(2.91b)

λ̂J
j = ∇̂uJp(uj)−∇uJ(uj) (2.91c)

λ̂gi
j = ∇̂ugp,i(uj)−∇ugi(uj), ∀ i ∈ Z+

≤ng
(2.91d)

in which the superscript ( ·̂ ) represent an estimated steady-state value correspon-
dent to uj . Note that in this section, the transient MA iteration is referred to with
the index j. Again, the use of exponential filtering in inputs and modifiers was
recommended. The authors showed that if the plant reaches a steady state and
the values of Ĵp, Ĝp, ∇̂uJp and ∇̂uGp converge to their true values, then the plant
will satisfy its NCO conditions and the steady-state will be a KKT point.

To calculate the zeroth-order modifiers, the authors took the difference be-
tween the actual plant measurement at time tj and the modeled steady-state:

Ĵp(uj) = Jp(tj) (2.92a)
Ĝp(uj) = Gp(tj) (2.92b)

To calculate the first-order modifiers, the authors compared two gradient esti-
mation methods: the Multiple-Unit (MU) and the Neighboring Extremals (NE).
The MUmethod is very limited, it assumes that there are nu +1 identical units of
the plant, the main one is used to proceed with optimization, and the others are
perturbed to calculate the gradient by finite differences, so it is very sensitive to
noise and its application to large industrial plant would be very difficult. More-
over, although the assumption of multiple identical plants is fair in the fields of
electricity and electronics, it is hardly observed in the process industry. The NE
approach is more interesting, it relies on variational analysis around the nominal
operating point:

∇̂uJp(u
∗
j) = ∇uJ(u

∗
0,θ) +∇2

uθJ(∇θy)
†δyp(tj) +[

∇2
uuJ −∇2

uθJ(∇θy)
†∇uy

T
]
δu∗(tj) (2.93a)

∇̂uGp(u
∗
j) = ∇uG(u∗

0,θ) +∇2
uθG(∇θy)

†δyp(tj) +[
∇2

uuG−∇2
uθG(∇θy)

†∇uy
T
]
δu∗(tj) (2.93b)

in which δyp(tj) = yp(tj) − y∗
0 and δu(tj) = u(tj) − u∗

0 are the deviation of the
current output and input from their nominal operating point. The superscript
(·)† represents theMoore-Penrose pseudo-inverse operation. The authors showed
that this approach is able to converge to the plant optimumwithin the settling time
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of the plant.
Later, DE AVILA FERREIRA et al. (2017) expanded the method proposed by

FRANÇOIS and BONVIN (2014). The authors observed that, with the proposed
NE approach, when a steady-state gradient estimate is inaccurate, it could lead
to oscillatory behavior or even prevent convergence. They proposed the use of
a dynamic model to process the actual transient measurement and predict a cor-
responding steady state. An important requirement is that this transient model
has to predict the same output values as the static model for any input value. In
other words, the dynamic model used to predict the steady-state conditions must
be compatible with the static model used in the optimization. The authors pro-
posed the following correction instead of using directly the current values of the
cost and constraints as proposed in Equation 2.92:

Ĵp(uj) = Js(uj,θ) +
[
Jp(tj)− Jdyn(tj)

] (2.94a)
Ĝp(uj) = Gs(uj,θ) +

[
Gp(tj)−Gdyn(tj)

] (2.94b)
ŷp(uj) = ys(uj,θ) +

[
yp(tj)− ydyn(tj)

] (2.94c)

here, the superscripts (·)s and (·)dyn are used only to clarify the use of the static
model or the dynamic model, respectively. The authors showed that these correc-
tions vanish upon convergence and the plant KKT point holds. They reported the
ability of fast MA to converge within the settling time of the plant, the absence
of oscillatory behavior while decreasing RTO convergence period, in contrast to
the method proposed by FRANÇOIS and BONVIN (2014), a rather insensitive
response to filter gains and a satisfactory performance in a dynamic system that
present non-minimum phase behavior. However, this extension included the re-
quirement of having a compatible dynamic model, which highly hinders the ap-
plicability of such an approach.

A simpler version of this methodology was successfully applied to real solid-
oxide fuel-cell systems (DE AVILA FERREIRA et al., 2019a,b,c). The authors
showed that for their particular problem, gradient errors in cost and constraints
functions had no effect on the set of active constraints, so a simple fast CA could
be implemented using a dynamic model to correct the modifiers during transient
phases, and no gradient estimation technique was required. They showed that
even under significant plant-model mismatch, the fast CA approach was able to
quickly converge to plant optimum since it was an intersection of some active con-
straints.

RODRÍGUEZ-BLANCO et al. (2017) pointed out several drawbacks of the NE
approach proposed by FRANÇOIS and BONVIN (2014), the most critical is that
the method only works well when the source of model-plant mismatch is mainly
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parametric, which contradicts the main motivation of using MA approaches, that
is the presence of structural plant-model mismatch. In addition, it is required to
know which are the uncertain parameters and there must be as many measure-
ments as uncertain parameters.

SPEAKMAN and FRANÇOIS (2020) extended the work of FRANÇOIS and
BONVIN (2014) for cases where the model’s degrees of freedom are not the same
as the plant’s. Their methodology enables the gradient estimation of a controlled
plant by using an open-loop model. The authors applied the method in a simu-
lated CSTR and showed its ability to rapidly converge to a near-optimal region.
However, the method also relied on NE gradient estimation, therefore the previ-
ously mentioned limitations hold.

RODRÍGUEZ-BLANCO et al. (2017) proposed a methodology based on the
assumption that the variation of the process cost function can be approximated by
a quadratic Taylor expansion and, then, a recursive extended least squares (RELS)
regression with forgetting factor α was applied.

∆Jj ≈ ∆Ĵj := φT
j−1Θ̂j−1 = ∆uT

j−1∇uj−1
J + 1/2 ∆uT

j−1∇2
uj−1

J∆uj−1 (2.95)

in which ∆uj−1 = uj−1 − uj−2, φT
j−1 =

[
∆uT

j−1, 1/2 ∆uj−1

] and Θ̂T
j−1 =[

∇uj−1
J, ∇2

uj−1
J∆uj−1

]
.

The gradients are estimated by the following algorithm:

Σ0 =
1

α
I (2.96)

(Σj)
−1 =

1

α
(Σj−1)

−1 − 1

α2
(Σj−1)

−1φj−1(
1 +

1

α
φT

j−1(Σj−1)
−1φj−1

)−1

φT
j−1(Σj−1)

−1

(2.97)

Θ̂T
j = Θ̂T

j−1 +
1

α
(Σj−1)

−1φj−1

(
1 +

1

α
φT

j−1(Σj−1)
−1φj−1

)−1 (
∆Jj −∆Ĵj

)
(2.98)

in which Σj is the covariance matrix of the estimated error at the jth iteration.
In order to avoid inaccuracy due to lack of excitation caused by passive identi-

fication, the authors added the dual constraint used in the dual ISOPE algorithm,
φκj(u) − 1 ≤ 0, to the modified problem that is solved every sampling time at
the transient phase. However, this approach does not fully characterize the du-
ality due to the lack of the constraint that ensures that u does not belong to the
hyperplane Hj , so it is not guaranteed that Uj is regular. The authors applied
the proposed scheme in an industrial depropanizer distillation column, the rig-
orous model was used as a plant and a reduced model was generated to be the
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MA model, so the plant-model mismatch was simulated based on the difference
between the rigorous and the reducedmodels. The reducedmodel was produced
by reducing the number of trays to 3 and using a global efficiency approach. The
number of trays of the original model was not disclosed by the authors, but they
mention that the total number of equations was reduced from 1076 to 39. They
compared the proposed scheme with the static dual MA (BRDYŚ and TATJEW-
SKI, 1994), the static nestedMA(NAVIA et al., 2015), and the fastMA(FRANÇOIS
and BONVIN, 2014). They showed that the RELS approach was able to drive the
real plant to its optimum 8 times faster than the static MA approaches and that
the transient MA proposed by FRANÇOIS and BONVIN (2014) failed to reach
the plant optimum due to severe plant-model mismatch.

2.6.2.3 MAWQA using transient measurements

Also addressing the problem of long waits for steady-state conditions and trying
to avoid the need for extra plant excitation to accurately estimate gradients, GAO
and ENGELL (2016) proposed the identification of linear ARX structures during
the transient to predict the next steady-state point. The order of the linear ARX is
determined according to the rigorous model of the plant. The authors proposed
the use of additional conditions to approve the predicted steady-state point, i.e.
mass and energy balances. If approved, the point predicted by the linear ARX
model is used for static gradient estimation in an MAWQA scheme. Otherwise,
the point is discarded, the data window is moved and a new ARX model is iden-
tified. The authors argued that, with the evolution of the transient data, the pro-
cess will eventually lie in a linear region that can be satisfactorily approximated
by a linear ARX model. The authors tested the methodology in the same CSTR
case study used by FRANÇOIS and BONVIN (2014) and reported a result slightly
slower, with approximately two settling times to converge to plant optimum. This
delay is explained by the time required to approve the linear ARX in a conser-
vative condition. The proposed methodology presents the advantage of working
well with model structural uncertainty and unknown uncertain parameters, de-
spite the NE methodology.

CADAVID et al. (2017) extended the methodology proposed by GAO and EN-
GELL (2016) to a more generalized framework based on the identification of a
nonlinear ARX (NARX) during the transient phase to estimate the steady-state
point. This estimated point was then used to estimate gradients in an MAWQA
scheme. The authors proposed the use of a structure selection strategy based on a
modified version of the bootstrap algorithm in the initial 50 sampling times, then
the model parameters were estimated in a moving-window scheme. Similarly to
GAO and ENGELL (2016), a conservative condition was imposed to approve the
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estimated steady-state point. The authors tested the proposed methodology in
the same CSTR case study then GAO and ENGELL (2016) and FRANÇOIS and
BONVIN (2014) but in a different scenario. They tested the linear approach, the
proposed nonlinear approach, a mixed approach, and the MAWQA without the
use of transient data. All of them were able to drive the plant to its real optimum
with 2.75τ , 2.51τ , 1.6τ , and 5.6τ , in which τ is the settling time, respectively. The
approach showed the enhanced performance of the nonlinear approach over the
linear. However, the most interesting result is that a mixed approach was able to
be even better than the nonlinear one. To justify that effect, the authors argued that
there is a trade-off between fast convergence and accurate convergence. When the
system is far from the true optimum, the fast estimate obtained from the NARX
structure is desirable andwhen it is near the optimum, the accurate estimate from
the ARX structure is desirable. Moreover, the authors show that even under the
detrimental effect of measurement noise, the use of transient measurement is still
able to reduce convergence time with similar profit loss compared to static MA.

2.6.3 Optimizing control approaches

Several approaches integrate the optimization goals in the control layer, gener-
ating a single control and optimization layer. DARBY et al. (2011) discussed the
benefit of keeping the two layers separately in practical applications, it eases the
tuning efforts, maintenance, and troubleshooting. Nevertheless, it is worthwhile
mentioning some of the current methodologies.

DE GOUVÊA and ODLOAK (1998) was the seminal work that proposed the
inclusion of economic goals to the model predictive control objective function.
This approach was later called EMPC. Later, DE SOUZA et al. (2010) proposed
the inclusion of an additional tracking term to theMPC objective function to drive
the gradient of the economic function to zero. DEMUNER et al. (2022) proposed
a one-layer nonlinear EMPC framework in the absence of first-principle models,
in which the static and dynamic terms are decomposed in a model structure that
combines a a priori identified Gaussian Process for the system’s steady states and
several MISO Hammerstein models for the system’s dynamics. There is a vast
literature on EMPC, but a review on this subject is beyond the scope of this thesis.
For this topic, we refer to ELLIS et al. (2014) and ELLIS et al. (2017).

Several other control techniques aim to achieve the optimum of an objective
function. ESC determines the optimal setpoints that minimize an objective func-
tion by imposing frequent perturbations on system inputs (DOCHAIN et al.,
2011). SOC aims to determine the linear combination of control variables that
result in a minimum loss when kept constant (JÄSCHKE et al., 2017; SKOGES-
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TAD, 2000). The NCO tracking is another control technique that aims to drive the
plant gradient to zero employing a Newton method (JÄSCHKE and SKOGES-
TAD, 2011). More recently, a feedback RTO was proposed, which is a method to
control a model-based gradient of the economic function to a zero setpoint by us-
ing a PID feedback loop (KRISHNAMOORTHY et al., 2019). The modifier adap-
tion techniquewas also formulated as a feedback control problem inMARCHETTI
et al. (2020). Another interesting approach that has gained increasing interest in
recent academic research is the use of Reinforcement Learning techniques for con-
trol and optimization purposes (FARIA et al., 2024, 2022, 2023).

Although these feedback approaches seem simple and practical, none of them
naturally handles constraints, except the EMPC that solves a constrained opti-
mization problem. This fact includes a great challenge to handle changes in the
active set of constraints and it is still an open topic in the literature.

The next sections dive into SOC and RL, which are the optimizing control ap-
proaches of most interest in the present thesis. For a thorough review of the other
methods, we refer to KRISHNAMOORTHY and SKOGESTAD (2022).

2.6.3.1 Self-optimizing Control

The motivation for the search for a self-optimizing control structure dates back to
the 80s when MORARI et al. (1980) introduced the search for a function of the
process variables that, when kept constant, would lead to optimal operation.

c = h(y) (2.99)

However, this goal was then simplified by SKOGESTAD et al. (1998), which
defines the self-optimizing control variables to be a linear combination of themea-
sured variables:

c = Hy (2.100)

and keeping the SOC variables, c, constant at their optimal setpoints, cs, would
lead to an acceptable loss in an economic index. Although the literature tends to
focus mostly on economic objectives, this methodology can apply to any kind of
goal, e.g. productivity, quality, environmental, etc. The loss function is defined as
the gap between the optimal objective function and the actual objective function
resulting from the process operation with a certain process control architecture.
That is:

Lc := J(u,θ)− J∗(θ∗) (2.101)
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Notice that this definition follows the optimization formulation presented in
Equation 2.6, but here θ is used to express the process disturbances that also im-
pact the process control.

The definition of a loss function and the introduction of an acceptable loss, first
done by SKOGESTAD et al. (1998) and later formalized by SKOGESTAD (2000),
represented a change of perspective by relaxing the goal of achieving optimality
and enabled significant advances in the SOCfield. Primarily, the active constraints
are naturally the first SOC variables to be chosen as controlled variables, then
with the remaining measured variables, one should carefully select how to select
the remaining controlled variables. Therefore, later works on SOC focused on
developing methods for the selection of the SOC variables by obtaining the H-
matrix and how to deal with changes in the active set of constraints.

One of the first methods to be developed was the so-called brute force method
(SKOGESTAD, 2000). The main idea of the method is to select the best CV out of
the set of CV candidates by evaluating the maximum or average loss across sam-
pled scenarios of all disturbances and noise realizations. However, this approach
requires solving many large-scale non-convex optimization problems and can be
intractable depending on the number of measurements.

Local methods were later developed by expanding the objective function in a
second-order truncated Taylor series, and assuming the active set of constraints
does not change during the operation (JÄSCHKE et al., 2017). The local approxi-
mation is done based on the assumption that the SOC variables will perform sat-
isfactorily around the nominal conditions neighborhood for most of the opera-
tion time. If this assumption does not hold for a particular application, local ap-
proaches shall not be considered. The constant active set of constraint assumption
can bemade by later exploringmethods of dealingwith changes in the constraints
active set.

By applying the local method, the measurement model is linearized at the
nominal condition:

∆y = Gu∆u+Gθ∆θ +wy (2.102)

in which, Gu = ( ∂y
∂u

)T and Gθ = (∂y
∂θ
)T are the measurement Jacobian matrices

with respect to u and θ, respectively, evaluated at the nominal conditions. Here,
the symbol∆ is used to represent the deviation from the nominal conditions, e.g.
∆y := y − ynom, and wy ∈ Rny is the measurement noise vector.

It is then possible to come upwith an explicit formulation for the loss function,
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JÄSCHKE et al. (2017) provides the full demonstration:

L =
1

2

∥∥∥∥∥J1/2
uu (HGu)

−1HY

[
θ′

w′

]∥∥∥∥∥
2

2

(2.103)

in which, θ′ := W−1
θ ∆θ and w′ := W−1

wy
∆w are defined as scaled quantities

based on the disturbances and noise magnitudes defined by matrices Wθ and
Wwy . Y = [FWθ Wwy ], and the matrix F := (∂y

∗

∂θ
)T is the sensitivity of the op-

timal measurements with the disturbances, which is computed by the following
expression:

F = Gθ −GuJ
−1
uu Juθ (2.104)

That stated, the exercise of finding the optimal SOC variables using the lo-
cal approximation method, can be summarized by finding an implementable H-
matrix that minimizes the loss function in Equation 2.103. However, such a for-
mulation may lead to a non-convex problem with multiple solutions. Therefore,
other approaches were developed to overcome this difficulty and compute the H-
matrix. The most notable ones are:

• The Null-space method (ALSTAD and SKOGESTAD, 2007): this method
assumes that the measurement can be neglected and that the number of
measurements is greater or equal to the sum of numbers of inputs and dis-
turbances (ny ≥ nu + nθ). These assumptions allow to achieve zero loss
provided that the H-matrix is selected in the left null space of F , such that
HF = 0, andHGu is non-singular. The H-matrix is calculated as:

H = [Juu Juθ] G̃
†
u (2.105)

inwhich G̃u := [Gu Gθ]. Thismethodmay result in uncontrollable SOCvari-
ables, in which their gains in relation to the inputs are zero. Furthermore,
not considering the measurement noise makes this method not optimal in
reality, which means that zero loss would not be achievable.

• The Extended Null-space method (ALSTAD et al., 2009): the method con-
siders ny < nu + nθ, and selects the H-matrix in a way that the priority is to
reject disturbances, then the remaining measurements are used to minimize
the effect of noise. The H-matrix is computed by:

H = [Juu Juθ] (W
−1
n G̃u)

†W−1
n (2.106)
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A problem with this method is the inability to provide an optimal balance
between disturbance and noise rejection.

• The Minimum Loss method: ALSTAD et al. (2009) formulated a convex
optimization problem to find the H-matrix that minimizes the average loss.

min
H

∥FY ∥F

s.t. HGu = J1/2
uu

(2.107)

They found an explicit solution, whichwas later refined by YELCHURU and
SKOGESTAD (2012):

H = (Gu)
T (Y Y T )−1 (2.108)

This result provides the bestmeasurement combination locally by providing
an optimal trade-off between disturbance and noise rejection.

• The Taylor-made Branch and Bound (CAO and KARIWALA, 2008; KARI-
WALA and CAO, 2009, 2010): this method is used to find the best measure-
ment set rather than the measurement combination, that is, the H-matrix is
composed of only zeros and ones, and only a single one by row. Themethod
exploits the fact that removing a measurement variable cannot decrease the
loss function to select or discard branches from the search. As a result, a
very efficient method to screen the best of all possible subsets of measure-
ment, without actually having to evaluate all of them, as it is done in the
brute force methods.

• The MIQP formulation: also in the attempt to find the best measurement
subset rather than a combination, YELCHURU and SKOGESTAD (2012)
proposed to reformulate the Problem 2.107 as a mixed integer quadratic
programming (MIQP) problem, and associate integer variables to control
which measurement are active or not. A constraint is added to ensure that
only one variable is selected per row in the H-matrix. However, the for-
mulation adds a tuning parameter that is hard to find, which results in the
requirement of solving theMIQP problemmultiple times iteratively tomake
sure the solution found is optimal.

All themethods described above assume a constant active constraint set. How-
ever, in practice, the disturbances can cause a change in the active set of con-
straints, and a change in the optimal SOC variables by consequence. Some meth-
ods proposed for dealing with changes in the active set of constraints are:
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• The cascade control approach (CAO, 2004): this approach proposes to set
a cascade control approach, where the inner loop is responsible for the con-
straint control, and the outer loop is responsible for the self-optimizing con-
trol. A saturation is imposed on the outer loop to guarantee that the con-
straint is not violated. However, this approach can only be applied when
there is a one-to-one mapping between constraints and CVs, and it results
in loss whenever a constraint turns active.

• The integrated approach (HU et al., 2012): this approach aims to find a sin-
gle H-matrix that ensures all variables are within their bounds. It modifies
the Minimum Loss method to include the consideration of the constraints:

min
H

1

2

∥∥J1/2
uu HY

∥∥2
F

s.t. HGu = I

∥Bi∥1 ≤ 0,∀ i ∈ Ing

(2.109)

where Bi, comes from the linearization of each constraint gi, and some fur-
ther manipulations. We refer to the authors for more details. There is no
guarantee that this optimization problem will have a solution. If it has, the
operation will result in loss when a constraint is activated. Also, the linear
approximation of the constraints can generate important plant-model mis-
match in a real plant operation, which could result in even more losses, and
possibly prohibitive constraint violations.

• The parametric programming approach (MANUM and SKOGESTAD,
2012): the authors proposed to identify the active constraint regions by solv-
ing a parametric programming problem considering the disturbances as the
parameters. Then, different optimal SOC variable configurations are de-
signed for each of these regions. This involves approximating the steady-
state optimization problem as a QP. Then, if the problem has a solution, an
invariable SOC configuration is derived for each region. To switch between
regions, the authors proposed to monitor a scalar descriptor function for
all neighbors and current regions. The switch is done when the signs of
the descriptor functions change. Another strategy for switching between re-
gions is the use of max/min selectors (KRISHNAMOORTHY and SKOGES-
TAD, 2022). The parametric programming approach may not be applicable
in practice. The number of regions may be too big, and the QP approxi-
mation can result in severe approximation errors that can pose great uncer-
tainty on the resulting region boundaries. Also, there is no guarantee that
the parametric programming solver will converge for every case. Another
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commonly reported issue is the complexity of the approach, resulting in too
many different and complex control configurations for each active constraint
set.

For a deeper review of these methods, challenges, and developments in the
field, we refer to JÄSCHKE et al. (2017). It is worth mentioning that, it has been
shown that controlling the SOC variables is an indirect way of achieving the NCO
when the H-matrix is chosen in the left null space of the sensitivity matrix of
the optimal measurements with the disturbances (JÄSCHKE and SKOGESTAD,
2010). In this case, SOC and NCO tracking (FRANÇOIS et al., 2005; KRISH-
NAMOORTHY et al., 2019) may be seen as equivalents, although the pursuit of
the economic function optimality has been relaxed, and it is not a direct goal of
the main SOC methods.

2.6.3.2 Reinforcement Learning

Reinforcement Learning (RL) is a class of algorithms that autonomously learns
how to realize a specific task via direct unsupervised interactionswith an environ-
ment (SUTTON and BARTO, 2018b). The success of RL inmany areas, such as the
development of chess (SILVER et al., 2018) and go (SILVER et al., 2016) computer
engines, the development of autonomous vehicles (KIM et al., 2003), and robotics
(ANDRYCHOWICZ et al., 2020; HEESS et al., 2017), has been induced the interest
of the process control community in such topic. A more in-depth description of
the RL problem is presented in Appendix D.

The first application of RL for chemical engineering problems dates from the
early 1990s and can be found in HOSKINS and HIMMELBLAU (1992). In this
pioneering work, the authors proposed a neural network (NN) based control, in
which two different NNmodels are used to predict both the control performance
measure and the policy. The method was applied to a non-isothermal CSTR ex-
ample, and the results were compared with conventional PID control. Despite
interesting results at that time, the number of publications remained low until the
mid-2010s. During that period, artificial intelligence did not have a significant
impact on chemical engineering since computing, storage and communication ca-
pacity, programming environments, and data quantity were insufficient to solve
the complex problems that these techniques were meant to address (VENKATA-
SUBRAMANIAN, 2018). However, the evolution of sensors and digital technolo-
gies in recent years has reduced these limitations, and the number of applications
of RL in process control has increased exponentially ever since.

Recent review articles have discussed the potential of using RL-basedmethod-
ologies for process control and optimization in industry (FARIA et al., 2023; NIAN
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et al., 2020; SHIN et al., 2019a). In particular, in SHIN et al. (2019a), the au-
thors thoroughly compare RL and MPC techniques regarding very important as-
pects to be considered for industrial applications such as online computational
cost, state constraints enforcement, the controller algorithm convergence proper-
ties, the closed-loop stability properties, and adaptiveness capacity. The authors
point out that RL techniques offer the following interesting characteristics against
NMPC limitations: once trained, the computational cost for the computation of
the control action is very low as it is obtained through the evaluation of a function
(e.g. a neural network model), and RL techniques are naturally adaptive as the
training of the agent may continue as new process data is collected. A compari-
son of RL-based control and NMPC subject to uncertainties has also been done in
KORYAKOVSKIY et al. (2017). The results demonstrate that nonlinear model pre-
dictive control has advantages over reinforcement learning if uncertainties can be
eliminated through the identification of the system parameters. Otherwise, there
exists a break-even point after which model-free reinforcement learning performs
better than nonlinear model predictive control with an inaccurate model. How-
ever, research work still has to be done regarding the convergence of the RL train-
ing algorithm, the closed-loop stability of the controller, and the enforcement of
constraints.

For training, the actor-critic algorithm is the most popular approach for solv-
ing RL problemswith continuous state and action spaces since it benefits from the
advantages of the two othermethodologies (i.e., value-based and policy gradient-
based) (FARIA et al., 2022). In this framework, the policy defining the decisions
taken by the controller, and the value function assessing the policy are approxi-
mated by parameterized functions. For their great capacity of generalization, neu-
ral networks are the most used approximators at the present time.

Some of RL works related to PSE applications are enumerated below. In AN-
DERSON et al. (1997), RL is combined with PID for the control of a heating coil.
In MARTINEZ (2000), RL is used for the optimization of batch processes, where
the RL solution is used to systematically shrink the region of interest for the op-
timization. In SYAFIIE et al. (2008), RL techniques are used for pH and pollutant
concentration control in wastewater plants. RL is combined with fuzzy logic for
the control of a fermentation process in LI et al. (2011). RL is used to optimize a
batch distillation process in WILSON (2012). In SHAH and GOPAL (2016), RL is
used to control a non-isothermal CSTR bymanipulating the PID controller tuning
parameters. An RL-based controller of a conical tank system is proposed in RA-
MANATHAN et al. (2017), and the control of wastewater treatment plants using
RL is tackled in HERNÁNDEZ-DEL OLMO et al. (2017).

Although there is a considerable number of papers linking RL with process
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control, the integration with economic goals has not been as explored as setpoint
tracking problems. In this context, POWELL et al. (2020) were the first to link
RL in the context of RTO and propose an RL-RTO framework that is capable of
pursuing steady-state economic optimization. The constraints are addressed by
including extra penalty terms in the reward function, which is a straightforward
idea but does not prevent infeasible solutions. The results showed that the RL-
RTO was able to achieve half of the benefit of the classic RTO, which still shows
the superiority of RTO, but an interesting potential for such RL-based methods.
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Chapter 3

Development of a hybrid real-time
optimization approach in the absence
of a rigorous dynamic model via
process identification of
Hammerstein model structures

Aversion of this chapterwas presented in the 31st European Symposium onCom-
puter Aided Process Engineering (ESCAPE 31) and published in the Book series
Computer AidedChemical Engineering, Volume 50, 2021, Pages 259-265 (DELOU
et al., 2021b).

3.1 Introduction

This chapter addresses the HRTO requirement of having a rigorous dynamic pro-
cess model. Three HRTO architectures that are able to perform in the absence of a
rigorous dynamic model are developed and compared to two HRTO methodolo-
gies that use perfect dynamicmodels. To do so, two dynamicHammersteinmodel
structures are proposed to combine the information from an available nonlinear
static model with a linear ARX to be identified from process data.
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3.2 Hammerstein model structure

It is assumed that an adequate static model of the plant is available:

0 = F(xs,u,θ)

ys = H(xs,u,θ)
(3.1)

in which, xs ∈ Rnx are the state variables in stationary state, ys ∈ Rny are the
measured variables in stationary state,u ∈ Rnu are the input variables and θ ∈ Rnθ

are the vector of parameters and unmeasured disturbances on which uncertainty
occurs. Also, the functions F : Rnx×Rnu×Rnθ → Rnx andH : Rnx×Rnu×Rnθ →
Rny are the static mapping of the states and the outputs related to the inputs and
parameters, respectively. For the sake of simplifying notation, this model will be
represented as ys = ys(u,θ).

A general Hammerstein structure consists of a static mapping of the inputs
and parameters into the output variables and a linear dynamic model to make
the transition from the current state to the mapped steady state. Considering a
discrete linear dynamic model of the type of autoregressive with exogenous input
(ARX) to approximate the plant dynamics, the Hammerstein model is given by:

yh
k = Ah

ky
h
k−1 +Bh

ky
s
k−1(uk−1,θk−1) (3.2)

in which, yh
k ∈ Rny is the vector of output variables provided by the Hammer-

stein model at instant k. In addition, the squared matrices Ah
k and Bh

k gather the
dynamic parameters to be identified from process data during operation, but can
also be kept constant.

Here, two models are proposed that exploit this structure, they are

1. model 1: Bh
k = (I −Ah

k);
2. model 2: Ah

k and Bh
k are independent.

It is noteworthy that model 1 presents the propriety to match the stationary
conditions of the static model, and also it presents half of the dynamic parameters
to be identified compared to model 2.

3.3 HRTO architectures

The proposed HRTO architectures based on the Hammerstein models presented
in Section 3.2 are described below:
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• HRTO-HEKF-fixed: The adjustable parameters are estimated by an Ex-
tended Kalman Filter (EKF) layer that considers the Hammerstein model
as its internal dynamic model, named Hammerstein EKF (HEKF), wherein
the dynamic matrices of the model are kept constant. The estimated param-
eters are then kept fixed in a subsequent static optimization layer;

• HRTO-HEKF-adaptive: The adjustable parameters and the dynamic matri-
ces of the Hammerstein model are simultaneously estimated by the HEKF
layer;

• HRTO-HEKF-RELS: The adjustable parameters are estimated by the HEKF
layer but the dynamic matrices of the Hammerstein model are estimated by
a Recursive Extended Least Squares (RELS) estimator with forgetting factor.

These approaches are compared with the following architectures:

• HRTO-EKF: the original HRTO, in which the true dynamic model of the
process is known and the adjustable parameters are estimated by an EKF
layer;

• HRTO-LSE: the original two-step RTO, in which the adjustable parameters
are estimated by a nonlinear Least Squares Estimator (LSE) subjected to the
static model. In this approach, no steady-state detection is performed, so the
LSE runs regardless of the dynamic nature of the data.

In all approaches, it is considered the presence of a parametric plant-model
mismatch, in which the vector of true plant parameters θp is unknown to the
model.

3.3.1 Hammerstein EKF algorithm

The algorithm for the parameter estimation in the EKF framework is described
in this section. The application for Hammerstein models in the HRTO-EKF-fixed
gives the following augmented a priori state estimation:[

ŷh−
k

θ̂−
k

]
=

[
Ah

kŷ
h+
k−1 +Bh

ky
s
k−1(uk, θ̂

+
k−1)

θ̂+
k−1

]
+

[
wy,k

wθ,k

]
(3.3)

in which,wy,k andwθ,k are artificial zero mean noise, so thatwy,k ∼ N (0,Qy) and
wθ,k ∼ N (0,Qθ). Therefore, the process noise covariance matrix is augmented
as Q̃ = diag([Qy,Qθ]). In the HRTO-HEKF-adaptive the elements of the dy-
namic matrices are estimated simultaneously to the adjustable parameters, so the
columns of these matrices are stacked up and concatenated with vector θ.
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3.3.2 RELS algorithm

The algorithm of the RELS with forgetting factor α is very well presented in
RODRÍGUEZ-BLANCO et al. (2017). Using their nomenclature, the application
for the Hammersteinmodels are ϕ̂k = yh

k−ys
k,φT

k−1 = yh
k−1−ys

k−1 and β̂k = (Ah
k)

T

for model 1 and ϕ̂k = (yh
k )

T , φT
k−1 = [(yh

k−1)
T , ys

k−1)
T ] and β̂k = [(Ah

k)
T , (Bh

k )
T ]T

for model 2 and the initial covariance matrix of the prediction error is given by
Σ0 = I/α.

3.4 Case Study: The Williams-Otto Reactor

The Williams-Otto reactor with three reactions was exploited as a case study. It is
a classical benchmark for real-time optimization studies, where several phenom-
ena can be observed, such as inverse response and change of the gain sign. Its
equations, parameter values, and notations can be found in FORBES and MAR-
LIN (1996).

In this study, we consider wC as an unmeasured variable, so the set of mea-
sured variables are y = [wA, wB, wE, wP , wG]

T , the degrees of freedom of the op-
timizer are u = [FB, TR]

T and the set of adjustable parameters were in fact two
unmeasured disturbances θ = [FA,W ]T . The kinetic parameters were considered
fixed and perfectly known.

The economic objective function considered in both plant andmodel optimiza-
tion is:

J = 1043.38wPF + 20.92wEF − 79.23FA − 118.34FB (3.4)

To initialize the Hammerstein models, an offline identification problem was
run around a nominal point, un = [2, 70]T in [kg/s, ◦C] and θn = [1.8275, 2105]T

in [kg/s, kg], distant from the nominal optimum point, u∗ = [4.2, 85.9]T in [kg/s,
◦C]. Finally, a scenario of parameter variationwas designed to test the approaches.
For the approach HRTO-HEKF-RELS, two values of the forgetting factor α were
tested, 0.5 and 0.99.

In terms of the adopted Kalman filter tuning,R = 1 ·10−4I5 for all approaches.
For HRTO-EKF, HRTO-HEKF-fixed, and HRTO-HEKF-RELS, the Q̃-matrix was:

Q̃ =

 1 · 10−4I5 0 0

0 5 · 10−2 0

0 0 5 · 104

 (3.5)
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For the HRTO-HEKF-adaptive approach, the Q̃-matrix was:

Q̃ =


1 · 10−4I5 0 0 0

0 5 · 10−2 0 0

0 0 5 · 104 0

0 0 0 1 · 10−8In

 (3.6)

inwhich, n comes from the number of dynamic parameters to be estimated for the
Hammerstein model. For model 1, n = n2

y, and for model 2, n = 2n2
y, since model

2 has two dynamic matrices to be estimated, Ah
k and Bh

k , while model 1 has only
one,Ah

k . Therefore, n = 25 forHammersteinmodel 1 and n = 50 forHammerstein
model 2 since the Williams-Otto model has ny = 5measured output variables.

A sampling time of 60s was considered in a simulation window of N = 450

sampling times in which a decreasing ramp was subjected to the reactor holdup,
W , and a pulse disturbance was subjected to the feed flow rate of reactant A, FA,
as it is shown in Figure 3.1.
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Figure 3.1: Performance of the differentHRTOarchitecture over a scenario of para-
metric variation: (a) estimation of FA with HEKF and RELS using model 1; (b)
estimation of FA with HEKF and RELS using model 2; (c) estimation of W with
HEKF and RELS using model 1; (d) estimation ofW with HEKF and RELS using
model 2.

The decision variables can be visualized in Figure 3.2.
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Figure 3.2: Performance of the differentHRTOarchitecture over a scenario of para-
metric variation: (a) behavior of FB with HEKF and RELS using model 1; (b) be-
havior of FB with HEKF and RELS using model 2; (c) behavior of TR with HEKF
and RELS using model 1; (d) behavior of TR with HEKF and RELS using model
2.

In order to compare all approaches in this scenario, a normalized Mean
Squared Error (nMSE) for each variable is shown in Table 3.1.

Table 3.1: nMSE comparison between HRTO architectures

Variables HRTO-EKF HRTO-LSE
model 1 model 2

HRTO-HEKF HRTO-HEKF-RELS HRTO-HEKF HRTO-HEKF-RELS
fixed adaptive α = 0.5 α = 0.99 fixed adaptive α = 0.5 α = 0.99

wA 4.6·10-6 3.4·10-6 5.8·10-6 8.4·10-5 6.0·10-6 5.8·10-6 5.9·10-6 6.6·10-5 5.9·10-6 5.9·10-6

wB 3.8·10-6 4.1·10-6 4.8·10-6 3.2·10-5 4.7·10-6 4.8·10-6 4.7·10-6 3.0·10-5 4.7·10-6 4.7·10-6

wE 2.4·10-6 3.4·10-6 3.2·10-6 1.7·10-5 3.2·10-6 3.2·10-6 3.2·10-6 1.6·10-5 3.2·10-6 3.2·10-6

wP 6.9·10-7 2.5·10-6 8.5·10-7 4.6·10-6 8.5·10-7 8.5·10-7 9.1·10-7 5.1·10-6 9.1·10-7 9.1·10-7

wG 2.3·10-6 2.4·10-6 3.3·10-6 1.8·10-5 3.2·10-6 3.2·10-6 3.2·10-6 2.4·10-5 3.2·10-6 3.2·10-6

J 4.1·10-2 1.8·10-1 4.8·10-2 2.8·10-1 5.4·10-2 4.9·10-2 5.5·10-2 3.0·10-1 5.4·10-2 5.4·10-2

FA 1.7·10-4 3.4·10-4 1.8·10-4 6.0·10-4 2.7·10-4 1.9·10-4 2.1·10-4 4.9·10-4 2.0·10-4 2.0·10-4

W 5.9·10-1 7.0·10-1 7.5·10-1 14.0·10-1 8.5·10-1 7.6·10-1 6.3·10-1 9.8·10-1 6.3·10-1 6.2·10-1

The nMSE for each variable i, using the true plant value as reference, is given
by:

nMSEi =
N∑
k=1

(ŷi,k − ypi,k)
2

ypi,k
(3.7)

in which, the hat emphasis ( ·̂ ) and the superscript ( · )p represent the estimated
value and the true plant value, respectively.

To compare each approach with the HRTO-EKF, which presents the overall
best performance since it uses the same plant dynamic model structure, a relative
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Mean Squared Error (rMSE) is introduced for each variable as follows:

rMSEi =
1

nMSEHRTO-EKF
i

N∑
k=1

(ŷi,k − ypi,k)
2

ypi,k
(3.8)

Table 3.2 presents the rMSE for each HRTO approach.

Table 3.2: rMSE comparison between HRTO architectures

Variables HRTO-LSE
model 1 model 2

HRTO-HEKF HRTO-HEKF-RELS HRTO-HEKF HRTO-HEKF-RELS
fixed adaptive α = 0.5 α = 0.99 fixed adaptive α = 0.5 α = 0.99

wA 0.75 1.26 18.53 1.31 1.27 1.29 14.39 1.29 1.29

wB 1.08 1.26 8.36 1.25 1.25 1.23 7.81 1.23 1.23

wE 1.41 1.33 7.08 1.32 1.33 1.35 6.71 1.35 1.35

wP 3.74 1.24 6.98 1.25 1.24 1.33 7.49 1.33 1.33

wG 1.07 1.43 7.79 1.4 1.42 1.43 10.46 1.43 1.43

J 4.32 1.19 6.99 1.33 1.21 1.35 7.25 1.32 1.33

FA 2.06 1.08 3.58 1.63 1.14 1.25 2.94 1.2 1.22

W 1.19 1.27 2.4 1.44 1.3 1.07 1.67 1.07 1.06

Average 1.95 1.26 7.71 1.37 1.27 1.29 7.34 1.28 1.28

It is straightforward from Figure 3.1 that all approaches were able to esti-
mate the true value of the parameters after a stabilization period, which confirms
the potential of the Hammerstein approaches to substitute the rigorous dynamic
model in the architecture of the HRTO, opening up a vast range of possibilities of
applications. Surprisingly, the HRTO-LSE presented a good performance in pa-
rameter estimation during transient regions. That suggests that HRTO could be
applied directly to classic RTO structures, just by means of removing the steady-
state detection stage and fastening up the running frequency of the optimization
loop. However, this approach is the most costly among the other structures ana-
lyzed, as shown in Table 3.3, it is almost 11.5 times more costly than EKF and 23
times more costly than the proposed HEKF. Besides, this preliminary conclusion
about the HRTO-LSE should be verified by testing with many other case studies.
Tables 3.3, 3.3, and 3.3 show the average, minimum, and maximum consumption
times for each stage in the simulation loop.

Table 3.3: Average consumption time for each stage in loop (ms)

Variables HRTO-EKF HRTO-LSE
model 1 model 2

HRTO-HEKF HRTO-HEKF-RELS HRTO-HEKF HRTO-HEKF-RELS
fixed adaptive α = 0.5 α = 0.99 fixed adaptive α = 0.5 α = 0.99

Plant optimization 2.04 2.08 2.08 2.08 2.25 2.05 2.07 2.08 2.40 2.15
Estimation 1.94 22.94 0.74 0.98 0.95 0.86 0.69 1.03 0.98 0.82
Model optimization 11.92 12.81 11.95 12.03 12.95 12.03 11.99 12.09 13.69 12.23
Total simulation loop 16.95 39.31 15.89 16.35 17.35 16.07 15.84 16.49 18.35 16.31
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Table 3.4: Minimum consumption time for each stage in loop (ms)

Variables HRTO-EKF HRTO-LSE
model 1 model 2

HRTO-HEKF HRTO-HEKF-RELS HRTO-HEKF HRTO-HEKF-RELS
fixed adaptive α = 0.5 α = 0.99 fixed adaptive α = 0.5 α = 0.99

Plant optimization 7·10-4 7·10-4 4·10-4 6·10-4 5·10-4 4·10-4 5·10-4 7·10-4 4·10-4 5·10-4

Estimation 1.66 12.58 0.6 0.76 0.66 0.66 0.61 0.96 0.66 0.67
Model optimization 10.78 11.62 10.83 11.63 10.44 10.77 10.67 13.81 10.59 10.67
Total simulation loop 13.43 26.27 12.48 13.69 12.19 12.5 12.33 16.22 12.28 12.31

Table 3.5: Maximum consumption time for each stage in loop (ms)

Variables HRTO-EKF HRTO-LSE
model 1 model 2

HRTO-HEKF HRTO-HEKF-RELS HRTO-HEKF HRTO-HEKF-RELS
fixed adaptive α = 0.5 α = 0.99 fixed adaptive α = 0.5 α = 0.99

Plant optimization 12.83 15.91 19.06 17.69 17.65 13.62 15.15 23.09 13.62 13.69
Estimation 27.8 308.11 10.69 34.27 88.93 14.14 4.08 15.01 5.58 4.21
Model optimization 14.87 21.89 20.91 23.92 18.32 20.26 18.18 25.07 19.9 20.6
Total simulation loop 44.15 329.9 40.63 59.97 110.17 34.03 31.29 46.24 29.31 52.43

In general, approaches using model 1 presented a greater adaptation capa-
bility over approaches using model 2, due to the smaller number of parameters
to estimate. However, this capability does not reflect in a better parameter esti-
mation necessarily, in fact, approaches using model 2 presented a greater overall
accuracy on parameter estimation. In addition, the approach HRTO-HEKF-RELS
withα = 0.99was very similar to theHRTO-HEKF-fixed for bothmodels, which is
a reflection of the low adaptability capacity of the RELS strategywith a high value
of the forgetting factor. For the approaches HRTO-HEKF-RELS with α = 0.5 and
HRTO-HEKF-adaptive, the higher adaptability capacity was able to reduce the
nMSE for the output variables, but presented a worse parameter estimation accu-
racy than the HRTO-HEKF-fixed, even though the models used in this approach
were identified far from the operating point and in a fixed parameter scenario.
It is noteworthy that the approach HRTO-HEKF-adaptive presented an undesir-
able oscillatory behavior, which appears due to the arise of oscillatory modes in
the Hammerstein models during operation. This effect should be avoided and
further investigated.

3.5 Conclusion

In this chapter, several different HRTO architectures are proposed based on the
use of a Hammerstein model structure that combines the available static process
model with a linear ARX identified from past data to provide approximate dy-
namics. Therefore, the requirement of availability of a rigorous dynamic process
is removed from the original proposition of the HRTO, enabling it to be used in
a large range of applications. The proposed methodologies showed satisfactory
performances in parameter estimation and adequate computational costs. How-
ever, the proposed methodologies presented no resources to prevent the arise of
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unstable and undesirable oscillatory modes on the Hammerstein model during
the adaptive process, this should be further investigated.
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Chapter 4

Steady-state real-time optimization
using transient measurements in the
absence of a dynamic mechanistic
model: A framework of HRTO
integrated with Adaptive
Self-Optimizing IHMPC

A version of this chapter was published in the Journal of Process Control, Volume
106, October 2021, Pages 1-19 (DELOU et al., 2021c).

4.1 Introduction

This chapter addresses one of the major backbones of the HRTO, which is the re-
quirement of developing a dynamic process model introduced by the use of the
dynamic observer. We overcome this issue by proposing an approximated dy-
namic model based on the available reliable static model. The assumption of an
available static model is reasonable since its development is considered in every
RTO design. We propose a Hammerstein structure that takes advantage of the
static model with added dynamics by a linear autoregressive model (ARX) iden-
tified from plant data or experiments. It is important to emphasize that this iden-
tification procedure is very similar to the one used for obtaining classic internal
models for MPCs (NAJIM and IKONEN, 2001) but with a different model struc-
ture. We propose and compare three models based on this structure, in which
two present the interesting ability to match the steady states of the available static
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model. It has been shown that Hammerstein models are able to present high fi-
delity to approximate dynamic models and it is suitable as an internal model for
control purposes (RIBEIRO and SECCHI, 2019).

The Hammerstein model is introduced to present an EKF formulation to pro-
ceed with the parameters and measured output estimations, denoted Hammer-
stein EKF (HEKF). The parameters estimated using transient data are applied in
the steady-state model adaptation, which concerns both HRTO and an adaptive
Infinite Horizon MPC (IHMPC) that uses the proposed Hammerstein structure
as its internal model. Additionally, the economic objectives are introduced in the
control layer through the application of self-optimizing variables, instead of di-
rectly controlling the objective function as a virtual controlled variable.

Integrating MPC with SOC is also a manner to introduce the economic ob-
jective into the control layer, but this is done indirectly by controlling the self-
optimizing variables. Therefore, this integration can be interpreted as an indirect
EMPC. GRACIANO et al. (2015) proposed a complete framework that integrates
SOC with a fixed-model MPC. The approach considered a static RTO integrated
with a self-optimizing zone MPC, which tracks the setpoints of self-optimizing
variables and keeps the active constraints within a zone. We expand this proposal
by removing the classic RTO approach and introducing the HRTO based on the
Hammerstein approximate dynamics using the proposed HEKF and the adaptive
IHMPC as dynamic observers and controllers, respectively.

One of the main challenges of SOC is how to deal with changes in the set of
active constraints since an active constraint is a natural self-optimizing variable.
MANUM and SKOGESTAD (2012) proposed an approach based on parametric
programming. Every active constraint region is determined a priori, and the pro-
cess variables are monitored to determine the moment to switch between regions.
Compared toMANUMand SKOGESTAD(2012), our approach presents the same
advantages pointed out by GRACIANO et al. (2015): no need to solve large para-
metric programming problems and to store the results; no need to implement
logic to determine when and how to switch between active constraints regions;
no heuristics to handle nonlinearities; no requirement for extra measurements to
smoothly change between active regions far from each other; and, no scheme to
recover from wrong active set changes.

In addition, our approach also presents some advantages over the one pro-
posed by GRACIANO et al. (2015):

• No wait time between optimization runs guarantees that the set of active
constraints is always known;

• Naturally handling both types of active set changes: when a new constraint
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becomes active and when an active constraint becomes inactive;

• The dynamic observer coupled with the adaptive IHMPC provides the sys-
tem with more robustness to large drifting in parameters and unmeasured
disturbances compared to a simple linear MPC.

In contrast with GRACIANO et al. (2015), we track the setpoints of all self-
optimizing variables and active constraints. To do so, we propose a strategy to
handle changes in the active set of constraints. Moreover, our approach presents
full compatibility between the models used in the observer, controller, and opti-
mization layers. Therefore, no model compatibility scheme is required.

In summary, the present chapter proposes a complete control framework by
integrating the HRTOmethodology with a self-optimizing adaptive IHMPC. The
main contributions of the framework are:

• Enabling the use of HRTO in the absence of a reliable mechanistic dynamic
model;

• Inclusion of the economic objectives into the controller layer through the
self-optimizing variables, which allows a more reliable and robust control
layer;

• There is full compatibility between the models used in the observer, con-
troller, and optimizer;

• The framework naturally handles changes in the active constraint set, both
the detection of a new constraint and the detection of the deactivation of an
active constraint.

The remainder of the chapter is organized as follows. Section 4.2 presents the
Hammerstein structure proposed as an approximate dynamic model to enable
the application of HRTO in the absence of a mechanistic dynamic process model.
It also discusses three proposed models based on these structures, and the lin-
earization and state-space formulation, which is the basis for the IHMPC. Sec-
tion 4.3 presents the proposed integration of HRTO and the self-optimizing adap-
tive IHMPC. It also analyses each step of the framework: the observer, the con-
troller, and the optimizer formulations, and describes the SOC methodology and
the strategy to handle changes in the active constraints set. Section 4.4 presents
the Williams-Otto reactor case study and the results obtained. Finally, Section
4.5 presents the conclusions of the chapter. Moreover, Appendix A presents the
formulation of the terminal weight of the self-optimizing IHMPC, Appendix B
presents the implementation of the proposed controller as a QP and Appendix C
is the Supplementary Material of this chapter.
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4.2 Hammerstein structure as an approximate dy-
namic model

All past works regarding HRTO assumed that both static and dynamic models
of the process are available (KRISHNAMOORTHY et al., 2018a; MATIAS et al.,
2018; SANTOS et al., 2021; VALLURU and PATWARDHAN, 2019; VALLURU et al.,
2015). However, the assumption of the availability of a reliable dynamic mecha-
nistic model might be unrealistic for most processes. In addition, the design of a
dynamic model would significantly increase the project duration time, and costs,
which could even make the application infeasible in practice.

It is assumed that an adequate steady-state model is available:

0 = F(x̄s, ū, d̄) (4.1a)
ȳs = H(x̄s, ū, d̄) (4.1b)

in which, x̄s ∈ Rnx is the state vector at steady state, ȳs ∈ Rny is the measured vec-
tor at steady state, ū ∈ Rnu is the input vector and d̄ ∈ Rnd is the parameters and
unmeasured disturbances vector in which uncertainty occurs. Herein, the over-
lying bar ( ·̄ ) represents positional variables, in contrast with variables deviated
from a reference point, which will be denoted without this emphasis. In addition,
F : Rnx ×Rnu ×Rnd → Rnx andH : Rnx ×Rnu ×Rnd → Rny are the static mapping
of the states and the outputs related to the inputs and parameters, respectively.
For the sake of simplifying notation without loss of generality, this model will be
represented as:

ȳs = ȳs(ū, d̄) (4.2)

A general Hammerstein structure is defined by a nonlinear processing of an
input signal followed by a linear processing in order to provide an output sig-
nal. Here, this structure is exploited so that the nonlinear processing consists of
the available static model and the linear processing consists of a linear ARX with
feedback to introduce a pseudo-dynamics. The general proposed structure can
be visualized in its block diagram form in Figure 4.1 and, given a nominal point
(ȳ, ū, d̄)nom, its recursion form can be written as:

yh
k+1 = Ahyh

k +Bhys
k(ūk, d̄k) (4.3)

in which, yh
k+1 := ȳh

k+1 − ȳnom ∈ Rny is the set of measured variables predicted
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by the Hammerstein structure at an instant k based on the past prediction yh
k :=

ȳh
k − ȳnom and the actual modeled static value ys

k(ūk, d̄k) := ȳs
k(ūk, d̄k)− ȳnom.

𝟎 = ℱ  𝒙,  𝒖,  𝒅

 𝒚𝑠 = 𝒢( 𝒙,  𝒖,  𝒅)

 𝒖𝑘 ,  𝒅𝑘  𝒚𝑘
𝑠

𝑩ℎ

𝑨ℎ

+
𝒚𝑘+1
ℎ

𝒚𝑘
ℎ 𝒚𝑛𝑜𝑚

+
-

𝒚𝑘
𝑠

Figure 4.1: Block diagram of the proposed Hammerstein structure.

MatricesAh andBh have dimension ny ×ny and are called dynamic matrices.
They should be identified from past data or from identification experiments im-
posed to the process. Here, we propose three models based on the structure of
the dynamic matrices, they are:

• model 1: Bh = Iny −Ah, in which Ah is a diagonal matrix, containing only
time constants to be estimated;

• model 2: Bh = Iny−Ah, in whichAh is a full matrix, accounting for coupled
dynamics between the measured variables;

• model 3: Ah andBh are full matrices and independent of each other.

It is important to note that models 1 and 2 have the interesting property that
their steady states matchwith the steady states of the static model, a property that
is not observed in model 3. However, model 3 has the potential to provide better
local approximations since it presents 2n2

y parameters to describe the dynamics,
while models 1 and 2 present ny and n2

y parameters, respectively. Although this
fact seems to be advantageous, the increasing number of parameters can hinder
the identification procedure, demanding higher excitation in the identification ex-
periments. In addition, despite presenting a better local approximation, model 3
might present significant steady-state errors concerning the staticmodel when the
operational conditions are far from the identification scenario.

In regards to the identification stage, several strategies are possible to obtain
the dynamicmatrices (NAJIMand IKONEN, 2001). The identification procedures
are similar towhat is done in classic linearMPC strategies to obtain the controller’s
internal linear models. The proposed methodology presents a similar prerequi-
site to classic MPC since the Hammerstein dynamic matrices must be previously
identified to enable its online use in the observer, controller, and optimizer ap-
proaches. The identification stage goal is to minimize the distance between plant
data and the model prediction. The main difference is the structure of the predic-
tive model that, different from classic MPC internal models, takes advantage of
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the available nonlinear static mapping of the process. Independently of the iden-
tification problem formulation, it is important to guarantee the model stability by
the inclusion of the following nonlinear constraint in the identification problem:

||λ(Ah)|| < 1 (4.4)

in which, λ(Ah) is the spectrum of matrix Ah. Also, it might be the case to avoid
the rise of oscillatorymodes if the process does not present oscillatory behavior. In
this case, the eigenvalues ofmatrixAh should not present imaginary terms, which
can be guaranteed by the inclusion of the following constraint to the identification
problem:

Im(λ(Ah)) = 0 (4.5)

In the present study, the dynamic matrices are identified offline and consid-
ered fixed during real-time operation. Also, the inclusion of the constraints pre-
sented in Equations 4.4 and 4.5may cause a non-convexity in the identification op-
timization problem, which burdens the solution-finding effort, one may consider
using approaches such as global optimization solvers, or multi-start approaches
for instance.

4.2.1 Linearization of the Hammerstein structure and State-
Space formulation

TheproposedHammerstein structure, Equation 4.3, can be linearizedwith respect
to a nominal point (ȳ, ū, d̄)nom. First, the nonlinear static model is linearized:

ys
k(ūk, d̄k) ≈ Guuk +Gddk (4.6)

in which, uk := ūk − ūnom, dk := d̄k − d̄nom and the matrices Gu and Gd are the
gain matrices with respect to the inputs and the disturbances, respectively. The
gain matrices can be calculated by:

Gu :=
∂ys

∂u

∣∣∣∣
nom

=

[
∂H
∂x

(
∂F
∂x

)−1
∂F
∂u

]
nom

(4.7a)

Gd :=
∂ys

∂d

∣∣∣∣
nom

=

[
∂H
∂x

(
∂F
∂x

)−1
∂F
∂d

]
nom

(4.7b)
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Hence, the linear Hammerstein model can be written as:

yh
k+1 = Ahyh

k +BhGuuk +BhGddk (4.8)

Which is already in a positional state-space formulation. To introduce an in-
cremental state-space, the equation ∆uk = uk − uk−1 is added in an augmented
formulation:[

yh
k+1

uk

]
=

[
Ah BhGu

0 Inu

][
yh
k

uk−1

]
+

[
BhGu

Inu

]
∆uk +BhGddk (4.9a)

yh
k+1 =

[
Iny 0

] [ yh
k+1

uk

]
(4.9b)

Introducing new notation, Equation 4.9 can be rewritten as:

yk+1 = Ayk +Bu∆uk +Bddk (4.10a)
yh
k+1 = Cyk+1 (4.10b)

It is important to emphasize, for clarity of notation, that matrix A repre-
sents the augmented transition state in the incremental linear state space and the
Hammerstein dynamic matrices, Ah and Bh, as previously mentioned, are fixed.
Therefore, any updating index associated with the matrix, such asAk, represents
an update in the linearization matrices,Gu and Gd.

These results will be used in the formulation of the parameter estimation and
control strategy, described in Sections 4.3.1 and 4.3.2, respectively. The proposed
Hammerstein structure can be used as an alternative for the casewhere a dynamic
mechanistic model is unavailable and for any strategy that relies on the linear
state-space formulation. As shown in Equations 4.8 and 4.10, any observer, con-
troller, or optimization strategy that is based on directional or incremental linear
state-space models could, in principle, be developed for the proposed Hammer-
stein model. For example, the Extended Kalman Filter and Infinite Horizon MPC
developed in the present chapter.

4.3 Real-time Adaptive Self-Optimizing Control
Framework

A scheme of the proposed HRTO framework can be visualized in Figure 4.2. The
whole framework is based on the assumption that a mechanistic dynamic model
is not available, but a reliable static model of the plant and the dynamic matri-
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ces of the Hammerstein model, which need to be previously identified from plant
data or plant experiments, are at hand. It is used in the proposed Hammerstein
structure to obtain an approximate dynamic model identified around a single op-
erating point.

Real Process

Adaptive IHMPC

Static Optimization

𝐻
𝒄

𝑯

 𝒅𝒌

𝒄𝑠𝑝

𝒖

Disturbances Measurements

𝒚𝑚Dynamic State and
Parameter Estimation

Static model

Linearization

𝒚𝑠

𝑨ℎ , 𝑩ℎ

 𝒙𝑘
− = 𝒚𝑘

ℎ

𝑮𝑢, 𝑮𝑑

𝑮𝑑

 𝒚𝑘
+

Figure 4.2: Proposed Real-time Adaptive Self-Optimizing Control Framework.

Each stage of the proposed framework is further detailed in the following sub-
sections. This section is organized as Subsection 4.3.1 details the complete descrip-
tion of the dynamic state and parameter estimation based on the use of the Ham-
mersteinmodel inside an EKF formulation; Subsection 4.3.2 presents the complete
formulation of the proposed Self-Optimizing Adaptive IHMPC, including the for-
mulation of the control problem; Subsection 4.3.3 describes the economic opti-
mization problem considered in the Static Optimization layer; and, finally, Subsec-
tion 4.3.4 details the approach used to calculate the H-matrix of the SOC strategy
and the proposed scheme to handle changes in the set of active constraints.

TheHRTO cycle starts by samplingmeasurements, regardless of their transient
or steady nature, and using them in a dynamic state and parameter estimator.
These estimations, which include uncertain model parameters and unmeasured
disturbances, are used to adapt the staticmodel of the economic optimization layer
and the linearized Hammerstein model of the controller and parameter estimator.

The static economic optimization is responsible for obtaining the setpoints
of the self-optimizing variable csp and determining the active set of constraints,
which will be used to construct the combination matrixH . In the controller layer,
an adaptive IHMPC is responsible for obtaining the optimal input trajectory that
minimizes the quadratic distance between the self-optimizing variables and their
economic optimum setpoints while keeping the active constraints at their opti-
mal bounds. The prediction of the controller is performed with a single model,
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based on the adapted linearized Hammerstein structure, and the optimal input
trajectory is implemented in a receding horizon manner. Unlike the classic RTO
scheme, in which the optimization layer runs in a different time scale from the
control layer due to the SSD stage, in both HRTO and the proposed framework
illustrated in Figure 4.2, all the blocks run in the same time scale. In other words,
all the blocks are synchronized and run in every time instant k.

4.3.1 Parameter Estimation based on transient measurements

The dynamic parameter estimator is the main component that differentiates the
promising HRTO methodology from classic RTO. KRISHNAMOORTHY et al.
(2018a) proposed the use of an EKF and pointed out that, in principle, any strat-
egy would be suitable for this purpose. VALLURU and PATWARDHAN (2019)
argued that both recursive and optimization-based approaches would be suit-
able for the task. Examples of recursive approaches are the EKF, the Unscented
Kalman Filter (UKF) (SIMON, 2006b), and the Particle Filter (PF) (JOUIN et al.,
2016). Among the optimization-based methods, the Moving Horizon Estimation
(MHE) (PATWARDHAN et al., 2012) is the most prominent method. However,
onemust consider the trade-off between the estimation quality and computational
cost of each approach. In this matter, a well-tuned EKF is the most suitable ap-
proach since it provides a fair estimation accuracy with a significantly low com-
putational effort, even when compared to other conventional approaches, such
as the Constrained EKF and the UKF. This result is observed in several applica-
tions (ALEXANDER et al., 2020; APIO et al., 2019; HASELTINE and RAWLINGS,
2005; KALLENBERGER et al., 2007; LAVIOLA, 2003; ST-PIERRE and GINGRAS,
2004; STELZER et al., 2017). It is also worth mentioning the EKF with Rauch-
Tugh-Striebel (RTS) smoother proposed by SALAU et al. (2012), which presents
characteristics of an MHE but with the EKF computational effort.

Here, we propose an EKF formulation based on the Hammerstein model,
which is referred to as Hammerstein EKF (HEKF). To accomplish the parame-
ter and state estimation simultaneously, an augmented state variable is proposed
where the instant dynamic hypothesis is assigned to the parameters. Hence, the
a priori prediction equations are:

x̂−
k :=

[
ŷ−
k

d̂−
k

]
=

[
Ahŷ+

k−1 +Bhys(ūk−1, d̂
+
k−1) +wy,k

d̂+
k−1 +wd,k

]
(4.11)

P−
k = FkP

+
k−1F

T
k +Q (4.12)
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in which,wy,k andwd,k are artificial zero-mean noise, so thatwy,k ∼ N (0,Qy) and
wd,k ∼ N (0,Qd); the hat emphasis ( ·̂ ) denotes estimated quantities and theminus
and plus sign superscripts, ( · )− and ( · )+, denote a priori and a posteriori estimated
quantities; matrix Q := diag(Qy,Qd) is the augmented noise covariance matrix,
Pk is the augmented covariance estimate matrix and Fk is the augmented state
transition matrix defined as:

Fk =

[
Ah BhGd

k

0nd×ny Ind×nd

]
(4.13)

in which,Gd
k is reevaluated every instant following Equation 4.7b, by shifting the

nominal point as (ȳ, ū, d̄)nom := (ȳs(ū, d̂+), ū, d̂+)k−1. Finally, the a posteriori cor-
rection equations, based on the measurement update, are:

Kk = P−
k Γ T (ΓP−

k Γ T +R)−1 (4.14)
x̂+
k = x̂−

k +Kk(y
m
k − ŷ−

k ) (4.15)
P+

k = (I −KkΓ )P−
k (4.16)

ŷ+
k = Γ x̂+

k (4.17)

in which,Kk is the Kalman gain matrix,R is the measurement covariance matrix
and Γ is the observation matrix defined as:

Γ =
[
Iny×ny 0ny×nd

]
(4.18)

An interesting characteristic of the EKF methodology is that matrices Q and
R can be considered as filter tuning parameters to balance the trade-off between
model prediction andmeasurement update. By choosingQ ≺ R, the filter priori-
tizesmodel prediction overmeasurement update, and filter estimates become less
noisy. On the contrary, R ≺ Q, the filter estimates prioritize the measurements
and become noisier (SIMON, 2006b).

4.3.2 Adaptive Self-Optimizing IHMPC based on the Hammer-
stein structure

The proposed adaptive linear MPC uses the linear Hammerstein model as its in-
ternal model and explicitly tracks the self-optimizing variables in an incremental
input form. The adaptive infinite-horizon control problem is defined by Equation
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4.19 subjected to the set of linear constraints.

min
∆u,ρL

y ,ρ
U
y ,

ρL
u ,ρ

U
u

Jk =
N∑
j=1

(ck+j − cspk )TWc(ck+j − cspk ) +wT
ρLy
ρL
y,j +wT

ρUy
ρU
y,j+

N−1∑
j=0

∆uT
k+jW∆u∆uk+j +wT

ρLu
ρL
u,j +wT

ρUu
ρU
u,j+

cTk+NPck+N (4.19a)

s.t. ∀j ∈ [1, 2, ..., N − 1]

yh
k+j = CAkyk+j−1 +CBu

k∆uk+j−1 +CBd
kdk+j−1 (4.19b)

yh
k = ŷ+

k (4.19c)
ck+j = Hyh

k+j (4.19d)
∆uL ≤ ∆uk+j ≤ ∆uU (4.19e)
yL − ρL

y,j ≤ yh
k+j ≤ yU + ρU

y,j (4.19f)
uL − ρL

u,j ≤ uk+j+1 ≤ uU + ρU
u,j (4.19g)

ρL
y,j ≥ 0, ρU

y,j ≥ 0, ρL
u,j ≥ 0, ρU

u,j ≥ 0 (4.19h)

in which,m is the control horizon that defines the discretization of the control ac-
tions, defined as ∆u := [∆uk, ...,∆uk+N−1]; Jk is the objective function at the kth

run of the control problem;Wc andW∆u are diagonal semi-positive weight matri-
ces for the self-optimizing variables and the variation of the inputs, respectively.

Equation 4.19b is the linearized Hammerstein adaptive predictive model de-
rived in Section 4.2.1; the model matricesAk,Bu

k andBd
k are updated outside the

control problem by shifting the nominal point of the linearization, as it is done in
theHEKF and discussed in Section 4.3.1. A distinguishing feature of the proposed
controller that differs from classic linear MPCs is its adaptability capacity intro-
duced by the successive linearization of the static process mapping used in the
Hammersteinmodel. This formulation allows for a control performance similar to
an NMPC with the low computational effort of a classic linear MPC (DI MARCO
et al., 1997).

The initial condition of the self-optimizing variables in the control problem
given in Equation 4.19 is the a posteriori estimation of the measured variables, as
denoted in Equation 4.19c. Equations 4.19e-4.19g represent, respectively, the hard
constraints on the input variations, the soft constraints on themeasured variables,
and the soft constraints on the input variables. In which, the superscripts (·)L

and (·)U denote the lower and upper bounds, respectively. The constraints are
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softened by the addition of slack variables as degrees of freedom in the control
problem in order to enhance numerical robustness and prevent infeasible solu-
tions. The added slack variables are defined as ρL

y := [ρL
y,1, ...,ρ

L
y,N ] ∈ RNny , ρU

y :=

[ρU
y,1, ...,ρ

U
y,N ] ∈ RNny , ρL

u := [ρL
u,1, ...,ρ

L
u,N ] ∈ RNnu and ρU

u := [ρU
u,1, ...,ρ

U
u,N ] ∈

RNnu . ℓ1 penalties are added to the objective function of the control problem by
theweights vectorswρLy

,wρUy
,wρLu

andwρUu
. It is safe to say that, if there is a feasible

solution for the hard problem, it will match the soft problem solution for a suffi-
ciently large value of the ℓ1 penalties weights. Here, the slack variables are added
in both input and measured variables for the sake of generality. However, it is of-
ten useful to implement hard constraints to some input variables, especially when
they represent physical bounds such as actuator saturation. It can be done with-
out changing the control problem presented in Equation 4.19 by setting the slacks’
weights to zero and making their upper and lower bounds equal to zero. This
way, hard constraints can be implemented even in the presence of slack variables
in the control problem. However, if an input variable reaches one of its bounds,
this could generate undesirable offsets between the actual operation from its op-
timum setpoints due to the loss of controllability caused by an input saturation.

In addition, thematrixP is the terminal cost that is calculated by the following
discrete Lyapunov equation:

ATPA− P + (HC)TWcHC = 0 (4.20)

The proof of Equation 4.20 can be found in Appendix A. To the best of the
authors’ knowledge, this formulation is unprecedented as no other study that ex-
plicitly handles the self-optimizing variables in an infinite horizon formulation
was found.

Problem 4.19 is implemented as a Quadratic Program (QP), this formulation
can be found in Appendix B.

4.3.3 Steady-state Economic Optimization

Provided the availability of a reliable static model, described in Equation 4.1, an
optimization problem aiming to minimize a cost function, or maximize a profit
function, can be formulated as in Problem 4.21.

ū∗
k+1 = arg min

ū,x̄s
Jeco(ȳ

s, ū, d̂+
k ) (4.21a)

s.t. 0 = F(x̄s, ū, d̂+
k ) (4.21b)
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ȳs = H(x̄s, ū, d̂+
k ) (4.21c)

ȳL ≤ ȳs ≤ ȳU (4.21d)
ūL ≤ ū ≤ ūU (4.21e)

inwhich, function Jeco : Rny×Rnu×Rnd → R is a nonlinear economic function to be
minimized. Both inputs and steady-state variables are degrees of freedom in this
formulation, so the model enters as the equality constraints in Equations 4.21b
and 4.21c. In addition, the bounds of measured and input variables, Equations
4.21d and 4.21e, are compatible with the bounds of the MPC problem. The model
is directly adapted by the set of uncertain parameters estimated by the dynamic
estimator, d̂+

k .
Here, we consider a reliable model to match the plant optimality conditions

once the set of uncertain parameters is correctly estimated. In other words, a
model that meets the model adequacy requirements (FORBES and MARLIN,
1994, 1996; FORBES et al., 1994).

The economic optimization problem runs synchronously with the observer
and the controller. Once an optimal solution is obtained for the next instant, ū∗

k+1,
it is used to obtain the optimal setpoints of the original output variables:

ȳsp
k+1 = ȳs(ū∗

k+1, d̂
+
k ) (4.22)

These setpoints are then used to obtain the setpoints of the current self-
optimizing variables. It is interesting to note that, in the proposed methodology,
there will be total compatibility between the models used in the observer, con-
troller, and optimization layers if one chooses to use the Hammerstein models 1
or 2. That is important to notice, especially for the setpoint compatibility between
the optimization and controller layer since the setpoints obtained in the optimiza-
tion will always be feasible for the internal linear models of the MPC layer. This
fact removes the need for any intermediate compatibilization problem, such as
it is done in LP-MPC, QP-MPC, or any heuristics to prevent infeasible solutions
in the MPC due to poor predictive accuracy of the linear models (ROTAVA and
ZANIN, 2005; SORENSEN and CUTLER, 1998; YING and JOSEPH, 1999).

4.3.4 Obtaining Self-Optimizing variables and handling
changes in Active Constraints

Among the available methods for obtaining the self-optimizing variables, the lo-
cal methods present greater potential for real-time applications over the earlier
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brute force methods (SKOGESTAD, 2000). JÄSCHKE et al. (2017) made a thor-
ough review of the progress of Self-Optimizing Control. The most prominent
methods are the Null-space method (ALSTAD and SKOGESTAD, 2007); the Ex-
tendedNull-spacemethod (ALSTAD et al., 2009); and theMinimumLossmethod
(YELCHURU and SKOGESTAD, 2012).

In this chapter, we consider the Minimum Loss method to determine the com-
bination matrix H . This method presents some advantages, such as providing
an optimal trade-off between measurement noise and rejecting the disturbances.
It can find the best local combination of measurements that minimizes the loss
function and has an explicit solution. That said, the H-matrix can be determined
by:

H = (Gu)T (Y Y T )−1 (4.23)

Introducing the scaling matricesWd andWwy , that contains the magnitude of
the disturbances and the measurement noise, matrix Y is defined as:

Y :=
[
FWd Wwy

]
(4.24)

in which, F is the sensitivity matrix of the optimal measurements in relation to
the disturbances. It can be calculated by finite differences (GRACIANO et al.,
2015), automatic differentiation, nonlinear programming sensitivity (PIRNAY
et al., 2012) or, as done in the present chapter, by the local approximation:

F = Gd −GuJ−1
uuJud (4.25)

in which Juu and Jud are the Hessians of the optimization cost function evaluated
at the nominal point.

However, the above methodology is only valid for the variables which do
not present an active constraint. Since if there are variables in one of their
bounds in the optimal solution of Problem 4.21, these variables are naturally
the self-optimizing variable. Due to this reason, handling active constraint set
changes in real-time operation has been a topic of interest in the field of SOC (KR-
ISHNAMOORTHY and SKOGESTAD, 2020; MANUM and SKOGESTAD, 2012).
Again, we refer to JÄSCHKE et al. (2017) who dedicated a full section about this
topic.

In the present methodology, changes in the active constraint set are naturally
handled. The optimization problem runs synchronously with the control prob-
lem, which is enabled due to the efficient dynamic observer approach. In contrast
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with the classic RTO strategy, in which there are long wait periods between each
run of the optimizer due to steady-state detection; here, the active set related to
the estimated parameters is instantly known and can be used to determine a new
combination matrixH every time instant.

Let Ya
k be the set of all na

y active constraints, which is evaluated at every time
instant k based on the previous run of the economic optimization problem. If this
set is found to be empty, the H-matrix is simply evaluated based on Equations
4.25, 4.24, and 4.23. Otherwise, the construction of the H-matrix must be recon-
figured to remove na

y self-optimizing variables from the approach since the active
constraints are natural self-optimizing variables.

In the SOC methodology, the number of self–optimizing variables is given by
the number of input variables. Therefore, to reduce the number of self–optimizing
variables in casena

y output variables are active, na
y input variablesmust be removed

from the procedure to obtainH . For doing so, there has to be a criterion to choose
which input variable will be removed for each active constraint. In the present
chapter, we remove the input variables with the highest gain associated with each
active constraint based on matrix Gu

k evaluated at each time instant k. Thus, the
matrices Gu

k , Gd
k, Juu,k, Jud,k and Wwy ,k are reconfigured in order to remove the

columns and rows associated to the active variables and the removed input vari-
ables, respectively. Afterward, the H-matrix is also evaluated based on Equations
4.25, 4.24, and 4.23, but with the reconfigured matrices. The resulting matrix di-
mension is (nu − na

y) × (ny − na
y), coping only with the linear combination of all

output variables that are not active. Therefore, this matrix should be further tai-
lored to present dimension nu × ny, and this is done by adding the null columns
associated with the active output variables and null rows related to the removed
inputs, the only inserted unitary elementmust be related to the active variable and
its associated input. This way, part of the resulting H-matrix is responsible for the
linear combination of the nonactive variables, and part is responsible for select-
ing the active variables. This procedure is illustrated in an algorithmic fashion in
Algorithm 1.

In Algorithm 1, for the sake of simplifying notation, we defined two matrix
operations to represent the removal of rows and columns and the inclusion of
null rows and columns. M−(i,j),M−(i,·) andM−(·,j) represent the removal of row
i and column j from matrix M , the removal of row i from matrix M and the
removal of column j frommatrixM , respectively. The notationM+(i,j) represents
the inclusion of a null row and a null column in the resulting positions i and j.
Therefore, ifM has dimensions n×m, the resultingmatrixM+(i,j) has dimensions
(n+1)×(m+1), in which row i and column j have only null elements. In addition,
M(i, j) represents the element in row i and column j of the matrixM .
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Algorithm 1: Reconfiguration of H under changes in Active Constraint
at time instant k
Evaluate the set of active constraint Ya

k based on (ū∗
k, ȳ

∗
k);

Juu,k, Jud,k ← Evaluate Hessian matrices based on (ū∗
k, ȳ

∗
k);

if Ya
k = ∅ then
Fk ← Gd

k −Gu
kJ

−1
uu,kJud,k;

Yk ← [ FkWd Wwy
];

Hk ← (Gu
k )

T (YkY
T
k )−1;

else
Gu,a

k ← Gu
k ; Gd,a

k ← Gd
k;

Ja
uu,k ← Juu,k; Ja

ud,k ← Jud,k;
W a

wy ,k
←Wwy ;

for each ya ∈ Ya
k do

i← {q : ya = yq, ∀q ∈ 1, ..., ny};
j ← {q : arg maxq |Gu

k(i, q)|, ∀q ∈ 1, ..., nu};
Gu,a

k ← G
u,a−(i,j)
k ; Gd,a

k ← G
d,a−(i,·)
k ;

Ja
uu,k ← J

a−(j,j)
uu,k ; Ja

ud,k ← J
a−(·,j)
ud,k ;

W a
wy ,k
←W

a−(i,i)
wy ,k

;
end
F a

k ← Gd,a
k −Gu,a

k (Ja
uu,k)

−1Ja
ud,k;

Y a
k ← [ F a

k Wd W a
wy ,k

];
Hk ← (Gu,a

k )T (Y a
k (Y

a
k )

T )−1;
for each ya ∈ Ya

k do
i← {q : ya = yq, ∀q ∈ 1, ..., ny};
j ← {q : arg maxq |Gu

k(i, q)|, ∀q ∈ 1, ..., nu};
Hk ←H

+(j,i)
k ;

Hk(j, i)← 1;
end

end

The proposed framework presents some interesting and distinguished fea-
tures, so the main contributions of the methodology are:

• Enables the application of the HRTO methodology in the absence of a reli-
able dynamic mechanistic process model;

• The online estimator can filter noisy measurements and estimate model pa-
rameters and unmeasured disturbances, which are used in both steady-state
optimization and adaptive IHMPC, regardless of the stationarity of themea-
surements;
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• The optimization framework can achieve the minimum possible economic
loss even in the scenario of inaccurate disturbance estimation due to the con-
trol of the self-optimizing variables;

• Active constraint changes are handled by frequent optimization runs and by
the setpoint tracking strategy in the control layer.

4.4 Case Study: The Williams-Otto Reactor

The Williams-Otto reactor is a classic benchmark for real-time optimization stud-
ies. It was first proposed by WILLIAMS and OTTO (1960) and later modified
by ROBERTS (1979). The case study consists of a CSTR, and its versatility comes
from the definition of two sets of reactions, one containing 3 reactions and the
other containing 2 reactions. They are usually used as plant and model to simu-
late structural plant-model mismatch (MARCHETTI et al., 2016).

In the present study, as we are focusing primarily on parametric uncertainty,
structural uncertainty will be tackled in future work. The 3 reactions model is
considered as plant and model. Their reactions and kinetic equations are:

A+B
k1→ C k1 = 1.660× 106 exp (−6666.7/(TR + 273.15))

C +B
k2→ P + E k2 = 7.212× 108 exp (−8333.3/(TR + 273.15))

C + P
k3→ G k3 = 2.675× 1012 exp (−11111/(TR + 273.15))

(4.26)

in which components A and B are fed to the reactor with mass flow rates FA and
FB, respectively. E and P are the desired products, G is an undesired product,
and C is an intermediate component. It is assumed that the reactor has perfect
temperature control, with temperature TR, and it keeps its mass constant, so the
output flow rate is F = FA + FB, with mass holdupW .

In this chapter, it is assumed that only the static model is available:

0 = FA + FwA −Wk1wAwB (4.27a)
0 = FB + FwB −Wk1wAwB −Wk2wbwC (4.27b)
0 = −FwC + 2Wk1wAwB − 2Wk2wBwC − k3wCwP (4.27c)
0 = −FwE + 2Wk2wBwC (4.27d)
0 = −FwP +Wk2wBwC − 0.5Wk3wCwP (4.27e)
0 = −FwG + 1.5WwCwP (4.27f)

in which, the state and measured variables x̄s = ȳs = [wA, wB, wC , wE, wP ,

wG]
T are themass fraction of the components; new scaled input variables are intro-
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duced F̃B = FB/10 and T̃R = TR/500, so the manipulated variables ū = [F̃B, T̃R]
T

are the scaled feed flow rate of component B and the scaled reactor temperature;
and, we consider the uncertain parameter d̄ = [F̃A]

T to be the scaled feed flow rate
of component A, such that F̃A = FA/10, which is in fact an unmeasured distur-
bance. These new scaled variables are introduced only to equalize the magnitude
order of the states, inputs, and parameters to enhance numerical aspects of con-
trollability and observability. In addition, the spaces of the manipulated variables
are defined as FB ∈ [1, 6] kg/s and TR ∈ [70, 100] ◦C.

The objective function of the problem, to be maximized, is a simple balance
between the revenue with desired products and the cost with reactants:

Jeco(ȳ
s, ū, d̄) = 1143.38wPF + 25.92wEF − 76.23FA − 114.34FB (4.28)

Here we consider the presence of a single nonlinear constraint in component
E as an upper bound:

wE ≤ 0.3 (4.29)

To proceed with the linearization required by the proposed methodology, the
Automatic Differentiation framework of CasADi was used (ANDERSSON et al.,
2019). The dynamic system was only used to produce plant measurements and,
to do so, the CVODES algorithm from the SUNDIALS suite (HINDMARSH et al.,
2005) was used. The nonlinear programming solver IPOPT (WÄCHTER and
BIEGLER, 2006) carried out the economic optimization through the interface of
CasADi. In addition, the control problem was solved using the function “quad-
prog” from MATLAB®.

4.4.1 Hammerstein dynamic matrices identification

To proceedwith the identification of theHammerstein dynamicmatrices, an input
dynamic profile was imposed on the plant in a manner that each input variable
was independently disturbed. This was carried out in both directions with an
amplitude of ±10 % of the nominal value, which was chosen as the optimal so-
lution of the economic problem with the unmeasured disturbance FA = 1.8275

kg/s. During the dynamics identification experiment, FA was kept constant, and
the measurements were free of noise. Figure 4.3 shows the input profile imposed
on the plant. In addition, a sampling time of 1min was considered.

A regression problem was formulated in a weighted least squares approach.
Only the initial condition of the data window was used to predict the remainder
of the dataset by the Hammerstein model. The unit weight was considered to
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wA, wB, wE and wG, while the weights of wC and wP were considered 10 and 100,
respectively. Special attention is given to the requirement of the stability of the
estimated model and the absence of oscillatory behavior in the data by adding
Equations 4.4 and 4.5 as constraints to the identification problem.

Figure 4.3: Input profile in the Hammerstein dynamic matrices identification: (a)
FB (kg/s); (b) TR (◦C).

Figure 4.4 shows the predictions of the output variables wE and wP made by
the estimated Hammerstein models in the same identification dataset. Model 1
presents the worst behavior in terms of the dynamics even though it can match
the steady state of the static model.

Visually, models 2 and 3 present very similar behavior, but the value of the
identification objective function of model 3 is inferior to model 2; 0.0020 against
0.0033. Therefore, it seems that model 3 is a better local model than model 2 in
the region of ±10 % around the nominal input values. This is justified by the fact
that it presents more parameters to be estimated. However, the higher number of
parameters resulted only in a marginal benefit, almost imperceptible in a visual
screening. Here, model 2 already hints at its superiority due to result in good
performance despite its simplicity.
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Figure 4.4: Output profile in the Hammerstein dynamic matrices identification:
(a) wE ; (b) wP .

4.4.2 HEKF performance in open loop in the presence of mea-
surement noise

Aiming to evaluate the performance of the proposed HEKF in terms of parameter
estimation and measurement noise filtering, two filter tunings are proposed:

• Tuning 1: designed to prioritize the correction of the measurements over
the model prediction by setting Q = 10−4Iny×nd

, R = 10−4Iny and initial
covariance matrix as P+

0 = 10−1Iny×nd
;

• Tuning 2: designed to prioritize the prediction of the model over correction
of the measurements by settingQ = 10−4Iny×nd

,R = 3× 10−2Iny and P+
0 =

10−1Iny×nd
.

The simulation scenario was designed in open loop, keeping the manipulated
variables at their nominal values to minimize the influence of the controller dy-
namics in the estimation analysis. In this scenario, the true plant disturbance was
drifted every 120 sampling instants in a pulse pattern with increasing amplitude
from −5 % to +30 % of the nominal value. The measurements were built by cor-
rupting the output variables with a Gaussian zero-mean noise with amplitude of
1 % of the noise-free value. Figure 4.5 shows the comparison of the parameter
estimation performance of the three proposed HEKF and a perfect model EKF in
both tunings.
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Figure 4.5: Disturbances estimation performance in open loop in the presence of
measurement noise: (a) FA (kg/s) estimation with tuning 1; (b) FA (kg/s) esti-
mation with tuning 2.

Apart from model 3, the HEKF performed similarly to the perfect model EKF,
confirming that the proposed Hammerstein structures are valid as approximate
dynamic models for estimation approaches, preserving the observability charac-
teristics from the static model. It is possible to see that the parameter estima-
tion performance of the HEKF using model 3 deteriorates as the operating point
moves away from the identification point, which is undesirable in the context of
RTO. This effect is expected since model 3 dynamic matrices are independent.
Even though model 3 was observed as the best local model in the region of±10 %
around the nominal input values, its behavior would be unsatisfactory far from
this region or evenwith shifted unmeasured disturbances. Evenwith possible un-
realistic dynamics in these scenarios, we can indeed state that at least the steady
state of models 1 and 2 will match the static model. Provided the static model is
reliable and reproduces well the equilibrium points of the plant, models 1 and 2
benefit from this reliability, unlike model 3.

The EKF presented the slowest dynamics compared to the other HEKFs, but
this is only a matter of tuning and could be easily overcome by changing matrices
Q andR. The performance of estimating themeasured variables can be visualized
in Figure 4.6 for tuning 1 and Figure 4.7 for tuning 2.

In all approaches, tuning 1 presented a fast estimation of the parameter to the
real value of the plant. However, it is not able to properly attenuate the measure-
ment noise, propagating it to the estimated quantities. On the other hand, tuning 2
presentedmore capability of filtering noise, but this comeswith the cost of having
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a slower parameter convergence to the true value. In addition, tuning 1 can cor-
rect the misled dynamics caused by an inaccurate dynamic model and the wrong
value of the parameter during the convergence time as presented in Figure 4.6.

Figure 4.6: Output estimation performancewith tuning 1 in open loop in the pres-
ence of measurement noise: (a) wA; (b) wB; (c) wE ; (d) wP .

HEKF using models 1 and 2 present very similar parameter estimation per-
formance, even for disturbances that drive the conditions to regions far from the
identification scenario. In every case, they were able to estimate the true value of
the plant, indicating that this ability comes from the observability characteristics
of the static model rather than the dynamics of linear ARX. However, considering
HEKF usingmodel 3, even though it presents a better fit to the process in the iden-
tification region, this strategy fails to estimate the true parameter value in regions
far from the nominal operation, which can be observed by the offsets in the fourth
and sixth steps of Figure 4.5. This effect is explained by the fact that model 3 does
not guarantee to match the steady-state condition of the static model, resulting in
the poor dynamic behavior of the estimated output variables in Figure 4.7.
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Figure 4.7: Output estimation performancewith tuning 2 in open loop in the pres-
ence of measurement noise: (a) wA; (b) wB; (c) wE ; (d) wP .

Figure 4.7 shows that the slow parameter convergence can also result in the
inaccurate dynamic behavior of the output variables. This effect added up with
poor dynamic approximation led HEKF with model 3 to be the worst approach.
Therefore, in the remainder of this chapter, model 3 was disregarded because it is
considered inadequate in the sense of FORBES et al. (1994) for RTO purposes.

4.4.3 Closed-loop performance of the Adaptive Self-Optimizing
Control Framework

The real-time adaptive SOC framework presented in Figure 4.2 was evaluated us-
ing the Hammerstein models 1 and 2 and compared to a framework similar to the
proposal of GRACIANO et al. (2015). Besides our adaptive infinite-horizon MPC
based on Hammerstein internal model, our framework differs from GRACIANO
et al. (2015) in the RTO strategy using transient measurements, herein denoted as
HRTO. GRACIANO et al. (2015) proposes the use of a static RTO, where a steady-
state detection is followed by a static data reconciliation and parameter estimation
approach, which estimated the unknown parameters based on static measure-
ments. Here, we compare this approach to ours with the difference that we keep
our adaptive controller in both approaches to accomplish a fairer comparison.

The simulation scenario comprises two-step perturbations in the unmeasured
disturbances. The first was imposed in the 25th sampling instant with an ampli-
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tude of +40 % of the nominal operation. The second was imposed in the 125th

sampling instant with amplitude of −40 % of the nominal operation in a simu-
lation window of 250 sampling instants. The second step generates an optimal
solution with the constraint in component E active, while in the first step, there is
no active constraint.

For all approaches, the same controller tuning is considered, the control hori-
zon is 5 sampling instants, the weight matrices are Wc = Inu , W∆u = 10−2Inu

and the slack weight is 10 for each slack variable. These tuning parameters were
chosen by trial experimentation since our aim was not to reach the best tuning
under some performance criteria. However, for this goal, we refer to the work
of GIRALDO et al. (2019). Since the effect of noise has been discussed in Section
4.4.2, in this section measurement noise was suppressed to clarify the effect of dy-
namics. However, all observations made in Section 4.4.2 would be made here if
the noise were considered.

To illustrate the economical performance of each approach, not only the objec-
tive function is presented but also an accumulated loss function defined as:

Lk =
k∑

j=0

[
Jeco(ȳ

sp
j , ū∗

j , d̂
+
j−1)− J∗

eco,j

]
∆t (4.30)

in which J∗
eco,j represents the true plant optimum at instant j and ∆t is the sam-

pling time, considered 60 s. It is important to mention that a reduction in the ac-
cumulated loss should be analyzed carefully. If the problem does not contain an
active constraint, this reduction may be caused by a transient period that presents
better economics than the desired steady-state setpoint. However, if a constraint
is active, this reduction may be caused by its violation, which is undesirable. So,
the reduction in the accumulated loss in the case of constraint violation cannot be
interpreted as a positive economic aspect.

Figure 4.8 illustrates the performance of the manipulated variables and the
estimation of the unmeasured disturbance in the self-optimizing HRTO, consid-
ering both HEKF tunings, compared to the self-optimizing RTO, considering the
internal Hammerstein model 1.
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Figure 4.8: Closed-loop performance using Hammerstein model 1: (a) FB (kg/s);
(b) TR (◦C); (c) FA (kg/s). The dotted lines represent the optimal inputs obtained
by the HRTO.

In the HRTO approaches, the controller presents a soft response and reason-
ably follows the optimal input trajectory, even though these trajectories are not
targets for the controller since the controller only tracks the self-optimizing vari-
ables. On the other hand, the RTO approach presented a slightly aggressive be-
havior, with the appearance of undesirable oscillatory moves in variable TR at
the moments that its setpoints are suddenly changed due to the steady-state de-
tection. This effect could be avoided by increasing the IHMPC weights of the
manipulated variables variations or by softening the parameter implementation
using an exponential filter, for example. These solutions were not implemented
because they would increase conservatism in the RTO approach and result in an
even worse economic performance. The estimated performance of HEKF with
tuning 1 and 2 followed the same conclusions drawn in Section 4.4.2 that tuning 1
presents a faster convergence, but it would present a worse noise filtering ability.
Regarding the RTO approach, long periods of sub-optimal operation are observed
due to steady-state waiting time. However, when it is detected, the estimator can
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perfectly describe the actual value of the parameter, which is a fair behavior for
practical applications if one considers the use of robust static M-estimators (DE
MENEZES et al., 2021). Figure 4.9 illustrates the output variables and the eco-
nomic indexes for this scenario.

Figure 4.9: Closed-loop performance usingHammersteinmodel 1: (a)wE ; (b)wP ;
(c) Objective function, Jeco($/s); (d) Accumulated loss function ($). Dashed lines
represent quantities estimated by the HEKF, dotted lines represent the optimal
setpoints obtained by the HRTO and the grey area represents the violation of the
imposed constraint.

All approaches can drive the system to its steady-state optimal operation. The
main differences are observed in the transient windows, where the parameter is
constantly updated in the HRTO, or the system is waiting for static data in the
RTO approach.

Regarding the output variables estimation, it is clear that tuning 1 performs
better than tuning 2. That is explained by the fact that model 1 is only a fair but
not accurate approximation of the plant dynamics. Therefore, the measurement
update plays an important role in correcting the dynamic trajectory of the output
variables in this scenario, which directly impacts the superior economic perfor-
mance of HRTO with tuning 1. The RTO approach presented the worst behavior
since the system diverges significantly from the optimal operation in the steady-
state waiting periods, which directly impacts the inferior economic performance
of the RTO. Regarding the active constraints in the second step disturbances, only
the HRTO approaches presented a period of a constraint violation but rapidly di-
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recting the variable to its setpoint at the upper bound, which is a result that vali-
dates themethodology to handle changes in the active set of constraints presented
in Section 4.3.4.

The performance of the proposed Hammerstein model 2 was also verified in
the same simulation scenario. The manipulated variables and unmeasured dis-
turbances can be visualized in Figure 4.10 and the output variables and economic
indexes are illustrated in Figure 4.11.

Figure 4.10: Closed-loop performance usingHammersteinmodel 2: (a)FB (kg/s);
(b) TR (◦C); (c) FA (kg/s). The dotted lines represent the optimal setpoints ob-
tained by the HRTO.

The remarks of the results with model 2 are very similar to model 1. However,
comparing each other, it is possible to notice a superior performance of model 2.
This is expected since model 2 better describes the plant dynamics.
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Figure 4.11: Closed-loop performance using Hammerstein model 2: (a) wE ; (b)
wP ; (c) Objective function, Jeco($/s); (d) Accumulated loss function ($). Dashed
lines represent quantities estimated by the HEKF, dotted lines represent the opti-
mal setpoints obtained by the HRTO and the grey area represents the violation of
the imposed constraint.

Some approaches presented a slight violation of the constraint for a short pe-
riod after the second disturbance. This violation occurred only in the plant data
and not in the HEKF estimates, which is the variable used as the initial condition
for the controller. The only exception occurred in the approach using model 1
and tuning 1, where both plant data andHEKF estimate violated active constraint
during transient response. However, this violation does not necessarily imply
using a slack variable to soften the constraint since the control uses a lineariza-
tion of the Hammerstein model as the internal model and not a perfect dynamic
model of the plant. In fact, the use of a slack variable depends on the tuning of the
slack weights, as shown in Figure 4.12, for the weight used in the previous results
wU

wE
= 10 and for another tuning using wU

wE
= 10−5.
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Figure 4.12: Evolution of the slack variable using Hammerstein model 1 and tun-
ing 1: (a) wE with wU

wE
= 10; (b) wE with wU

wE
= 10−5; (c) ρUwE

with wU
wE

= 10; (d)
ρUwE

with wU
wE

= 10.

The controller’s internal model prediction does not violate the constraint de-
spite the violation observed in the plant data andHEKF estimate for the proposed
tuning of the slack weights. For a more relaxed tuning, such as the one presented
in Figure 4.12 that considers wU

wE
= 10−5, it is possible to see that the controller’s

internalmodel prediction also violates the constraint. This ismade possible by the
activation of the slack variable related to the upper bound of wE , which presents
non-null values during the violation period. Despite both tunings showing a dif-
ferent behavior of the slack variable, this did not reflect a significant change in the
controller’s behavior.

To provide a better transverse comparison of the economic performances, Ta-
ble 4.1 shows the terminal accumulated loss for each approach.

Table 4.1: Terminal accumulated terminal loss for each closed-loop approach

HRTO tuning 1 HRTO tuning 2 RTO
model 1 0.31× 105 0.94× 105 3.01× 105

model 2 0.28× 105 0.82× 105 2.03× 105

Table 4.1 confirms that the proposed HRTO with self-optimizing adaptive
IHMPC based on Hammerstein’s approximate model outperformed the RTO ap-
proach based on the proposition of GRACIANO et al. (2015). Model 2 presents
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better performance than model 1 due to a more accurate dynamic approximation
of the plant. However, one must consider that model 2 requires ny times more
parameters to be identified than model 1. And, finally, tuning 1 presents better
results than tuning 2. However, tuning 1 would have a worse filtering ability in
the presence of noise, whichwouldpropagate noise for the estimateddisturbances
and parameters, generating noisy setpoints for the controller. The effect of noise
is further discussed in the Supplementary Material of this chapter, Appendix C,
where we present the closed-loop performance analysis of the frameworks in the
presence of two measurement noise amplitudes, 1 % and 5 %.

Table 4.2 presents the average computational cost of each loop stage in terms
of run time in ms. The algorithms ran in an Intel® CoreTM i7-8565U 1.8GHz and
8GB DDR4 RAMmemory.

Table 4.2: Performance of the proposed framework in terms of computational cost

Loop stage
Average iteration

time (ms)
Time

percentage (%)
Model Switching 1.29 2.7
HEKF 1.17 2.5
Optimization 22.41 47.4
SOC 3.38 7.2
IHMPC 17.02 36.0
Plant integration 1.96 4.2
Total Loop 47.23 100.0

It is interesting to note that the proposed framework is highly feasible to be
applied during the 60 s sampling time. The average cost of the loop, including
the plant integration, is 47.23 ms. It is worth mentioning that the limiting stages
are the nonlinear optimization and the IHMPC, accounting for 47.4 % and 36.0 %

of the total loop, respectively. In addition, the linearizations required in model
switching and SOC stages are executed very efficiently using the automatic differ-
entiation framework. Finally, comparing the computational cost of the RTO, the
main difference is the presence of a static data reconciliation with simultaneous
parameter estimation instead of the HEKF, which presented an average iteration
time of 44.51ms. Although the RTO only runs when a steady state is detected, its
computational cost is considerably higher than the proposed HRTO scheme due
to the presence of static reconciliation and estimation.

As already mentioned, the main advantage of the proposed approach is to
incorporate information from the static nonlinear model into the models used
in the control layer. Depending on how this is done, it is possible to match the
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steady-state condition of the optimization and control layers, such as in models
1 and 2. However, it is essential to point out the limitations associated with lin-
ear dynamic approximation. For systems with accentuated nonlinear dynamics,
the proposedmodel may fail to describe the system satisfactorily during transient
periods, even in operating points near the identification region. Furthermore, not
only the proposed approach but also the original HRTO, in general, should be
deeper investigated in different classes of nonlinear systems. For instance, it has
been shown that unknown dead times could significantly degenerate HRTO per-
formance (CURVELO et al., 2021).

4.5 Conclusions

This chapter presents a new HRTO framework considering the unavailability of
a mechanistic dynamic model of the process. A Hammerstein structure based on
the available static model is proposed to work as an approximate dynamic model.
An Extended Kalman Filter and a Self-Optimizing Infinite Horizon MPC are for-
mulated based on this structure. The proposal was validated in theWilliams-Otto
reactor in the presence of parametric uncertainty. Three models were proposed
based on the Hammerstein structure. The main conclusions are:

• It was found that model 3 is not adequate for the HRTO considered fixed
dynamic matrices. On the other hand, models 1 and 2 presented great per-
formance due to the property that the approximate dynamic models match
the steady state of the static model;

• Although model 2 presented higher accuracy than model 1, it has the
squared number of parameters of model 1 to be estimated, which can be
concerning considering a large-scale system;

• The open-loop results showed that the HEKF can preserve the observability
characteristics of the static model, performing similarly to the perfect model
EKF. In addition, theHEKF presented a compromise between fast parameter
estimation and rejecting measurement noise;

• Regarding the closed-loop results, the proposed framework outperformed
the framework that uses SSD in a classic RTO formulation. Although both
frameworks presented the same ability to drive the plant to its optimum at
a steady state;

• Regardless of the HEKF tuning, the proposed framework presented im-
proved economics, especially in a scenario of change in the active constraints.
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Finally, although the framework was only tested in a benchmark system, the
results of the computational cost of each stage of the proposed framework show
that it has the potential to be applied in industrial-scale systems. Therefore, this
is a matter of interest for future investigation.
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Chapter 5

Steady-state real-time optimization
using transient measurements and
approximated Hammerstein dynamic
model: A proof of concept in an
experimental rig

A version of this chapter was published in the Journal of Process Control, Volume
132, December 2023 (DELOU et al., 2023b).

5.1 Introduction

Focused on removing the rigorous dynamic model availability requirement and
improving ROPA’s applicability, in Chapter 4, we proposed a specific Hammer-
stein dynamic model approximation that takes advantage of the available static
model on its structure. The proposed approximate model combines the static
model with virtual linear dynamics introduced by an ARX. The ARX structure
introduces a matrix of dynamic parameters that should be identified from plant
data, which is named here as the dynamic matrix. In this new approach, called
Hammerstein ROPA (HROPA), the Hammerstein dynamic model replaces the
rigorous dynamic model in the model adaptation stage. In a simulated environ-
ment, this structure was shown to have the capability of preserving the model pa-
rameters and disturbance observability; it is naturally compatible with the static
model as it alwaysmatches its steady-state conditions, and the linear dynamic ap-
proximation can be fairly accurate depending on the system in study. However,
previous studies were limited to the application of the HROPA methodology in
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a simulated environment, where a rigorous dynamic model was used to emulate
the plant responses, and all parametric or structural plant-model mismatches are
known. The main challenge of the current work is to implement the previously
proposed HROPA methodology in an experimental plant, where a perfect model
of the plant is not available and, therefore, unknown plant-model mismatches are
definitely present. Besides, this was carried out on the same experimental setup
used in MATIAS et al. (2022), allowing a comprehensive comparison among the
studied RTO approaches.

The main contribution of this work is in the context of the previously pro-
posed Hammerstein structure by implementing an HROPA strategy to a lab-scale
experimental rig. The study intends to show the potential of the methodology
to work with real systems and increase the applicability of ROPA approaches to-
ward large-scale systems. The published version of this chapter also included a
thorough literature review of the use of transient measurement within the static
RTO framework, adapted from Section 2.6.

This chapter implements two versions of HROPA in a small-scale experimental
rig that emulates a subsea oil well network. The first version considers the origi-
nally proposed Hammerstein model, where a a priori identification step based on
plant data takes place. The second explores the direct use of the static model in
the EKF algorithm, making the static model work as an instantaneous dynamic
model. This second version was explored since the studied system presented
rather fast responses. The performance of HROPA is compared with the ROPA
implementation, which was carried out by MATIAS et al. (2022) on the same ex-
perimental rig under the same disturbance scenario. It is shown that HROPA
presented similar operational profiles to the classic ROPA with a slightly lower
economic performance. Although it is expected that HROPA presents a slightly
lower economic performance compared with ROPA, our goal is to show the proof
of concept of the HROPA methodology and to collaborate to increase the indus-
trial applicability of ROPA-like algorithms since the HROPAmethodology can be
applied without having a rigorous dynamic model of the plant.

The main contributions of the present chapter are:
• General guidelines for the Hammerstein dynamic matrix identification for

practical implementation;

• Proof of concept of the previously proposed HROPA approach in a lab-scale
experiment rig;

• Use of the static model directly in the dynamic model adaptation algorithm.
The remainder of the chapter is organized as follows. Section 5.2 presents the

ROPA using a dynamic Hammerstein model approximation, guidelines for the
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dynamic matrix identification, the formulation of the dynamic parameter esti-
mation, and steady-state economic optimization. Section 5.3 provides the details
of the experimental rig used as a case study, the experimental layout, the avail-
able process model, the optimization objective and constraints, the Hammerstein
model identification scenario, the closed-loop disturbance scenario, and the EKF
tuning details. Section 5.4 exhibits the results and discussion comparing the two
HROPA approaches with the originally proposed ROPA method. Finally, Section
5.5 summarizes the conclusion of this work.

5.2 ROPA using Hammerstein dynamic model ap-
proximation

The ROPA algorithm differs from the classic RTO, mainly in how measured data
is incorporated into the framework. As classic RTO adapts the static model rely-
ing on static parameter estimation, it is mandatory to use only steady-state mea-
surement data. Therefore, a steady-state detection strategy is used to monitor
measurements and decide whether or not to run the RTO framework, generating
long waiting times. In fact, this has been reported as one of the major RTO issues
(DARBY et al., 2011; FRIEDMAN, 1995). On the other hand, ROPA replaces the
static parameter estimation with a dynamic one, such as Kalman-filter type ob-
servers. This simple modification removes the necessity for the steady-state de-
tection stage, enabling virtually any kind of measurement to be incorporated into
the optimization framework, regardless of its dynamic or static nature. However,
this simple idea also creates a previously nonexistent problem in RTO projects,
which is the requirement of having a dynamic mechanistic model, not only re-
liable but also compatible with the static model used for optimization. Such an
issue must not be unconsidered as it could significantly impact the applicability
of ROPA algorithms in real process plants and even hinder the project payoff.

To tackle this issue, DELOU et al. (2021c) proposed the Hammerstein ROPA
(HROPA), which is an adaptation of the originally proposed ROPA approach by
replacing the rigorous dynamicmodel with an approximate Hammersteinmodel.
This Hammerstein model is built by combining the available static model with a
linear ARX dynamic approximation. The framework differences between RTO,
ROPA, and HROPA can be visualized in Figure 5.1.
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Figure 5.1: Block diagram comparing classic RTO, ROPA, and Hammerstein
ROPA.

Both ROPA and Hammerstein ROPA approaches include an extra step to the
RTO project, which is the development of a rigorous and approximate dynamic
model, respectively. However, the effort required by identifying theHammerstein
model is considerably lower than developing a mechanistic dynamic model, es-
pecially considering large-scale systems. Moreover, identifying the Hammerstein
dynamic matrix is similar to the procedures carried out in linear MPC projects.
Considering that a linear MPC internal model might be frequently available, the
Hammerstein dynamic matrix can be derived from the controller internal model
to minimize interventions and experiments imposed directly on the plant. There-
fore, the HROPA algorithm presents a higher potential applicability to large-scale
systems than the originally proposed ROPA.

5.2.1 Hammerstein model structure

A general static model can be represented in its state space formulation:

0 = F(x,u,θ) (5.1a)
y = H(x,u,θ) (5.1b)

in which, x ∈ Rnx represents the state variables vector, u ∈ Rnu is the input
variables vector, y ∈ Rny represents the measured outputs vector, and θ ∈ Rnθ

represents the vector of uncertain parameters and disturbances. Functions F :

Rnx × Rnu × Rnθ → Rnx and H : Rnx × Rnu × Rnθ → Rny represent, respectively,
the steady-state mapping of x and y in respect to u and θ. This model can be
simplified without loss of generality as:

y = y(u,θ) (5.2)
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The Hammerstein structure proposed by DELOU et al. (2021c) consists of us-
ing the above nonlinear mapping to process the inputs and parameters signal and
then a feedback linear ARX model to introduce virtual dynamics. The Hammer-
stein model is presented below.

yh
k+1 = Ahyh

k + (I −Ah)y(uk,θk) (5.3)

in which yh
k represents the measured vector predicted by the Hammerstein model

at instant k. Matrix Ah ∈ Rny×ny is the dynamic matrix. This matrix should be
previously identified in an offline identification step, which is further discussed
in the next subsection.

Here, two conditions that any approximate dynamic model should respect to
be considered adequate to be used in a ROPA framework are outlined:

1. (Compatibility condition) If u is kept constant at u∞ and θ does not change
in time, the steady states of the dynamic approximation and the static model
must match: limk→∞ yh

k = y(u,θ);

2. (Observability condition) The uncertain parameters and disturbances from
the staticmodelmust be observable given the available plantmeasurements.

The compatibility condition can be met by Equation 5.3 under the assumption
that the dynamic matrix Ah presents the property to be stable. This assumption
is fairly easy to enforce during the identification of the dynamic matrix. This con-
dition can be easily visualized by writing Equation 5.3 in the following manner:

ȳh
k+1 = Ahȳh

k (5.4)

in which ȳh
k := yh

k − y(uk,θk).
The observability condition is met by Equation 5.3 since it explicitly uses the

static model in its formulation, assuming that the uncertain parameters and dis-
turbances are identifiable via the static model; this fact was also shown in practice
by DELOU et al. (2021c).

Beyond those two conditions, another critical factor to consider is how accurate
the Hammerstein model can be to represent the actual system dynamics. Consid-
ering the linear dynamics presented in Equation 5.3, it is clear that the model’s
accuracy will remain in a local region around the identification reference point.
To overcome this issue, adaptive schemes, higher-order or nonlinear model struc-
tures could be used. However, it is noteworthy that inaccurate dynamics will de-
teriorate the ROPA during the dynamic transitions as a consequence of inaccurate
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parameter and disturbance estimation, but it will not prevent the convergence to-
wards the true parameter values considering that the compatibility condition is
met, as shown in DELOU et al. (2021b).

5.2.2 Identification of the dynamic matrix

The identification of the dynamicmatrix is proposed to be carried out offline, simi-
larly to the identification of linear dynamicmodels in classicMPCprojects. If such
models are available, it is possible to identify the Hammerstein model based on a
controller internal model. However, here we assume that this is not the case.

There are many ways to carry out the identification procedure (NAJIM and
IKONEN, 2001). This work proposes selecting a common operational condition
to be used as a reference and imposing positive and negative disturbances around
this reference independently for each input variable. The goal is to obtain a suf-
ficiently excited data set for the identification procedure. The set of input data is
represented by U id ∈ RNid×nu , where Nid is the number of time samples in the
identification set. It is reasonable to assume that the static model uncertain pa-
rameters and disturbances,Θid ∈ RNid×nθ , are known during the dynamic matrix
identification. After imposing the input data set to the plant, this will result in a
measured output data set, represented by Y id ∈ R(Nid+1)×ny .

With the identification data sets in hand, the goal of the identification proce-
dure will be to produce a dynamic matrix Ah such that it minimizes the distance
between the measured output data set from the Hammerstein model prediction,
by taking the initial condition from the data and propagating it throughout the
whole identification horizon. However, to account for the compatibility condition,
which states that the resulting Hammerstein model must be stable, it is important
to include the following nonlinear constraint:

||λ(Ah)|| < 1 (5.5)

in which, λ(Ah) represents the eigenvalues of matrix Ah. In addition, it might
also be the case that one should avoid the rise of oscillatorymodes in the resulting
Hammerstein model if the original process does not present oscillations. This can
be guaranteed by including the following constraint:

Im(λ(Ah)) = 0 (5.6)

Therefore, the identification optimization problem can be written as the fol-
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lowing weighted least square estimation:

Ah = arg min
Ah

Jid :=

Nid+1∑
k=1

(yid
k − yh

k )
TWid(y

id
k − yh

k ) (5.7a)

s.t. yh
k+1 = Ahyh

k + (I −Ah)y(uid
k ,θ

id
k ), k = {0, ..., Nid} (5.7b)

yh
0 = yid

0 (5.7c)
||λ(Ah)|| < 1 (5.7d)
Im(λ(Ah)) = 0 (5.7e)

in whichWid ∈ Rny×ny is a squared definite positive matrix of weights, which can
be arbitrarily selected or selected as the inverse of the covariance matrix.

Although the inclusion of constraints 5.7d and 5.7e are required to meet the
compatibility condition and the accuracy condition, respectively, it also includes
a non-convexity into the identification problem.

5.2.3 Dynamic parameter estimation

The dynamic estimation strategy is the main core that differentiates the ROPA
from the classic RTO frameworks, which is the building block that enables the
use of dynamic data. In principle, among recursive or optimization-based strate-
gies, any dynamic estimation approach would be suitable (VALLURU and PAT-
WARDHAN, 2019). The EKF is an example of a recursive approach (SIMON,
2006b), while the MHE is an example of an optimization-based approach (PAT-
WARDHAN et al., 2012). In selecting which strategy to use, it is recommended to
analyze the trade-off between estimation quality and computational cost of each
method. The EKF is a compromise option since it presents a fairly accurate esti-
mation with a significantly low computational cost.

DELOU et al. (2021c) proposed the formulation of the HEKF that incorporates
the Hammerstein model presented in Equation 5.3 into the EKF framework in a
simultaneous state and parameter estimation approach. The algorithm estimates
the uncertain parameters at any instant k, by assuming instantaneous dynamics.
This estimation is used to adapt themodel for steady-state economic optimization.
We refer to DELOU et al. (2021c) for the complete formulation.

The EKF tuning is a fundamental stage that must not be overlooked. A badly
tuned EKF could hinder the operation and possibly destabilize the system (MA-
TIAS and LE ROUX, 2018). However, the task of selecting suitable covariance
matrices is not a simple thing. In addition, a systematic EKF tuning methodology
is still an open topic in the literature. In this sense, it is noteworthy that the effort
to tune the HEKF is significantly less than to tune an EKF that relies on a dynamic
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mechanistic model. This is observed by the fact that the state variable dimension
is ny for the HEKF, while it is nx for the EKF, and usually ny ≪ nx. Therefore,
HEKF presents significantly fewer tuning parameters compared to EKF.

5.2.4 Steady-state economic optimization

The following steady-state economic optimization is calculated on every ROPA
iteration to determine the optimal set of inputs.

u∗
k+1 = arg min

u,x
Jec(y,u, θ̂

+
k ) (5.8a)

s.t. 0 = F(x,u, θ̂+
k ) (5.8b)

y = H(x,u, θ̂+
k ) (5.8c)

G(x,u, θ̂+
k ) ≤ 0 (5.8d)

ylb ≤ y ≤ yub (5.8e)
ulb ≤ u ≤ uub (5.8f)

in which Jec is the economic objective function of the optimization problem,
θ̂+
k ∈ Rnθ is the EKF a posteriori estimation of the uncertain parameters at instant

k, H : Rnx × Rnu × Rnθ → Rnh is the function that maps any additional nonlinear
constraint that the problem may be subjected, and the superscripts (·)lb and (·)ub

denotes lower and upper bounds, respectively.

5.2.5 Algorithmic implementation

This section presents the algorithmic implementation of ROPA as presented in
MATIAS et al. (2022) and the Hammerstein ROPA. The first can be visualized
in Algorithm 2, and the second in Algorithm 3. This representation enables a
better comprehension of how each step of the ROPA and HROPA architectures
are implemented in real time, in which the main difference relies on the fact that
the first uses a rigorous high-fidelity dynamic model, while the second uses a
dynamic Hammerstein model, which combines an approximate ARX dynamic
with a rigorous high-fidelity static model.
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Algorithm 2: ROPAwith rigorous dynamic model (MATIAS et al., 2022).
At every ROPA execution cycle k:

1. Acquire output and input plant measurements, ym
k and um

k

Dynamic model adaptation (EKF):
2. Evaluate a priori augmented system states from rigorous
dynamic model and augmented covariance matrix
3. Compute system sensitivity matrices from rigorous dynamic
model: augmented state transition matrix and observation matrix
4. Compute Kalman gain and a posteriori augmented system states
and augmented covariance matrix
5. Obtain updated parameter vector, θ̂+

k from augmented system
states

Steady-state economic optimization:
6. Update static model: 0 = F(·, ·, θ̂+

k ) and y = H(·, ·, θ̂+
k )

7. Compute u∗
k+1 using Equation 5.8

8. Apply input filter uk+1 = um
k +Ku

(
u∗

k+1 − um
k

)
9. Implement uk+1 to the plant

Algorithm3:Hammerstein ROPA. For the detailed implementation of the
Hammerstein EKF, we refer to DELOU et al. (2021c).
At every HROPA execution cycle k:

1. Acquire output and input plant measurements, ym
k and um

k

Dynamic model adaptation (EKF):
2. Evaluate a priori augmented system states from Hammerstein
model and augmented covariance matrix
3. Compute the steady-state sensitivity matrix of the outputs in
relation to the uncertain parameters, and derive the augmented
state transition matrix and observation matrix
4. Compute Kalman gain and a posteriori augmented system states
and augmented covariance matrix
5. Obtain updated parameter vector, θ̂+

k from augmented system
states

Steady-state economic optimization:
6. Update static model: 0 = F(·, ·, θ̂+

k ) and y = H(·, ·, θ̂+
k )

7. Compute u∗
k+1 using Equation 5.8

8. Apply input filter uk+1 = um
k +Ku

(
u∗

k+1 − um
k

)
9. Implement uk+1 to the plant

116



5.3 Case study: Experimental rig

The experimental rig used in the current work is installed at the Department of
Chemical Engineering of the NTNU and has been described in MATIAS et al.
(2022). The purpose of the equipment is to reproduce some of the physics of
a sub-sea oil well network on small scale. To be more specific, the experiment re-
produces an artificial lift effect caused by a gas stream injected into a liquid well,
which is observed in a gas-lifted system. In this kind of system, the gas injection
results in a reduced liquid density and contributes to increasing oil production.
However, increasing the gas flow rate is beneficial up to a certain level. There is a
critical pointwhere, if the gas flow rate continues to increase, the effect of frictional
pressure drop dominates the density reduction and the oil production decreases
(MATIAS et al., 2022). Therefore, an optimal gas flow rate can be achieved, which
can be determined by RTO strategies.

5.3.1 Experiment layout

The schematic of the rig can be visualized in Figure 5.2
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Figure 5.2: Experimental rig schematic adapted from MATIAS et al. (2022).

The rig can be subdivided into 3 main sections: the reservoir, wells, and risers.
In the reservoir section, the main elements are a 200 L water tank that represents
the actual reservoir, a centrifugal pumpwith discharge pressure control, and three
control valves. The choice of water as the liquid fluid was made for simplification

117



purposes. Water is easier to handle and more environmentally friendly than oil
and the gas lift effect, which is the phenomenon of interest, is still observable in
water. It is also important to mention that this setup only copes with water pro-
duction. Therefore no oil, water, and gas mixture phenomena are explored. Due
to the pump configuration, the total reservoir production per well is limited be-
tween [2, 15] L/min. The three control valves can be manipulated to represent
different well behaviors, for example, closing the valve during the experiment em-
ulates well depletion. Individual well flow rates can be measured by flow meters
installed upstream of the control valves.

The wells section consists of the gas injection points downstream to the reser-
voir control valves. The selected gas is air, again for the sake of simplicity, and
its injection rate is controlled by air flow rate controllers. The air flow meters are
installed upstream to the air injection valves, and the allowed air flow rate range
is between [1, 5] slm per well.

The riser section comprises three vertical pipelines with 2.2 m of height. The
risers are perpendicular to thewell section, and there is a pressuremeter at the top
of each one. Upstream to themeters, there aremanual valves, which are only used
for system maintenance and maneuverability and are kept fully open during the
experiment. The air-water mixture is sent to a separation tank, where air is vented
to the atmosphere, and the water is recycled to the reservoir water tank to avoid
waste.

5.3.2 Process model

The experimental rig dynamic model is detailed in MATIAS et al. (2022). How-
ever, in this work, we consider it unavailable, while its static counterpart is con-
sidered available. The static model set of equations is presented below:

0 = −wg,i + wout
g,i (5.9a)

0 = −wl,i + wout
l,i (5.9b)

0 = −wtotal,i + wout
g,i + wout

l,i (5.9c)

0 = −wl,i + vo,iθres,i

√
ρl,i(Ppump − Pu,i) (5.9d)

0 = −Pu,i + Pr,i + ρmix,ig∆hi +
128ρmix,i(wg,i + wl,i)Li

πρmix,iD4
i

(5.9e)

0 = −ρmix,i +
mg,i +ml,i

Vtotal,i

(5.9f)

0 = −Vtotal,i +
ml,i

ρl,i
+

mg,i

ρg,i
(5.9g)
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0 = −ρg,i +
Pu,iMg

RT
(5.9h)

0 = −wtotal,i + θtop,i

√
ρmix,i(Pr,i − Patm) (5.9i)

0 = − ml,i

ml,i +mg,i

+
wout

l,i

wtotal,i

(5.9j)

where, the subscript i refers to any individual well from a set of W := I1:nw , with
nw = 3 in our case. The variables mg,i and ml,i represent gas and liquid holdups,
respectively. wl,i is the liquid injection flow rate. wout

g,i and wout
l,i are the gas and

liquid production flow rate, respectively. Pr,i is the pressure at the riser head, Pu,i

is the pressure upstream to the injection point, Ppump is the pump outlet pressure,
ρmix,i is the riser fluid density, and ρg,i the gas density.

The modeling hypotheses are discussed in detailed in MATIAS et al. (2022).
The main simplifications are: (1) in Equation 5.9e, the pressure drop between the
riser head and the injection point depends on the static fluid pressure and the
pressure drop due to friction. The former is computed using the Darcy-Weisbach
equation for laminar flows (last term of Equation 5.9e); (2) the liquid flowrate
fraction is proportional to the liquid holdup in the pipes (Equation 5.9j).

The system presents nx = 30 state variables in total. To obtain a more com-
pact representation, we combined the variables that represent the same physical
quantities in the individual wells using a bold notation. The resulting system state
vector is:

x :=
[
mT

g ,m
T
l ,w

T
total,w

T
l , (w

out
g )T , (wout

l )T ,P T
r ,P T

u ,ρT
mix,ρ

T
g

]T (5.10)

The input variable vector is composed of nu = 7 variables:

u :=
[
wT

g ,v
T
o , Ppump

]T (5.11)

Note that, since the three wells share the same pump, we have only one pump
pressure outlet in the input vector.

The measured variables are the liquid volumetric flow rate Ql ∈ Rnw and the
riser head pressure, Pr ∈ Rnw . The set of equations that define the measurement
predictions is:

y :=
[
QT

l ,P
T
r

]T
=Hx

=

[
0nw 0nw 0nw Inw/ρl 0nw 0nw 0nw 0nw 0nw 0nw

0nw 0nw 0nw 0nw 0nw 0nw Inw 0nw 0nw 0nw

]
x

(5.12)
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Finally, the reservoir valve flow coefficients, θres ∈ Rnw , and the top valve flow
coefficient, θtop ∈ Rnw , are unmeasured disturbances that are considered the nθ =

6 uncertain parameters:

θ :=
[
θT
res,θ

T
top

]T (5.13)

The full set of parameter values and description can be seen in MATIAS et al.
(2022), and the model implementation code is available on the “ProductionOp-
tRig" Github page1.

5.3.3 Optimization problem

To follow the same assumptions asMATIAS et al. (2022) and generate comparable
results, the optimization objective function was selected as a weighted sum of the
liquid flow rates:

J = pTQl (5.14)

in which p ∈ Rnw are the liquid price vector. For illustration purposes, different
liquid prices are considered for each well; in this study, the price vector was p =

[20, 10, 30]T .
The constraints comprise the gas lift injection limits for each well and the gas

availability constraint. The gas lift injection limits are defined as follows:

Qlb
g ≤ Qg,i ≤ Qub

g , ∀i ∈ [1, 2, 3] (5.15)

in which Qg,i := wg,i/ρg,i is the gas flow rate for each well i ∈ [1, 2, 3], Qlb
g and Qub

g

are the gas flow rate lower and upper bound, respectively equal to 1 slm and 5
slm. In addition, the gas availability constraint is defined as:

3∑
i=1

Qg,i ≤ Qmax (5.16)

in which Qmax is the maximum gas throughput, which is considered 7.5 slm.

5.3.4 Hammerstein model identification

The Hammerstein model identification procedure was followed as described in
Section 5.2.2. Independent disturbances were imposed on the gas injection flow

1https://github.com/Process-Optimization-and-Control/ProductionOptRig
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rate and the reservoir valve openingwhile keeping the pump pressure constant to
generate the training data. The same input profile was applied to the three wells
in the experimental rig; the input profile can be visualized in Figure 5.3.
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Figure 5.3: Identification scenario - input profile imposed to the experimental rig.

The pump pressure was kept at 1.3 bar, three values of gas injection flow rate
1.0, 3.0 and 5.0 sl/min, and three values of reservoir valve opening 25, 50 and 75 %

were applied. This single scenario explores nine different operational conditions,
covering most of the feasible input range.

The measured variables can be visualized in Figure 5.4. It can be seen that the
riser pressure is notmuch sensitive to the input variables. However, it can be noted
that the noise level increases when the gas injection flow rate raises. This data set
was used to solve the identification problem described in Equation 5.7, where the
Hammersteinmodel is propagated over thewhole training data horizon using the
first point as the initial condition, andWid = I6.
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Figure 5.4: Identification scenario - output responses.

It can be seen that the dynamic responses of the plant are very fast, presenting
stabilization periods of less than 1min. This can be explained by the rig presenting
small pipe holdups. Therefore, beyond the identified Hammerstein model, the
steady-state model was tested as an instantaneous dynamicmodel using the same
Hammerstein framework. The models tested are summarized below:

1. Model 1: Hammerstein model with the identified dynamic matrix Ah. The
HROPA using this model is labeled as HROPA1 in the following sections;

2. Model 2: Hammerstein model with the dynamic matrix Ah := 0. This is
essentially the steady-statemodel treated as a black-boxmodel. TheHROPA
using this model is labeled as HROPA2 in the following sections.

The results related to the Hammerstein model identification are discussed in
Section 5.4.1.

5.3.5 ROPA closed-loop disturbance scenario

The performance study was done under the same conditions as in MATIAS et al.
(2022) as well as using the same execution period of 10 s for both HROPA ap-
proaches. Each experiment occurred in a 20-minute window, where the pump
pressurePpump was kept constant, and the reservoir valve opening profile changed
according to Figure 5.5.
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Figure 5.5: Reservoir valve opening profile. Different gray-shaded background
highlights the five disturbance periods.

The scenario is divided into five periods, each period is highlighted in the fig-
ure by the use of different gray shades in the background. They are:

• From 0 to 5 min: valve openings kept constant at vo = [80, 60, 40]T%;

• From 5 to 11 min: valve CV101 opening decreased linearly from 80 % to 30
%;

• From 11 to 13 min: valve openings kept constant at vo = [30, 60, 40]T%;

• From 13 to 17 min: valve CV103 opening decreased linearly from 60 % to 25
%;

• From 17 to 20 min: valve openings kept constant at vo = [30, 60, 25]T%;

As previously stated, the system responses to changes in gas flow rates are
considerably fast. Therefore, the disturbance scenario is selected to emulate slow
and persistent variation in the gas wells. This scenario can also be interpreted as
well’s depletion, which is the natural decrease of oil production over time that
occurs in real gas-lifted systems.

The main goal of the experiment is to determine the economically optimal gas
flow rate injection distribution among the wells during the disturbance scenario.
To do so, the proposed HROPA approach is compared to the originally proposed
ROPA presented in MATIAS et al. (2022). As HROPA differs from ROPA by the
use of an approximateHammerstein dynamicmodel in the EKF stage, the analysis
carried outwill consider the following items as criteria to demonstrate theHROPA
concept:

• Ability to estimate the uncertain parameters accurately when compared to
ROPA, which uses a rigorous dynamic model in the estimation step;

• Optimal input profiles similar to the ones computed by ROPA;

• Profitability difference between ROPA and HROPA.
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It is expected that HROPA presents a lower economic performance than ROPA
since a less accurate dynamicmodel is used. However, the lower effort required to
develop the Hammerstein models compared to developing mechanistic dynamic
models can compensate the lower economic performance in practical applications.

The results related to the HROPA in real-time and closed-loop with the exper-
imental rig are discussed in Section 5.4.2.

5.3.6 EKF tuning

EKF tuning is one of the most critical factors for the success of ROPA/ HRTO ap-
proaches. As discussed in MATIAS and LE ROUX (2018), this step must not be
neglected since the EKFhas a very important role in the algorithm stability. Failing
to use proper tuning could hinder the operation and even completely destabilize
the plant in closed-loop. However, to this date, the literature still lacks a system-
atic and generalized approach for EKF tuning, and this activity is often done by
trial and error.

When a rigorous dynamic mechanistic model is available, the activity to find
the first EKF tuning is done using the same model to emulate the plant in a sim-
ulated scenario. Once the first tuning is available, the ROPA algorithm can be
coupled to the operation in an open loop for fine adjustments to the EKF tuning
over the real operation and assessments of the optimal input profiles. After hav-
ing confidence in the EKF tuning and optimization actions, the loop should be
closed.

Considering that a rigorous dynamic mechanistic model is not available, the
aforementioned procedure can still be followed but using the approximated dy-
namic model to emulate the plant. Therefore, special care should be given to the
fine adjustments directly in the plant while in open loop. In this work, however,
there was a big time gap between the experiments of the ROPA and the HROPA
algorithm. By the time the HROPA algorithm was tested, the experimental rig
had a lower availability for continuous operation, which limited the possibility
of tuning adjustments. Therefore, the tuning procedure was only performed in
a simulated environment by using the Hammerstein dynamic model to emulate
the plant behavior. No fine-tuning adjustments were applied directly to the ex-
perimental rig.

The Hammerstein EKF tuning obtained in a simulated way was:

Qx = diag ([3e−1, 3e−1, 3e−1, 7e−6, 7e−6, 7e−6]T
) (5.17a)

Qθ = diag ([1e1, 1e1, 1e1, 1e0, 1e0, 1e0]T ) (5.17b)
R = diag ([3e−1, 3e−1, 3e−1, 7e−6, 7e−6, 7e−6]T

) (5.17c)
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(5.17d)

inwhichQ = diag ([Qx,Qθ]
T
) is the augmented state noise covariancematrix and

R is the measurement noise covariance matrix. We refer to DELOU et al. (2021c)
for the complete Hammerstein EKF formulation.

5.4 Experimental results

5.4.1 Identification results

The identification results of the twoHammersteinmodels for the output variables
are presented in Figures 5.6 and 5.7. These output profiles are obtained by apply-
ing the input sequences shown in Figure 5.3 to the experimental rig.

From Figure 5.6, it is possible to see that both models presented a good fit for
the liquid flow rates in all three wells.
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Figure 5.6: Identification result - liquid flow rate. Blue line denotes the response
from Model 1, which contains the identified matrix Ah, and red line denotes the
response from Model 2, which considers only the steady-state model.

The results for the riser pressure are presented in Figure 5.7. Both models pre-
sented a fair performance in predicting the riser pressure (note that the y-axis
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range in the figure is only 0.05 bar), but model 1 response was noisier than the
measurement. In contrast, model 2 response was slightly less noisy than the mea-
surement.
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Figure 5.7: Identification result - riser pressure. Blue line denotes the response
from Model 1, which contains the identified matrix Ah, and red line denotes the
response from Model 2, which considers only the steady-state model.

It is important to note that the identification optimization problem is not con-
vex; hence, there is a possibility that multiple models would generate a similar
performance. This aspect was not explored here as the goal was to have a rea-
sonable model that could approximate the plant dynamics rather than having the
best possiblemodel. However, in real applications, one should consider exploring
using global optimizers and different weights on the objective function.

5.4.2 ROPA and discussion

The performance of the proposed HROPA using the approximate Hammerstein
dynamic model in the parameter estimation stage is compared to the ROPA al-
gorithm using a first-principles dynamic model implemented in MATIAS et al.
(2022). As described in Section 5.3.5, the same disturbance scenario and the same
execution period of 10 swere used to keep some level of comparability. However,
it is important to note that the result presented here as ROPA is the one presented
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by MATIAS et al. (2022), the experiment was not rerun for this chapter. Also, it
is important to mention that the time difference between the HROPA and ROPA
experiments was greater than one year, which is a considerably high amount of
time. For this reason, it is possible that some aspects of the experimental rig may
have changed, such as valve and sensor calibration and environmental conditions.
For example, the gas flow meter devices associated with the controllers FIC 104,
105, and 106 are very sensitive to moisture. If moisture accumulates in the air in-
jection controllers, the flow rate measurements drift from the true values. It may
take a considerable amount of time until this improper behavior is identified and
the sensors are re-calibrated.

Additionally, it is expected that the ROPA algorithm performs better than
HROPA for two reasons. The first is that it uses a better dynamic model, while
HROPA uses a fair approximation. The second is that before the ROPA runs, there
were some rounds of EKF fine-tuning directly on the rig, which has not happened
for the HROPA runs. The former ran with tuning derived in a simulated environ-
ment. Therefore, for the aforementioned reasons, the results will be compared
more in terms of general trends than quantitative accuracy.

Figures 5.8 and 5.9 present the parameter estimation results for ROPA,
HROPA1, andHROPA2. These results are particularly important since an accurate
parameter estimationwill define an accuratemodel adaptation, and consequently,
an accurate optimal solution can be found.

The estimation of the reservoir valve coefficients is presented in Figure 5.8.
For all wells, the HROPA1 and HROPA2 results presented a fairly similar result to
the ROPA result, following the same trends with a similar chattering level. Both
HROPA1 and HROPA2 presented a responsive behavior to the ramp disturbances
imposed on wells 1 and 3 (see Figure 5.5). For both disturbances, the profiles of
the reservoir valve coefficient estimates follow the openings.
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Figure 5.8: Parameter estimation - reservoir valve coefficients.

The estimation of the riser valve coefficients estimation is presented in Fig-
ure 5.9. Although these coefficients should not change much under the imposed
disturbance scenarios, HROPA1 and HROPA2 presented an excessively noisy es-
timation, noting that HROPA1was even noisier than HROPA2. This behavior was
caused by poor EKF tuning since a fine adjustment was not made directly in the
experimental rig operation, contrary to ROPA, which had a fine-tuning step. It is
clear that, on average, the correct parameter estimation value is being found, but
this excessive amount of noise can affect the overall economic performance of the
algorithm.
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Figure 5.9: Parameter estimation - top valve coefficients.

The gas injection flow rate optimal input profile is presented in Figure 5.10. The
optimal profiles of HROPA1 and HROPA2 presented a similar trend compared
to ROPA. It is possible to see the noisy estimation of the riser valve coefficients
has impacted the HROPA solutions during some specific periods. However, the
overall changes in the optimal gas flow distribution were successfully captured
under the disturbance scenarios affecting the system.
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Figure 5.10: Optimal input profile - gas injection flow rate.

The economic performance of the HROPA algorithms was assessed and pre-
sented in Figure 5.11. The figure presents the absolute profit function defined by
Equation 5.14 and the percentage profit difference to ROPA, Jdiff

(·) , defined in Equa-
tion 5.18. A moving average with a 30s time-frame window was implemented to
improve the visualization of the percentage profit difference.

Jdiff
j =

|Jj − JROPA|
JROPA

,∀j ∈ [ROPA, HROPA1, HROPA2] (5.18)
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Figure 5.11: Profit and average profit difference comparison between approaches.

Although the profit functions are very similar for all approaches, it is possible
to see that ROPA yields a slightly larger profit value, as expected. From the av-
erage profit difference, we can see that HRTO1 and HRTO2 presented an overall
poorer economic performance; the average difference was −1.98% for HROPA1
and −1.85% for HROPA2. These differences can be interpreted as the potential
operating cost loss associated with using an approximate dynamic instead of de-
veloping amechanistic dynamicmodel. On the other hand, obtaining the approx-
imate model requires considerably less investment in terms of man-hours and it
is much easier to maintain. This trade-off should be addressed during the RTO
project phase and involve both technical and management aspects that should be
taken into account.

However, considering the current experimental setup, other factors also con-
tributed to those differences, such as the identified Hammerstein model, which
presented a high noise for the riser pressure, and the Hammerstein EKF tuning,
which was only derived in a simulated environment with no fine-tuning stage di-
rectly on the experimental rig. Therefore, it is safe to say that these differences
could be overestimated due to the limitations of the current HROPA experiments
and the time difference from the ROPA experiment.

Finally, it is important to highlight that HROPA2, which is a ROPA framework
using the staticmodel directly in an EKF algorithm, presented a surprisingly good
performance considering that there was no effort to derive a dynamic mechanistic
model or to identify an approximate Hammerstein model. This was valid since
the current system presents fast dynamics due to small material holdup inside
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the pipelines, and the assumption of using the static model as an instantaneous
dynamicmodel is fairly acceptable. These results indicate a successful application
of EKF using a static model, even in a drifting disturbance scenario. Therefore,
for fast dynamic modes, a classic RTO framework may be turned into a ROPA by
implementing the staticmodel in an EKF algorithm and removing the steady-state
detection stage. Another benefit of this change is that the EKF algorithm runs
much faster than the classic static data reconciliation and parameter estimation
algorithms commonly employed in classic RTO frameworks, e.g. least-squares
estimation.

Although the computational cost of the algorithm was not evaluated during
the closed-loop experiments, this evaluation was done in a simulated environ-
ment. Table 5.1 presents the average, minimum, and maximum computational
cost in s of the EKF and optimization stages for ROPA and HROPA.

Table 5.1: Computational cost comparison between ROPA and HROPA

Stage
Average
time (s)

Minimum
time (s)

Maximum
time (s)

ROPA - EKF 0.051 0.041 0.125
HROPA - EKF 0.014 0.011 0.034
ROPA - Optimization 0.040 0.037 0.081
HROPA - Optimization 0.042 0.038 0.100

Given the execution period of 10 s, it is safe to say that both ROPA andHROPA
presented a computational cost much lower than the real-time closed-loop re-
quirement. Both approaches present a similar computational cost in terms of
the optimization step, which is expected since they execute the same optimiza-
tion problem. However, we can see that the Hammerstein EKF is 3.6 times faster
than the rigorous model EKF. This can be explained by two reasons; the first is
that the Hammerstein model is a reduced-order model compared to the rigorous
one, presenting a lower number of state variables. The second reason is that the
Hammerstein EKF required fewer sensitivity evaluations compared to the rigor-
ous model, the only sensitivity evaluation needed is in reference to the outputs
and the parameters, while the rigorous model EKF requires the computation of
the states Jacobian matrix.

5.5 Conclusion

This chapter presents an implementation of Real-time Optimization with Persis-
tent Parameter Adaptation (ROPA) using transient data in the absence of a dy-
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namic mechanistic model on a small-scale pilot plant. An approximate dynamic
Hammerstein structure that takes advantage of the available static model replaces
the dynamic mechanistic model in the extended Kalman filter (EKF) module.
This is possible since the Hammerstein structure is compatible with the static
model used for optimization; it preserves the parameters observability from the
static model; and presents fairly accurate dynamics compared to the real plant.

The main contribution of this chapter is proving the concept of Hammerstein
ROPA (HROPA) in a real system. The methodology presents increased potential
applicability to large-scale systems with significantly fewer man-hours effort than
the original ROPAmethodology because it does not require a dynamic mechanis-
tic model. Two HROPA are compared, one using a virtual dynamic matrix identi-
fied using plant data (HROPA1) and another using the static model directly as it
was an instantaneous dynamic model (HROPA2). The results showed that both
HROPA approaches presented slightly lower economic performance than ROPA
but a similar ability to estimate uncertain parameters and obtain similar optimal
input profiles. Nonetheless, the dynamicmodel approximation is not the only fac-
tor that explains the lower economic performance since the EKF tuning and the
experimental conditions also impacted the comparison. Therefore, it is fair to say
that HROPA can produce a similar performance to ROPAwith much less effort in
the dynamic model design stage.

Another contribution was to show that the static model can be directly used
in the EKF algorithms when the system presents fairly fast dynamics. For this
kind of system, there would be no effort to develop amechanistic dynamic model,
and HROPA could be directly applied. For these reasons, we believe that our re-
search improves the applicability of ROPA for systems where developing a dy-
namic model is not economically feasible and establishes the basis for future ap-
plications of HROPA in large-scale systems.

133



Chapter 6

Output Modifier adaptation based on
Gaussian Process: Simultaneous use
in Real-Time Optimization and
Hammerstein NMPC

A version of this chapter was presented at the 20th European Control Conference
(ECC 22).

6.1 Introduction

This chapter further advances the use of GPs inside MA schemes. We propose
a GP-based Output Modifier adaptation (MAy-GP) and compare it to the previ-
ously proposed GP-based Modifier adaptation (MA-GP). The proposed method-
ology also considers trust-region concepts, which increases the algorithm’s ro-
bustness and presents an inherent exploration capability. Also, we expanded the
control methodology proposed byDELOU et al. (2021c) by incorporating away to
deal with model structural uncertainty in the proposed Hammerstein NMPC by
including the correction term from MAy-GP. The benefit of using MAy-GP over
MA-GP comes from the fact that MAy-GP corrects the model output variables
instead of correcting the objective function and constraints of the economic opti-
mization problem. That is, MAy-GP provides a more generic correction capabil-
ity since it acts directly on the system model in contrast with the MA-GP which
provides correction terms specifically for each optimization problem of interest.
Therefore, thesemodel correction terms can be interchangeablewith othermodel-
based techniques, such as process control and observers.

The remainder of the chapter is organized as follows: Section 6.2 provides a
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brief introduction to the MA technique and on GPs; Section 6.3 describes the pro-
posed methodology and the contributions of this chapter; Section 6.4 presents the
results of the application of the proposed methodology to the Williams-Otto re-
actor; and Section 6.4 is the conclusion.

6.2 Preliminaries

6.2.1 Problem Formulation

The plant optimization problem consists of minimizing an economic performance
index in the presence of constraints:

min
u∈U

J (u,yp(u)) (6.1a)

s.t. gi(u,yp(u)) ≤ 0,∀i ∈ I+ng
(6.1b)

inwhich, u ∈ U are the input variables,U is the input freemoving space delimited
by lower and upper bounds U = {u ∈ Rnu : ulb ≤ u ≤ uub}; yp ∈ Rny are
the measured output variables, J : Rnu × Rny → R is the cost function and gi :

Rnu ×Rny → R are the i ∈ I+ng
constraint functions, such that I+ng

= {i : 1, ..., ng}.
In practice, however, Problem 6.1a is unknown since a precise steady-state

input-output map, yp(u) is not available. In fact, we generally have only an ap-
proximate steady-state model that can be represented by the following nonlinear
algebraic equation system in the state-space form:

0 = F(x,u) (6.2a)
y = G(x,u) (6.2b)

in which, x ∈ X are the state variables, such that X = {x ∈ Rnx : xlb ≤ x ≤ xub};
y ∈ Rny are the predicted output variables,F : Rnx×Rnu → Rnx represent the sys-
tem of algebraic equations and G : Rnx×Rnu → Rny represent the output algebraic
equation system. Therefore, the model-based optimization problem, considering
the notation introduced by Equation 6.2, is given by:

min
u∈U,x∈X

J(u,y) (6.3a)

s.t. gi(u,y) ≤ 0,∀i ∈ I+ng
(6.3b)

0 = F(x,u) (6.3c)
y = G(x,u) (6.3d)
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Frequently, the optimal solutions of Problems 6.1a and 6.3 do not match due to
model parameter and/or structural uncertainties, disturbances, and process noise
(MARCHETTI et al., 2016). Therefore, the main goal of RTO is to use online pro-
cess measurements to continuously adapt Problem 6.3 in order to reach plant op-
timality of Problem 6.1a.

6.2.2 Modifier adaptation

InModifier adaptation techniques, modifiers are included in themodel-based op-
timization problem in order to achieve plant necessary conditions of optimality
(NCO) upon convergence. These modifiers can play the role of direct corrections
to the cost and constraint functions, such that:

u∗
k+1 = argmin

u∈U,x∈X
[J + µJ

k ](u,y) (6.4a)

s.t. [gi + µgi
k ](u,y) ≤ 0,∀i ∈ I+ng

(6.4b)
0 = F(x,u) (6.4c)
y = G(x,u) (6.4d)

or indirect corrections applied to the output variables in a way that the modified
outputs affect the cost and constraint functions, that is:

u∗
k+1 = argmin

u∈U,x∈X
J(u,ym) (6.5a)

s.t. gi(u,ym) ≤ 0,∀i ∈ I+ng
(6.5b)

0 = F(x,u) (6.5c)
ym = G(x,u) + µy

k(u) (6.5d)

For a generic function f(·), µf
k is defined as zeroth- and first-order input-affine

corrections, such that:

µf
k := fp(uk)− f(uk) + [∇ufp(uk)−∇uf(uk)]

T u (6.6)

We will refer to the first strategy, described by Problem 6.4, just by the abbre-
viationMA, and to the Output Modifier adaptation byMAy. It can be shown that,
under certain hypotheses and accurate gradient estimation, both MA and MAy
are capable of matching the plant NCO (MARCHETTI et al., 2016). However, the
main drawback of MA and MAy is the gradient estimation from data at every
instant k.
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6.2.3 Gaussian Process Approximation

Given an unknown function f : Rn
u → R and y = f(u) + v, in which v is a

zero-mean white noise with unknown variance σ2, we consider an available N -
sized input-output data set generated by f(·), U := [u1, ...,uN ] ∈ Rnu,N and
y := [y1, ..., yN ]

T ∈ RN . Gaussian process regression is a kernel-based method
that uses all available data to establish a relationship between U and y in order
to approximate the unknown input-output map f(·). Due to its stochastic charac-
teristics, GP differs from most parametric and non-parametric deterministic ap-
proaches in the sense that, at an arbitrary input u, it not only gives an output
estimate but also its uncertainty:

f(u)|U ,y ∼ GP(µf (u), σ
2
f (u)) (6.7)

in which, µf is the posterior mean function and σ2
f is the posterior variance func-

tion computed by:

µf (u) = r(u,U )K(U)−1y + c (6.8)
σ2
f (u) = σ2

n(u)− r(u,U)K(U)−1r(u,U)T (6.9)

in which, Ki,j := k(ui,uj) + σ2
vδi,j,∀(i, j) ∈ 1, ..., N2, δi,j is the Kronecker’s delta

function, c is a constant mean function, r(u,U) := [k(u,u1), ..., k(u,uN)] and
k(·, ·) is the squared-exponential kernel function:

k(u, ū) := σ2
n exp

(
−1

2
(u− ū)TΛ(u− ū)

)
(6.10)

in which, σ2
n is the covariance and Λ := diag(λ1, ..., λnu) is a scaling matrix. The

GP’s hyperparametersΨ := [c, σn, σv, λ1, ..., λnu ]
T are usually estimated by a max-

imum likelihood approach, in which the log-likelihood of the data is:

L := −1

2
ln (|K(U)|)− 1

2
(y − 1c)TK(U)−1(y − 1c) (6.11)

In the context of RTO, the unknown function to be estimated can be the plant
steady-state map, some or all of the optimization constraints, the objective func-
tion, or the mismatch of these functions and an available model (DE AVILA FER-
REIRA et al., 2018). DEL RIO CHANONA et al. (2021) showed that there is en-
hanced reliability in mapping the plant-model mismatch instead of a total model-
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free strategy. We refer to RASMUSSEN and WILLIAMS (2005) for a more in-
depth exposition of GP and its broad range of possibilities in the field of Machine
Learning.

6.3 Methodology

6.3.1 Trust-region MA-GP Scheme

The first to propose the use of GP in the context of MA was DE AVILA FER-
REIRA et al. (2018), here called MA-GP. Later, DEL RIO CHANONA et al.
(2019) expanded the frameworks by introducing the trust-region approach and
how to include GP uncertainty directly into the optimization problem. DEL
RIO CHANONA et al. (2021) expanded the methodology in theoretical terms,
including the concept of Acquisition Functions to promote exploration charac-
teristics to the framework. The main idea is to use GPs to model the mismatch
between the cost and constraint functions separately, such that:

Jp − J ∼ GP(µJ , (σJ)2) (6.12a)
gp,i − gi ∼ GP(µgi , (σgi)2), ∀i ∈ I+ng

(6.12b)

in which, for a generic function f(·) and in the kth iteration of the RTO, µf
k and σf

k

represent the mean and the standard deviation of the GP considering the data set
(Uk, fp(uk)− f(uk)). The trust-region MA-GP problem considering the GP mean
as a higher-order correction term is:

∆u∗
k+1 = argmin

∆u,x∈X
J̃ := [J + µJ

k ](uk +∆u,y) (6.13a)

s.t. g̃i := [gi + µgi
k ](uk +∆u,y) ≤ 0,

∀i ∈ I+ng
(6.13b)

0 = F(x,uk +∆u) (6.13c)
y = G(x,uk +∆u) (6.13d)
||∆u|| ≤ ∆k, (6.13e)
uk +∆u ∈ U (6.13f)

in which, ∆u ∈ Rnu is the vector of input incremental from the last imple-
mented inputs which is a decision variable in the trust-region scheme, ∆k ≥ 0

is the trust-region radius in RTO iteration k and the procedures of updating the
training data set and the trust-region follows the Algorithm 1 described by DEL
RIO CHANONA et al. (2021).
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6.3.2 Proposed Trust-region MAy-GP Scheme

In the present chapter, we proposed to include the GP correction in the indirect
manner of MAy. That is, modeling the mismatch between the output measure-
ments and the model prediction, such that:

yp,i − yi ∼ GP(µyi , (σyi)2), ∀i ∈ I+ny
(6.14)

Therefore, the trust-region MAy-GP problem can be written as:

∆u∗
k+1 = argmin

∆u,x∈X
J̃ := J(uk +∆u, ỹ) (6.15a)

s.t. g̃i := gi(uk +∆u, ỹ) ≤ 0,

∀i ∈ I+ng
(6.15b)

0 = F(x,uk +∆u) (6.15c)
ỹ = G(x,uk +∆u) + µy

k(u) (6.15d)
||∆u|| ≤ ∆k, (6.15e)
uk +∆u ∈ U (6.15f)

in which, ỹ ∈ Rny are the modified output variables and µy
k(u) :=

[µy1
k (u), ..., µ

yny

k (u)]T .
The mainmotivation for doingMAy instead of MA is the flexibility that comes

with the use of the output modifiers. This adaptation can be used not only for op-
timization purposes but also for any model-based techniques, such as controllers
and observers. This will be shown by the formulation of an NMPC with output
modifiers.

6.3.3 Proposed NMPC with GP output modifiers formulation

In the context of HRTO, DELOU et al. (2021c) proposed the use of a Hammerstein
structure to approximate the process dynamic model and enable the use of dy-
namic observers, such as the EKF,without the need to develop a rigorous dynamic
process model based on first-principles. The Hammerstein structure takes advan-
tage of the available static model and combines it with a linear auto-regressive
exogenous (ARX) model to provide approximate dynamics that have to be iden-
tified from plant data. The Hammerstein structure is:

yh
k+1 = Ahyh

k +Bhys(uk) (6.16)

in which, yh
k+1 ∈ Rny is the set of output variables predicted by the Hammerstein
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model at instant k, ys(uk) is the respective steady-state of the output variables
calculated by the available static model represented by Equation 6.2 given by the
inputs at instant k. The dynamic matricesAh andBh := Iny−Ah have dimension
ny × ny and are identified from plant data around a single operating point.

Here, we propose to extend this structure by including the GP correction term,
allowing the Hammerstein model to be applied even in a scenario of structural
uncertainty:

yh
k+1 = Ahyh

k +Bh [ys + µy] (uk) (6.17)

Therefore, the proposed structure represented by Equation 6.17 can be used
for any model-based techniques that require a dynamic model, such as predictive
controllers and observers. Even for methods that require successive linearization,
this model is still handy since the static model can be linearized by an Automatic
Differentiation framework and the GP presents an analytical derivative.

The following optimization problem represents the proposed infinite-horizon
NMPC, which uses the nonlinear Hammerstein structure modified by the MAy-
GP regressor as a predictive model and the trust region provided by the RTO.

min
∆u

N−1∑
j=1

(yk+j − ysp
k )TWy(yk+j − ysp

k )+

N−1∑
j=0

(uk+j − utg
k )

TWu(uk+j − utg
k )+

N−1∑
j=0

∆uT
k+jW∆u∆uk+j + yT

k+NPyk+N (6.18a)

s.t. ∀j ∈ [1, 2, ..., N − 1]

yh
k+j = Ahyh

k+j−1 +Bh [ys + µy] (uk+j) (6.18b)
yh
k = yN

k (6.18c)
||uk+j − utg

k || ≤ ∆k (6.18d)
uk+j ∈ U (6.18e)

in which, N is the control horizon, utg
k := uk + ∆u∗

k+1 are the input targets and
ysp
k := [ys + µy] (utg

k ) is the output setpoints calculated by the RTO, and ym
k is

the vector of measured output variables; Wy, Wu and W∆u are diagonal positive
semidefinite weight matrices for the outputs, inputs and input variations, respec-
tively; P is the terminal cost calculated by a Lyapunov equation, see DELOU et al.
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(2021c), which is possible since the nonlinear model is affine with the states and
matrix Ah is forced to be stable at the identification stage.

6.4 Case Study: Williams-Otto Reactor

TheWilliams-Otto reactor problem is a commonly used system to assessMA tech-
niques due to the presence of two models with structural differences, one to em-
ulate the plant and the other to be used as the model. The plant reaction system
comprises the following equations:

A+B
k1−→ C (6.19a)

B + C
k2−→ P + E (6.19b)

C + P
k3−→ G (6.19c)

It consists of a continuous stirred-tank reactor (CSTR), in which reactants A
and B are fed with mass flowrates FA and FB and reactor temperature TR. The
main goal is to produce components P and E with byproduct G. In the plant
reaction system, there is still an intermediate component C.

To characterize the structural plant-model mismatch, the model reaction sys-
tem does not include the intermediate component C nor its composition is mea-
sured. The two reactions of the model are:

A+ 2B
k∗1−→ P + E (6.20a)

A+B + P
k∗2−→ G (6.20b)

The complete mass balance equations and parameter values for the plant and
model are well detailed in ZHANG and FRASER FORBES (2000). The original
optimization problem consists of maximizing a profit function with FB and TR

as decision variables and constraints on the mass fractions of A and G. It can be
mathematically expressed as:

min
FA,TR,x

J := (1043.38wP + 20.92wE)(FA + FB)

− 79.23FA − 118.34FB (6.21a)
s.t. 0 = F(x,u) (6.21b)

g1 := wA − 0.12 ≤ 0 (6.21c)
g2 := wG − 0.08 ≤ 0 (6.21d)
FB ∈ [4, 7], (6.21e)
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TR ∈ [70, 100] (6.21f)

in which, x := [wA, wB, wE, wP , wG]
T is the state vector, function F represents the

model system of equations given by ZHANG and FRASER FORBES (2000) and
u := [FB, TR]

T .
In order to present results compatible with the work of

DEL RIO CHANONA et al. (2021), the state vector was considered fully mea-
sured with an additive white noise with a standard deviation of 0.0005, and the
RTO objective function was also measured with an additive white noise with a
standard deviation of 0.5.

6.4.1 Comparison between MA-GP and MAy-GP

The trust-region algorithm is presented by DEL RIO CHANONA et al. (2021) and
the parameters considered were: ∆0 = 0.25, ∆max = 0.7, η1 = 0.2, η2 = 0.7,
γred = 0.8 and γinc = 1.2.

Figure 6.1 shows the comparison between the proposedMAy-GP, MA-GP, and
noMA. BothMA-GP andMAy-GP present a similar behavior, preserving the abil-
ity to drive the plant to its true optimum. The result of MA-GP is compatible with
DEL RIO CHANONA et al. (2021). The approach where no MA was used is only
capable of driving the plant towards the model optimum, in this case study, the
objective function value of the model optimum is quite near the plant optimum,
but the difference is quite visible in Figure 6.1(d) analyzing the location of the
inputs.
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Figure 6.1: 20 RTO iterations for 30 noise realizations. The red dots are initial GP
training points. Green triangles are the last iteration of each RTO run. Black lines
are the constraint limits and the black star is the plant optimum.

All three approaches presented a fair variability. Variability in the casewith no
MA is explained only by measurement noise, that is the reason it is significantly
inferior to the other two approaches. InMAy-GP andMA-GP, measurement noise
is also responsible for a variation in the GP that is trained at each RTO iteration.
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That is why its variability is significantly higher. This effect combined with the
trust-region strategy are responsible for inserting a forced exploration effect on
the GP training process, even though no extra exploration mechanism was added
to the problem.

The last iterations of each RTO run inMAy-GP andMA-GP are spread between
the model optimum and the plant optimum following the constraint border. To
have a better visualization of these points, they were plotted in a histogram that
can be visualized in Figure 6.2.

From the histogram chart, it is possible to see that, although some points are
spread, most of them are located at or around the plant optimum in bothMAy-GP
and MA-GP. Therefore, MAy-GP presents similar potential as MA-GP in order to
drive the plant towards its true optimal point.

Figure 6.2: Histogram of the last iteration point of the 30 noise realization runs.
The solution frequency axis shows howmany solutions of the 30-noise realization
runs stayed between each objective band.

6.4.2 NMPC with GP output modifiers

Figure 6.3 illustrates the dynamic evolution of the RTO objective value and the
manipulated variables for two NMPC architectures, one considering GP output
modifiers in the control and optimization layers, labeled as MAy-GP NMPC, and
another considering only GP optimization modifiers, labeled MA-GP NMPC.

The NMPC tuning parameters considered were: N = 3, Wy = Iny , Wu = 0nu
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Figure 6.3: Dynamic evolution of the RTOobjective function, and themanipulated
variables, FB and TR.

andW∆u = diag([10−1 10−2]T ) , for bothMAy-GPNMPC andMA-GPNMPC. The
dynamic matrixAh was identified around a single operating point far from plant
and model optima. The output setpoints and input targets were calculated by the
RTO at 60 sampling instants period with a sampling time of 1min.

The Hammerstein MAy-GP NMPC fairly drives the plant toward its optimal
condition even though the predicted model used describes only a linear approx-
imation of the dynamics with a structural mismatch in the static portion. This is
made possible due to the GP correction terms added to the Hammerstein model
output variables. This observation is supported by the fact thatHammersteinMA-
GP NMPC is unable to drive the plant towards its true optimum due to the mis-
match between the models of the control and optimization layers, showing that
including GP correction terms only in the optimization problem is not enough to
guarantee optimal operation. From another perspective, if MA-GP were chosen
to be used in the optimization layer and MAy-GP in the control layer, the result
would be practically the same as shown for MAy-GP NMPC, with only the addi-
tional effort of having to identify different modifiers for each layer.

Figure 6.4 shows the RTO objective function map over the manipulated vari-
ables for MAy-GP NMPC and MA-GP NMPC. It is possible to see the evolution
of each NMPC iteration and the evolution of the trust regions. MAy-GP can fairly
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seek the true plant optimum, keeping the system around itmost of the time, which
can be observed by the darker blue clouds, but MA-GP is unable to reach the true
plant optimum, driving the system only towards a neighborhood of the model
optimum.

Figure 6.4: MAy-GP and Hammerstein NMPC iterations with trust regions evo-
lution. The red dots are initial GP training points. Green triangles are the RTO
solutions accepted by the trust-region algorithm and the black star is the plant
optimum.

It is important to highlight that the RTO optimal input solution is not passed
to the NMPC as targets, since the input weights are zero. This way, it is pos-
sible to assure that the MAy-GP NMPC tracks the optimal solution due to its
great ability to predict the plant outputs due to the output GP corrections. Addi-
tionally, as the constraints are only applied in the steady-state optimization prob-
lem (Equation 6.21), in terms of system dynamics, it can evolve to unfeasible re-
gions. The RTO solutions are within the plant feasible region, except for solution
[FB, TR] = [4.8, 83.7].

6.5 Conclusion

This chapter proposes an output Modifier adaptation based on Gaussian Process
correction terms using the trust-region algorithm. The appealing aspect of using
output MA instead of the classic MA is that the correction terms are interchange-
able between several model-based techniques, such as controller and observers. It
is shown that the performance of MA-GP andMAy-GP are similar, preserving the
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ability to drive the plant towards its optimum even with a structural plant-model
mismatch. We also propose a Hammerstein NMPC that can take advantage of
the MAy-GP correction terms on its predictive model. It is shown that the NMPC
using MAy-GP is able to drive the plant toward its optimal condition.
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Chapter 7

A Comparison Between Process
Control Strategies: Reinforcement
Learning with RBFs and NMPC
Coupled with EKF

A shorter version of this chapter was presented in the 23rd Brazilian Congress
of Chemical Engineering (COBEQ), 2021, Gramado, Brazil, and published in the
"Anais do 23° Congresso Brasileiro de Engenharia Química" ISSN: 2178-5600 (pa-
per number 143150). Also, a version of this chapter was published in the Brazilian
Journal of Chemical Engineering, June 2023 (DELOU et al., 2023a).

7.1 Introduction

In the past few decades, the process industry has experienced a large increase in
automation and data acquisition systems. Consequently, acquiring good quality
and reliable data becomesmore accessible, anddata-based reinforcement learning
(RL) methodologies become more susceptible to application. In an RL problem,
an agent learns to realize a specific task by direct interaction with its environment
with no supervision (SUTTON and BARTO, 2018b).

Another incentive for the application of RLmethods arises from the drawbacks
of classical model-based control. Most applications of model predictive control
(MPC) methods in industry still rely on linear models (YU-GENG et al., 2013),
which fail to represent many chemical processes. The application of nonlinear
MPC (NMPC) methodologies is progressing but still suffers from the following
disadvantages: they require a nonlinear process model that may be too laborious
to obtain, solving the NMPC optimization problem may be too computationally
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demanding for online implementation, and the process degradation with time
imposes that the model should be periodically updated to stay reliable, requiring
the implementation of an adaptive mechanism.

For the implementation of RL techniques in a real process, two approaches are
proposed in SHIN et al. (2019a):

• The integration of RL and MPC in a unique framework to combine the ben-
efits of both techniques.

• The direct substitution of current process control technologies with RL.

The latter is considered in this chapter. In that case, the training of the agent
through interaction with the real system is not acceptable as it would lead to un-
productive and unsafe operation for a great amount of time. That is the reason
why a two-step approach needs to be considered for the implementation of RL
techniques in process control: In the first step, a simulated environment together
with real process data, if available, are used for training to obtain a good enough
controller for online implementation. In the second step, the controller obtained
in the first step is calibrated in the real process.

An RL actor-critic-based controller using linear combinations of RBFs for the
value function and policy approximations is then proposed for the control and
optimization of the Van de Vusse (VdV) reactor, a challenging benchmark well-
known for its nonlinear dynamics and change of the sign of the process gain. A
sensitivity analysis on some of the training parameters is done to guide the train-
ing process, and the performance of the obtained RL controller is compared with
an NMPC coupled with an extended Kalman filter (EKF). This latter controller is
used as a reference given its good performance in mixing optimization and refer-
ence tracking, and in handling unmeasured disturbances. Note that in CASSOL
et al. (2018b), the authors also compared the performance of an RL-based con-
troller with an NMPC controller for the control and optimization of the VdV re-
actor. However, a value-based algorithm was used for training, a neural network
was used to approximate the value function, and its performancewas compared to
an NMPC controller for which no state estimation mechanism was implemented
to deal with unmeasured disturbances.

The remainder of this chapter is organized as follows: In Section 7.2, the RL-
based controller using linear combinations of RBFs for the policy and value func-
tion approximations is described. In Section 7.3, the NMPC controller coupled
with EKF used as a reference is presented. In Section 7.4, the CSTR with the Van
de Vusse reaction used as a benchmark and the corresponding control problem
are introduced. In Section 7.5, a sensitivity analysis on some of the parameters
used for the RL controller training is done, and the performances of the RL-based
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and NMPC controllers are compared. In Section 7.6, the chapter is concluded.
Finally, an in-depth description of the RL problem is presented in Appendix D.

7.2 The RL-RBF controller

In the application of RL techniques to process control, the agent is the controller,
and the process the environment it interacts with. This section presents the proce-
dure used for the training of the RL-RBF controller proposed in this work, where
the episodic actor-critic algorithm with eligibility traces described in SUTTON
and BARTO (2018b) is implemented. Linear combinations of Gaussian RBFs are
used to approximate both value function and policy. The value function is up-
dated online with the use of the backward view TD(λ) method presented in sec-
tion D adapted to continuousMDPs, and the policy is updated using the gradient
ascent approach towards the value function maximization.

Consider a process represented by a state vector s of ns variables and an action
vector a of na variables manipulated by the RL-RBF controller. The value function
and policy associated with a state s ∈ Rns are given by Equation 7.1 and 7.2,
respectively.

V (s) = θT
VΦ(s) (7.1)

π(s) = ΘT
πΦ(s) (7.2)

in which Φ(s) represents a vector of nc state-dependent Gaussian RBFs defined
by Equation 7.3, θV ∈ Rnc and Θπ ∈ Rnc×na are the learned parameters for the
value function and the policy, respectively.

Φ(s) = e−∥s−c∥2W (7.3)

in which W ∈ Rns×ns is used to adjust the width of the Gaussian bell-shaped
functions, and c is the vector of nc Gaussian RBF centers considered in the state
space.

With a continuous state space, an eligibility trace cannot be assigned to each
state. Instead, a short-termmemory vector z ∈ Rnc initialized to 0 at the beginning
of each learning episode parallels the weight vector θV ∈ Rnc . The idea behind
this mechanism is that when a component of θV participates in producing a new
estimate of the value function, the corresponding component of z is increased by
the corresponding element of Φ(s) before it begins to fade away. Learning will
then occur in that component of θV if a nonzero TD error occurs before the trace
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falls back to zero (SUTTON and BARTO, 2018b).
Before training, the policy and value function parameters, respectivelyΘπ and

θV , are initialized. At the beginning of each training episode, the eligibility trace
z ∈ Rnc is initialized to 0, and the state is initialized. At each episode step, the
actual state s is communicated to the actor that computes the action s to be im-
plemented in the environment according to Equation 7.4.

a = ΘT
πΦ(s) + ν (7.4)

in which ν ∈ Rna is an exploration noise sampled from a zero mean and variance
σ2 normal probability distribution. The variance σ2 decreases as the agent is being
trained, as shown in Equation 7.5.

σ2 =
N0

N0 +N(s)
(7.5)

inwhichN(s) is the number of times the closest center to s has been visited. Upon
action a the environment evolves to the next state s′ ∈ Rns . From the immediate
reward r ∈ R obtained from this transition and Equation 7.1, the TD error defined
in Equation D.12 is computed using Equation 7.6.

δ = r + γθT
VΦ(s′)− θT

VΦ(s) (7.6)

And the eligibility trace is updated through Equation 7.7.

z ← γλz +Φ(s) (7.7)

Then, the critic and the actor update θV and Θπ, respectively, using Equation
7.8.

θV ← θV + αV zδ

Θπ ← Θπ + απΦ(s)δ(a−ΘT
πΦ(s))T

(7.8)

in which αV ∈ R and απ ∈ R are the learning rates for θV and Θπ, respectively.
Finally, s′ becomes the new actual state s, and the above procedure can be im-
plemented again. The RL-RBF controller training algorithm was developed in
MATLAB R20215a.
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7.3 The NMPC-EKF controller

An NMPC controller coupled with EKF for state estimation is considered a refer-
ence given its good performance in mixing optimization and reference tracking,
and in handling unmeasured disturbances. Consider a process with nx states, ny
controlled outputs, and numanipulated inputs. A model for this process is given
in Equation 7.9.

xk+1 = f(xk,uk)

yk = h(xk,uk)
(7.9)

in which xk ∈ Rnx , uk ∈ Rnu , and yk ∈ Rny represent the process state, manipu-
lated, and controlled variables at time instant k, respectively.

In the NMPC framework, from the current state estimation x̂k ∈ Rnx , the se-
quence of N control moves represented by the vector∆u ∈ RN×nu that optimizes
the open-loop prediction of the L future states obtained through the integration
of the process model defined in Equation 7.9 is computed, whereN and L are the
control and prediction horizons, respectively. According to the receding horizon
control paradigm, only the first input is implemented in the process until the next
sampling time is reached. Then, the new state is estimated, and a new control
sequence is calculated.

The optimization problem solved at each sampling time k is defined in Equa-
tion 7.10.

min
∆u

L∑
i=1

∥yk+i + ϵk − ySP
k+i∥Wy

2
+

N−1∑
i=0

∥∆uk+i∥W∆u

2

s.t. xk+j = f(x̂k+j−1,uk+j−1)

yk+j = h(x̂k+j−1,uk+j−1)

xk = x̂k

−∆umax < ∆uk+j < ∆umax

j = 1, 2, ..., L

(7.10)

where ϵk = yk − ŷk represents the mismatch between the measurement and esti-
mate of the plant output,Wy ∈ Rny×ny andW∆u ∈ Rnu×nu are weighing matrices,
and ∆umax ∈ Rnu is the control move upper limit.

In this work, the states are estimated through the use of an Extended Kalman
Filter, adapted to systems with nonlinear dynamics. At time instant k+1 the state
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is estimated by following the steps shown in Equation 7.11 (SIMON, 2006a):

Ak =
df

dxk

(x̂k,uk)

Ck =
dh

dxk

(x̂k)

Kk = PkC
T
k (CkPkC

T
k +Rk)

−1

x̂k+1 = f(x̂k,uk) +Kk[yk − h(x̂k)]

Pk+1 = Ak(I −KkCk)PkA
T
k +Qk

(7.11)

where Kk ∈ Rnx×ny is the Kalman Filter gain, Pk ∈ Rnx×nx is the estimation-error
covariance, Qk ∈ Rnx×nx is the covariance of the process noise, and Rk ∈ Rny×ny

is the covariance of the measurement noise.
The NMPC algorithm was developed in CasADi (ANDERSSON et al., 2019)

with the method of polynomial approximation in finite elements (BIEGLER,
1984b) for the profiles of states and manipulated variables in time.

7.4 The Van de Vusse reactor Benchmark

7.4.1 The process

The performance of the proposed controller is tested through the simulation of
the control and optimization of a non-isothermal CSTR, with the Van de Vusse
reaction, as described in KLATT and ENGELL (1998). The reaction consists of
the synthesis of cyclopentenol (B) from cyclopentadiene (A) by acid-catalyzed
electrophilic addition of water in a dilute solution. Due to the strong reactivity of
both A and B, dicyclopentadiene (D) is produced by the Diels-Alder reaction as a
side product and cyclopentanediol (C) as a consecutive product by the addition of
anotherwatermolecule. The corresponding reactions are represented in Equation
7.12.

A
k1−→ B

k2−→ C 2A
k3−→ D (7.12)

It is usually desirable to maximize the production of component B while min-
imizing the production of C and D. The system dynamics is modeled by the mass
balances of A and B, and the energy balance represented by Equations 7.13, 7.14,
and 7.15, respectively.

dCA

dt
=

F

V
(CA,in − CA)− k1(T )CA − k3(T )C

2
A (7.13)
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dCB

dt
=

F

V
(CB,in − CB) + k1(T )CA − k2(T )CB (7.14)

dT

dt
=

1

ρcp

[
k1(T )CA(−∆H1) + k2(T )CB(−∆H2) + k3(T )C

2
A(−∆H3)

]
+
F

V
(Tin − T ) +

kwAR

ρcpV
(Tk − T )

(7.15)

where the rate constants ki(T ) are given by the Arrhenius law in Equation 7.16.

ki(T ) = ki,0 e
(Ei/T ) (7.16)

Systemparameters can be found in TRIERWEILER (1997), and are reproduced
in Table 7.1.

Table 7.1: Van de Vusse reactor parameters

Parameter Value Unit
k1,0 1.287× 1012 h−1

k2,0 1.287× 1012 h−1

k3,0 9.043× 109 L/mol/h
E1 −9758.3 K
E2 −9758.3 K
E3 −8560 K
∆H1 4.2 kJ/mol
∆H2 −11 kJ/mol
∆H3 −41.85 kJ/mol
V 10 L
Cp 3.01 kJ/kg/K
ρ 0.932 kg/L
AR 0.215 m2

kW 4032 kJm−2/h/K

The Van de Vusse CSTR system is a very well-known benchmark for process
system engineering case studies. This process was chosen due to its nonlinear
characteristics, and in particular the change of the sign of the gain of the product
concentration CB with respect to inlet flow F as illustrated in Figure 7.1. The
location of the inversion depends on the reactor temperature T , which in turn is
controlled by manipulating the cooling jacket temperature Tk.
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Figure 7.1: Open-loop non-minimal phase response of the Van de Vusse CSTR.

7.4.2 Definition of the control problem

The control objective is to track a setpoint for FB at F SP
B = 2000mol/hwhile max-

imizing CB by manipulating the inlet flow F , and the cooling jacket temperature
Tk. The performance of the controllers of this work are compared using a 120-
hour simulation with a sampling time set to ∆t = 0.01h. At the beginning of the
simulation, the process is at the steady state defined by the conditions shown in
Table 7.2.

Table 7.2: Initial conditions

Variable Value Unit
CA,in 5.1 mol/L
CB,in 0 mol/L
Tin 100 °C
F 1000 L/h
TK 100 °C
CA 3.856 mol/L
CB 0.6561 mol/L
T 119.488 °C

The inlet reagent concentrationsCA,in andCB,in are fixed during the simulation
while Tin is changed to 90°C at t = 60h, representing an unmeasured disturbance.
Finally, the manipulated variable increments∆F , and∆Tk at each sampling time
are limited to ±1.2 L/h, and ±0.48 K, respectively.
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7.5 Results

7.5.1 Training of the RL-RBF Controller

In this work, s = [CB, CA, T, F, TK ]
T is the vector of states representing the pro-

cess, and a = [∆F,∆TK ] is the vector of action variables defined as increments of
the process manipulated variables. In any RL problem, the choice of the reward
function is very important as it is the only element through which the user can
communicate to the agent what it has to accomplish. In this work, the reward
function is defined in Equation 7.17.

rk =| FB(k − 1)− F SP
B | − | FB(k)− F SP

B | +

w(CB(k)− CB(k − 1))[1− tanh (| FB(k)− F SP
B | /ϵ)]

(7.17)

The first two terms of the equation reward the decrease of the distance between
FB and its setpoint within the sampling time, and the last term rewards the in-
crease on CB, aiming for its maximization. The weight w is a scaling parameter,
and the hyperbolic function works as a gradual activator of the optimization term
when FB reaches its setpoint, with the parameter ϵ controlling the gradient of this
function. The main difference between this approach to the one used by CASSOL
et al. (2018b) is that the authors proposed a logistic activator function which is
very soft around its maximum, while the hyperbolic function is stiffer.

For the value function and policy approximations, the positions of the Gaus-
sian RBF center for each state variable is presented in Table 7.3. ThematrixW that

Table 7.3: Chosen centers for each state variable.

State Variable Centers Unit
CB [0 0.2 0.4 0.6 0.8 1 1.2]T mol/L
CA [0 1.7 3.4 5.1]T mol/L
T [270 350 430 510]T K
F [500 1000 1500 2000 2500]T L/h
Tk [270 785 1300]T K

defines the width of the RBFs was set to W = diag([[100, 1.3841, 6.25 × 10−4, 4 ×
10−6, 1.5082× 10−5]).

The tuning parameter values associated with the actor-critic algorithm pre-
sented in D are presented in Table 7.4.

Table 7.4: RL tuning parameters values.

γ λ αV απ,1 απ,2

0.9 0.5 1 · 10−1 5 · 10−2 5 · 10−2
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In the training stage, episodes of 6000 sampling times are considered. The inlet
properties are fixed at CA,in = 5.1 mol/L, CB,in = 0 mol/L, and Tin = 100°C. At
each episode, the initial values for F and Tk are sampled from a uniform distri-
bution over [500, 2500] L/h and [23, 723] °C and are used to compute the episode’s
initial steady state.

In the following sections, a sensitivity analysis on the number of training
episodes Nep (section 7.5.1.1), the exploration through parameter N0 (section
7.5.1.2), the activation function width used in the reward through parameter ϵ
(section 7.5.1.3), and the weight on CB maximization w also used in the reward
function (section 7.5.1.4) is done to guide the RL-RBF controller training. The
default values for these parameters are shown in Table 7.5

Table 7.5: Default training parameters for the sensitivity analysis

Nep N0 ϵ w
50 100000 150 2500

7.5.1.1 Effect of the number of training episodes

The performances of RL-RBF controllers trained with 10, 30, 50, and 70 episodes
are shown in Figure 7.2. It can be observed that the performance of the controller
improves with the number of episodes used for training. The more the controller
interacts with the simulated process the more data, and consequently, the more
information is available for training. With ten episodes, the setpoint for FB is not
even reached within the simulation time. From 30 episodes on, the performance
becomes satisfactory as FB reaches its setpoint, and concentration CB is maxi-
mized. The best performances are obtained with 50 and 70 episodes with faster
responses than with 30 episodes. The small performance difference observed be-
tween these two simulations indicates that there is several episodes from which
the controller stops learning.
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Figure 7.2: Influence of the number of episodes on training.

7.5.1.2 Effect of the training exploration

The influence of exploration on the performance of the RL-RBF controller can be
observed in Figure 7.3, where the constant N0 used in Equation 7.5 to define the
decrease rate of the exploration noise variance σ2 is increased from 103 to 109. The
higher this value, the slower σ2 decreases, and themore the state space is explored
by the controller. It can be observed that the higher the exploration, the better the
performance. When exploration is the lowest (N0 = 103), the controller does not
manage to bring FB to its setpoint within the simulation time, clearly indicating
that more exploration is needed. From N0 = 105 on, satisfactory responses are
observed. The best performance is obtained for the intermediate value of N0 =

106. With N0 = 109, exploration has not been decreased enough at the end of the
training to allow the convergence to the best policy, as commented in Appendix
D. To obtain at least as good results as with N0 = 106, the number of training
episodes would have to be increased to guarantee that exploration has sufficiently
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been reduced at the end of the training.

Figure 7.3: Influence of exploration on training.

7.5.1.3 Effect of the concentration maximization activation function width
used in the reward function

The influence of the activation function width ϵ used in the reward defined in
Equation 7.17 on the performance of the RL-RBF controller can be observed in
Figure 7.4. It can be observed that the performance of the RL-RBF controller im-
proves as ϵ increases. The results are very similar for ϵ = 150 and ϵ = 300, indi-
cating that the performance stops getting better from a certain value of ϵ. Also,
the very poor performance obtained with ϵ = 5 shows that an excessively stiff ac-
tivation function makes the maximization of CB too difficult with this number of
episodes.
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Figure 7.4: Influence of the concentration maximization activation function width
used in the reward function.

7.5.1.4 Effect of the weight on concentrationmaximization in the reward func-
tion

The influence of the weight on CB maximization w in the reward function defined
in Equation 7.17 on the performance of the RL-RBF controller can be observed in
Figure 7.5. When it is too low, as for the case where w = 0.01, the maximization
of B is clearly neglected, and CB is not maximized. On the contrary, when it is too
high, as for the case where w = 10000, too much weight is put on the maximiza-
tion, and an offset is obtained for FB. An optimum then exists between these two
values and the best performance was obtained for w = 2500.
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Figure 7.5: Effect of theweight on concentrationmaximization in the reward func-
tion.

7.5.2 NMPC-EKF controller settings

In the control optimization problem defined in Equation 7.10, the vector of states
variables is x = [CA, CB, T ]

T , the vector of controlled variables is y = [CB, FB]
T ,

and the vector of manipulated variables is u = [F, Tk]
T . The setpoint for y is set

to ySP = [2000, 1, 5]T where 1, 5 is an unreachable upper value for CB meant to
allow its optimization. The weighing matrices were fixed at Wy = diag([1, 10−5])

andW∆u = diag([5× 10−9, 10−5]). The prediction horizon is set at L = 12, and the
control horizon at N = 3. Finally, the upper bound on the control move effort is
set at ∆umax = [1.2, 0, 48]T .

For the state estimation using EKF, the covariance of the process noise Q and
the covariance of themeasurement noiseRwere set to diag([10−4, 10−4, 10−4]) and
diag([10, 10, 4000]), respectively. The estimation-error covariance Pk is initialized
at diag([1000, 1000, 1000]).

161



7.5.3 Performance comparison between the NMPC-EKF and the
RL-RBF controllers

In this section, the performances of the NMPC-EKF controller defined in Section
7.3 and the RL-RBF controller presented in Section 7.2 are compared. The training
of the RL-RBF controller was guided by the sensitivity analysis done through Sec-
tions 7.5.1.1, 7.5.1.2, 7.5.1.3, and 7.5.1.4. The corresponding training parameters
that were chosen for the RL-RBF controller are gathered in Table 7.6. The results

Table 7.6: Training parameters for the RL-RBF controller

Nep N0 ϵ w
500 108 150 2500

of the comparison are presented in Figure 7.6.
It can be observed that both controllers successfully manage to bring FB to its

setpoint, and CB to its maximum. The performances are also similar. While, in
the first part of the simulation, the NMPC-EKF controller presents a slightly faster
response, the RL-RBF controller is better at compensating for the disturbance on
the inlet temperature introduced at sampling time 6000. This result shows that
for the control and optimization of the VdV reactor, the use of linear combina-
tions of Radial Basis Functions to represent the value function, and the policy in
an RL algorithm is a good alternative to neural networks with the advantage of
guaranteeing the convergence of the algorithm.
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Figure 7.6: Performance comparison between RL with RBF approximation and
NMPC.

7.6 Conclusion

In this work, the use of linear combinations of RBFs for policy and value function
approximations in an RL actor-critic-based controller was assessed. A sensitivity
analysis of some of the training parameters was done to guide the controller train-
ing process. It was shown that: exploration can always be increased as long as the
number of episodes is increased accordingly; the concentration maximization ac-
tivation function cannot be excessively stiff; and there is an optimal intermediate
value for the weight on the concentration maximization in the reward function.
The proposed RL-RBF controller was compared to an NMPC coupled with EKF
for the control and optimization of the VdV reactor. It was shown that both con-
trollers successfully managed to attain the control objectives under unmeasured
disturbances with minor differences in performance. This study showed that the
use of linear combinations of RBFs for policy and value function approximations
is a successful alternative to neural networks, with the advantage of guaranteeing
the convergence of the RL algorithm.

163



Chapter 8

Final Remarks

The present thesis explores the application of the HRTO methodology in the ab-
sence of a rigorous dynamic process model. An adequate dynamic approximate
model that benefits from the available static model was proposed in order to en-
able the use of HRTO with low effort in current RTO methodologies.

Initially, in Chapter 3, several HRTO architectureswere proposed using the dy-
namic approximate model. It was shown the proposed methodology preserved
the observability characteristics of the static model and resulted in an adequate
dynamic model to be used in an RTO framework. The proposed architectures ex-
plored a fixed dynamic model and two adaptive schemes, one with simultaneous
estimation of the process parameter and disturbances together with the parame-
ters of the dynamicmodel in the EKF formulation, and the other that separates the
estimation of the process parameter and disturbances in the EKF formulation and
the parameters of the dynamic model in a RELS approach. However, the most
adequate approach was the one using a fixed model, since the proposed adap-
tation strategies presented no mechanism to prevent the arising of unstable and
undesirable oscillatory modes.

In Chapter 4, a new and complete HRTO and control framework was pro-
posed. The strategy relied on the previously proposed dynamic approximation
model used in the EKF formulation and a new Self-Optimizing Infinite Horizon
MPC formulation. The following characteristics of the proposed framework are
highlighted:

• Use of HRTO in the absence of a reliable first-principles dynamic model;

• Use of stabilizing constraint in the identification stage to ensure the stability
of the Hammerstein model structure;

• Inclusion of the economic objectives into the controller layer through the
self-optimizing variables, which allows a more reliable and robust control
layer;
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• New proposition for naturally handling both types of active set changes:
when a new constraint becomes active and when an active constraint be-
comes inactive;

• No wait time between optimization runs guarantees that the set of active
constraints is always known;

• There is full compatibility between the models used in the observer, con-
troller, and optimizer.

The results presented in the Williams-Otto reactor in the presence of parametric
uncertainty showed that the proposed framework outperformed the framework
that uses SSD in a classic RTO formulation. However, both frameworks presented
the same ability to drive the plant to its optimum at a steady state. Moreover, the
proposed framework presented improved economics, especially in a scenario of
change in the active constraints.

In Chapter 5, we implemented two simplified versions of the previously pro-
posed Hammerstein HRTO/ROPA to a lab-scale experimental rig that emulates a
subsea oil well network. The first version considers the originally proposed Ham-
merstein model, where a prior identification step is performed based on plant
data. And, the secondversion explores the assumption that the staticmodel can be
used directly in the EKF algorithm when the plant dynamics are sufficiently fast.
In this case, the static model is used as an instantaneous dynamic model. Some
general guidelines for the Hammerstein dynamic matrix practical identification
are provided. The performance of both HROPAs was compared to a previous im-
plementation of ROPA in the same experimental rig under the same disturbance
scenario. It was shown that both HROPAs presented similar operational profiles
to the classic ROPA, preserving the ability to observe the uncertain parameters,
but with an expected slightly lower economic performance. The lower economic
performance is justified not only by the use of dynamic approximations but also
by the lack of EKF fine-tuning and changes to the experimental conditions. There-
fore, it is fair to say that HROPA can produce a similar performance to ROPAwith
a considerably lower effort in the dynamic model design stage, establishing the
basis for future applications of HROPA in large-scale systems

In Chapter 6, the assumption of an available adequate static model was
dropped, and structural plant-model mismatch is explored. The previously pro-
posedMA-GPwas extended by proposing an outputMA-GP (MAy-GP)method-
ology using trust-region concepts. Both of the techniques, MA-GP and MAy-GP,
present the ability to drive the plant towards its true optimal point even in the
presence of structural uncertainty, but MAy-GP presents the benefit of having
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interchangeable correction terms to other model-based techniques, such as con-
trollers and observer, while the MA-GP correction terms are designed only for a
single optimization problem. Therefore, MAy-GP is a more flexible approach due
to the fact that it corrects themodel outputs instead of correcting specific objective
function and constraints. Moreover, we propose a new NMPC formulation based
on the approximate Hammerstein dynamic model taking advantage of the MAy-
GP correction terms on the static part of its predictive model. It was shown that
the framework considering the MAy-GP correction terms in both controllers and
optimization layers was able to drive the plant towards its true optimal, but the
one considering MA-GP in the optimization layer and no correction in the control
layer was not capable. The proposed framework presented a way to deal with the
static model when there is a considerable plant-model mismatch. The Hammer-
stein framework is used in the control layer to enable full compatibility between
optimization and control. However, the framework did not include a way to esti-
mate the MAy-GP correction terms dynamically, therefore SSD is still required to
update the correction terms. A unified HRTO with MAy-GP correction terms is
a natural future work since no parametric adaptation was considered simultane-
ously to the modifier adaptation approach.

Finally, Chapter 7 explored the incorporation of the economic goals directly in
a feedback-optimizing control strategy. More specifically, a Reinforcement Learn-
ing approach using a linear combination of RBFs is assessed and compared to the
classic NMPC coupled with EKF methodology in the Van de Vusse case study.
The RFB-based RL is an interesting approach as an alternative to neural-network-
based RL since it can guarantee convergence, while neural networks cannot. How-
ever, neural networks are often more used due to their higher capacity of gener-
alization. A hyperbolic function is proposed as a gradual activator of the opti-
mization term in the reward function. In addition, a sensitivity analysis on some
of the training parameters is presented as guidelines of the actor-critic-RBF-based
RL training approach. It was shown that both RL and NLMPC controllers can
achieve the control and economic goals under unmeasured disturbance operation
scenarios with only minor differences in performance. In the training sensitivity
analysis, it was shown that: the increase in exploration must be accompanied by
an increase in the number of episodes; the concentration maximization activation
function cannot be excessively stiff; and there is an optimal value for the weight
on the concentration maximization in the reward function. Finally, it was shown
that linear combinations of RBFs are a successful alternative to neural networks.
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Chapter 9

Future Work

The present work opened some research fronts for future works, here some are
outlined:

• More detailed dynamic approximations that preserve the ability to converge to
the same steady-state point of the nonlinear static model. For instance, a
structure based on the Volterra series, Wiener series, nonlinear functions,
neural networks, etc. could present a more accurate behavior, although the
identification stage would be more difficult. A generalized structure can be
presented as:

yh
k − ys(u,θ) = F(yh

k−1 − ys(u,θ),yh
k−2 − ys(u,θ), ...) (9.1)

in which any selection function F( · )must converge uniformly to zero:

lim
k→∞
F(yh

k−1 − ys(u,θ),yh
k−2 − ys(u,θ), ...) = 0 (9.2)

therefore, the steady state of the approximate dynamicmodel will match the
steady state of the rigorous static model:

yh
∞ = ys(u,θ) (9.3)

• More advanced adaptation schemes. As previously stressed, a more detailed
dynamic approximation would result in a more difficult identification stage,
where sufficiently-excited data should be available. A linear model would
be enough for several applications, but recursive adaptation approaches
proved to be not suitable due to the arising of undesirable oscillatory and
unstable modes. Therefore, it would be interesting to have a separate adap-
tation layer in a different frequency of the control and optimization layer
to guarantee an accurate dynamic approximation even when simple model
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structures are used.

• Systematic methodology for EKF tuning and initialization: Although EKF was
proposed in the 1960s and there have been several successful applications
and advances in the technology, there is still a lack of systematic methodolo-
gies for tuning and initialization of the observer, which is mainly the cause
whymany practitioners avoidworkingwith EKF. Not tomention that EKF is
the simplest nonlinear Bayesian observer available, this situation is still more
dramatic for more complex Bayesian estimators. Therefore, this is an impor-
tant direction to enable real industrial applications of HRTO. There are some
works in this direction, but they lack further testing and validation, such as
the works of SALAU et al. (2009), SALAU et al. (2014), and SCHNEIDER
and GEORGAKIS (2013).

• Integration between HRTO and SOC. Different criteria can be proposed for re-
moving input variables for each active constraint in the H-matrix reconfigu-
ration algorithm. In addition, the methodology for calculating the H-matrix
only takes the static model into account, therefore the performance during
the transients is not optimal. Another way to calculate the H-matrix to take
the dynamic or the approximate dynamics into account can be further in-
vestigated.

• Different classes of dynamic behavior. A broader investigation should be carried
out to identify other limitations that may hinder some sorts of applications,
for instance, dead time, inverse response in different time scales, inversion
of the gain sign, bifurcations, oscillatory behavior, and the effect of distur-
bances are a matter of interest. It has been shown that unmodeled dead
time could destabilize the HRTO algorithm (CURVELO et al., 2021), but no
strategy to overcome this issue has been proposed yet.

• Structural uncertainty. This work has proposed the use of MAy-GP in the
optimization and control layer. However, the actual proposition does not
cope with a data reconciliation or dynamic observer stage. It is argued in
the literature that problem adaptation algorithms do not need any data rec-
onciliation or model adaptation to drive the plant toward its optimal point,
which is true. However, for real applications, the data reconciliation or dy-
namic observers provide valuable information about the process and instru-
mentation performance. Therefore, a unified framework between problem
adaptation and HRTOwould have greater applicability, but there is no clear
description of how to proceed with this integration, especially with the use
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of GP modifiers. Another interesting front would be how to bring transient
information for the construction of the GP modifiers.

• Plant-wide optimization. The HRTO literature still lacks large-scale system
case studies, all previouswork, has focused only on small-scale benchmarks.
The only real implementation was presented in the current work at a small-
scale experimental rig. These kinds of studies would raise interesting in-
sights and recommendations about possible future applications in real pro-
cess plants.
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Appendix A

Formulation of the terminal weight
of the Self–Optimizing IHMPC

The terminal cost formulation for the InfiniteHorizonMPC that explicitly handles
the self-optimizing variables is presented based on the earlyworks ofMUSKE and
RAWLINGS (1993) and GONZÁLEZ and ODLOAK (2009).

First, we consider only the infinite quadratic portion of the original objective
function of the self-optimizing IHMPC.

Vk =
∞∑
j=1

cTk+jWcck+j (A.1)

The infinite sum of the self-optimizing variables can then be separated into
two by considering the portion untilm− 1 and the infinite portion.

Vk =
m−1∑
j=1

cTk+jWcck+j +
∞∑
j=0

cTk+m+jWcck+m+j (A.2)

Applying the self-optimizing transformation, ck+j = Hyh
k+j , it is possible to re-

turn to the original output variables; and, introducing a new transformed weight
matrix Wy = HTWcH , the self-optimizing infinite objective function becomes:

Vk =
m−1∑
j=1

(yh
k+j)

TWyy
h
k+j +

∞∑
j=0

(yh
k+m+j)

TWyy
h
k+m+j (A.3)

In order to handle the infinite sum, a relation between yh
k+m+j and the terminal

output variables yh
k+m is derived from the predictive model presented in Equation
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4.10, which is:

yh
k+m+j = (Ah)jyh

k+m +

j−1∑
i=0

(Ah)iBhGddk (A.4)

in which, the second term of the above relation will be denoted as Σ, in order
to simplify notation. Substituting it in Vk, the infinite term of objective function
becomes:
∞∑
j=0

[
(Ah)jyh

k+m

]T
Wy(A

h)jyh
k+m +

∞∑
j=0

ΣTWyΣ (A.5)

The second sum of Equation A.5 does not depend on ∆u, so it has only the
role of shifting the optimal value of the objective function. Since it does not affect
the optimal input trajectory, this term can be neglected and removed from the
analysis. With that said, the infinite sum of the objective function can be replaced
by a terminal weight, becoming:

Vk =
m−1∑
j=1

(yh
k+j)

TWyy
h
k+j + (yh

k+m)
TPyh

k+m (A.6)

in which,

P =
∞∑
j=0

[
(Ah)j

]T
Wy(A

h)j (A.7)

It is well known that the recurrence found for the terminal weight results
in a Lyapunov equation by opening the sum in Equation A.7 and calculating
(Ah)TPAh − P , which results in:

(Ah)TPAh − P −Wy −
[
(Ah)∞+1

]T
Wy(A

h)∞+1 = 0 (A.8)

in which, the last term is equal to 0 if matrix Ah is stable. Since, in the present
work, Ah comes from an identification problem where a stability constraint is
added, see Equation 4.4, it is always stable. Returning to the original self-
optimizing weight matrix, the Lyapunov equation assumes the form presented
in Equation 4.20:

(Ah)TPAh − P −HTWcH = 0 (A.9)
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Appendix B

Implementation of the
Self-Optimizing IHMPC as a QP

Frequently, linear MPCs are formulated as QP in order to take advantage of the
highly efficient solvers available to solve this kind of problem. The basic idea is to
rearrange the problem in order to fit into the following problem:

min
x

xTQqp x+ fT
qp x (B.1a)

s.t. Aqpx ≤ bqp (B.1b)

in which, x are the degrees of freedom of the problem, defined as x :=

[(∆u)T , (ρL
y )

T , (ρU
y )

T , (ρL
u)

T , (ρU
u )

T ]T . To start defining the QP components Qqp,
fqp,Aqp and bqp, first we expand the predictive model presented in Equation 4.10
by extend the control variables until a predictive horizon p and the input variables
until a control horizon m:

yh
k+1

yh
k+2...

yh
k+p

 =


CA

CA2

...
CAp

yk +


CB 0 . . . 0

CAB CB . . . 0
... ... . . . ...

CAp−1B CAp−2B . . . CAp−mB




∆uk

∆uk+1

...
∆uk+m−1

+


CD 0 . . . 0

CD CAD . . . 0
... ... . . . ...

CD CAD . . . CAp−1D

dk

(B.2)

Note that, the predictive and control horizons are the same for the infinite hori-
zon MPC, that is p = m. Introducing new notation, Equation B.2 becomes:

yh = Φyk +Θ∆u+Ψdk (B.3)
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The soft constraints are added for all the output variables, in contrast with
GRACIANO et al. (2015), which proposed to define a subset of constrained vari-
ables. So, the constraints of the output variables written in reference to the QP’s
degrees of freedom are:

−Θ∆u− ρL
y ≤ ĨyyL −Φyk −Ψdk (B.4a)

Θ∆u− ρU
y ≤ Φyk +Ψdk − ĨyyU (B.4b)

in which,

Ĩy =


Iny

Iny

...
Iny

 ∈ R(pny)×ny (B.5)

In addition, the soft constraints added to the input variables are:

−M̃∆u− ρL
u ≤ Ĩu(uk−1 − uL) (B.6a)

M̃∆u− ρU
u ≤ Ĩu(uU − uk−1) (B.6b)

in which,

Ĩu =


Inu

Inu

...
Inu

 ∈ R(mnu)×nu (B.7)

and

M̃ =


Inu 0 . . . 0

Inu Inu . . . 0
... ... . . . ...

Inu Inu . . . Inu

 ∈ R(mnu)×(mnu) (B.8)

Therefore, the QP matricesAqp and bqp are:

Aqp =


−Θ −Ipny 0 0 0

Θ 0 −Ipny 0 0

−M̃ 0 0 −Imnu 0

M̃ 0 0 0 −Imnu

 (B.9)
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bqp =


ĨyyL −Φyk −Ψdk

Φyk +Ψdk − ĨyyU

Ĩu(uk−1 − uL)

Ĩu(uU − uk−1)

 (B.10)

The quadratic objective function is implemented as a multi-objective compro-
mise between tracking the setpoints of the self-optimizing variables and penaliz-
ing the movements of the input variables and the violation of the soft constraints,
such that:

Jk = (y − ysp)TW̃y(y − ysp) +∆uTW̃∆u∆u+wT
ρ ρ (B.11)

in which, ρ := [(ρL
y )

T , (ρU
y )

T , (ρL
u)

T , (ρU
u )

T ]T , wρ is the vector of weights for each
slack variables, ysp = [(ysp

k+1)
T , . . . , (ysp

k+p)
T ]T , W̃∆u = diag([W∆u, . . . ,

W∆u]) ∈ R(mnu)×(mnu) and W̃y = diag([Wy, . . . ,Wy,Wy + P ]) ∈ R(mny)×(mny).
Although the self-optimizing variables do not appear explicitly in Equation B.11,
they are naturally handled by the transformed weight matrixWy = HTWcH .

The QP matricesQqp and fqp are:

Qqp =

[
ΘTW̃yΘ+ W̃∆u

0

]
(B.12)

fqp =

 ((Φyk +Ψdk − ysp)TW̃yΘ
)T

wρ

 (B.13)
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Appendix C

Supplementary Material for Chapter
4: Closed-loop performance of the
Adaptive SOC Framework in the
presence of measurement noise

This SupplementaryMaterial analyses the effect ofmeasurement noise on the pro-
posed HRTO with an adaptive Self-Optimizing Control framework. To do so, a
zero-mean normal distributed noise was artificially added to the measurements
in the following manner:

ȳm
k =

[
Iny + diag(wy)

]
ȳ0
k (C.1)

in which, wy ∈ Rny ∼ N (0,Σy) and Σy is the measurement noise covariance
matrix. This covariance matrix is considered unknown, but it was set to Σy =

nIny , considering that n is the noise amplitude.
The results presented here are very similar to the results in Section 4.3 of the

main paper, with the difference that the effect of noise is observed. The same sim-
ulation scenario is compared for the schemes: HRTOusingHEKF tuning 1, HRTO
using HEKF tuning 2, and RTO for Hammerstein models 1 and 2. Moreover, two
noise amplitudes are compared: n = 1 % and n = 5 %. Figures C.1 and C.2 show
the results of the input and output variables considering model 1 with 1 % noise
amplitude, respectively.
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Figure C.1: Closed-loop performance usingHammersteinmodel 1 in the presence
of 1 % measurement noise: (a) FB (kg/s); (b) TR (◦C); (c) FA (kg/s). The dotted
lines represent the optimal inputs obtained by the HRTO.

In the presence of noisy measurements, it is clear that, for HRTO tuning 1 and
RTO, noise is propagated through the control layer and reflects on noisy optimal
control actions, which is better visualized from the results of variable TR. On the
other hand, HRTO tuning 2 can filter noise, resulting in a smoother trajectory in
the control actions. However, the better noise filtering ability of the scheme using
tuning 2 comes with the cost of a slower convergence of the unmeasured variable
to its true value. HRTO tuning 1 presented a faster convergence of the unmeasured
parameter. However, the measurement noise is also propagated to the estimated
value, resulting in the noise propagation through the model switching strategy
and the nonlinear economic optimization problem solution.
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Figure C.2: Closed-loop performance using Hammerstein model 1 in the pres-
ence of 1 % measurement noise: (a) wG; (b) wP ; (c) Objective function, Jeco($/s);
(d) Accumulated loss function ($). Dots represent the noisy measurements, solid
lines represent quantities estimated by the HEKF, dashed lines represent the op-
timal setpoints obtained by the HRTO, and the grey area represents the violation
of the imposed constraint.

The noise effect is also prominent in the output variables. HRTO tuning 2 per-
forms better in smoothing the measurement noise, but slower parameter conver-
gence time leads to aworse economic performance thanHRTO tuning 1. That also
translates to the RTO scheme, considering that long waiting times for SSD lead to
long periods of suboptimal performance. Another important point to mention is
the frequent violations of the active constraint due to the noise. In schemes HRTO
tuning 1 and RTO, the estimated quantities are also subjected to this effect due to
the inability to reject noise, which is not the case for HRTO tuning 2. These effects
are better observed when a higher noise amplitude is considered, and even other
effects emerge.

Figures C.3 and C.4 show the results of the input and output variables for the
frameworks considering model 1 with 5 % noise amplitude, respectively.
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Figure C.3: Closed-loop performance usingHammersteinmodel 1 in the presence
of 5 % measurement noise: (a) FB (kg/s); (b) TR (◦C); (c) FA (kg/s). The dotted
lines represent the optimal inputs obtained by the HRTO.

In the case considering 5 % noise amplitude, the inputs are considerably nois-
ier than the case with 1 %, especially for HRTO tuning 1, which also presents a
high noise level in the estimated parameter. In this case, the high convergence
speed is overshadowed by its noise level, compromising the economic benefit of
the parameter updating proposed by HRTO methodology, as shown in Figure
C.4(d). On the other hand, HRTO tuning 2 can still filter the noise even in this
more challenging noise scenario, resulting in smooth parameter estimation and
input trajectories.
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Figure C.4: Closed-loop performance using Hammerstein model 1 in the pres-
ence of 5 % measurement noise: (a) wG; (b) wP ; (c) Objective function, Jeco($/s);
(d) Accumulated loss function ($). Dots represent the noisy measurements, solid
lines represent quantities estimated by the HEKF, dashed lines represent the op-
timal setpoints obtained by the HRTO, and the grey area represents the violation
of the imposed constraint.

It is interesting to note that Figure C.4(d) presents three distinct periods. In the
first period, from 0min to about 60min, it is possible to see that the RTOpresented
the best economic performance. This suggests that not updating the parameter
could be an interesting strategy for the first disturbance since the framework relies
on the SOC’s ability to minimize the loss function by controlling combinations of
the measurement variables that present minimum sensibility to disturbances and
measurement noise. During this period, HRTO tuning 1 presented the worst re-
sult due to its noise filtering inability. The RTO economic performance was even
better than the HRTO tuning 2. This fact implies that the dynamic parameter
convergence was economically unfavorable. However, after converging to the pa-
rameter true value, the inputs were droved to their optimal values. The HRTO
tuning 2 economic performance surpassed the RTO, as observed in the following
period from 60min to 125min. In this second period, it is possible to see that the
RTO economic performance remained better than the HRTO tuning 1 and worse
than HRTO tuning 2. In the third and final period, starting from about 125 min,
the economic benefit of the HRTO becomes most evident. In this period, the sub-
jected disturbance is responsible for activating the constraint, and the cost of the
suboptimal operation in this scenario drove the RTO to the worst economic sce-
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nario. In addition, the HRTO tuning 2 performance approached the HRTO tuning
1 due to the slow convergence time to the true parameter. Moreover, the HRTO
tuning 1 best performance observed for the 1 % noise amplitude is not observed
in this case.

Figures C.5 and C.6 present the results of the three schemes considering the
use of the Hammerstein model 2 and 1 % noise.

Figure C.5: Closed-loop performance usingHammersteinmodel 2 in the presence
of 1 % measurement noise: (a) FB (kg/s); (b) TR (◦C); (c) FA (kg/s). The dotted
lines represent the optimal setpoints obtained by the HRTO.

The same outcome is observed using model 2. HRTO tuning 2 presents a
higher noise filtering capacity, preventing its propagation through the parameter
estimation, control, and optimization layers. This effect leads to smoother results,
resulting in a smaller input variability than HRTO tuning 1 and RTO. However,
this comes with the cost of a slower convergence of the unmeasured disturbance
to its true value compared to HRTO tuning 1.
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Figure C.6: Closed-loop performance using Hammerstein model 2 in the pres-
ence of 1 % measurement noise: (a) wG; (b) wP ; (c) Objective function, Jeco($/s);
(d) Accumulated loss function ($). Dots represent the noisy measurements, solid
lines represent quantities estimated by the HEKF, dashed lines represent the op-
timal setpoints obtained by the HRTO, and the grey area represents the violation
of the imposed constraint.

The difference observed by comparing the use of model 2 over model 1 is a
better description of the plant dynamics by model 2. The input variables can fol-
low the optimal trajectory more closely, and the convergence of the unmeasured
disturbance to its true value occurs more rapidly. However, HRTO tuning 1 is
still faster than HRTO tuning 2. All the observations regarding the effect of noise
previously made for model 1 are also applicable to model 2.

As mentioned in Section 4.3, model 2 outperforms model 1. However, one
should notice that model 1 presents ny times fewer parameters to be estimated
over model 2, which is an important advantage for large-scale systems. Moreover,
HRTO tuning 1 presented a better economic performance than HRTO tuning 2.
However, HRTO tuning 2 presented the ability to soften the noise, which is an
operational advantage, which enhances robustness and reduces the variability of
the framework.

Figures C.7 and C.8 present the result of the three schemes considering the use
of the Hammerstein model 2 and 5 % noise.
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Figure C.7: Closed-loop performance usingHammersteinmodel 2 in the presence
of 5 % measurement noise: (a) FB (kg/s); (b) TR (◦C); (c) FA (kg/s). The dotted
lines represent the optimal inputs obtained by the HRTO.
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Figure C.8: Closed-loop performance using Hammerstein model 2 in the pres-
ence of 5 % measurement noise: (a) wG; (b) wP ; (c) Objective function, Jeco($/s);
(d) Accumulated loss function ($). Dots represent the noisy measurements, solid
lines represent quantities estimated by the HEKF, dashed lines represent the op-
timal setpoints obtained by the HRTO, and the grey area represents the violation
of the imposed constraint.

The same observation previously made for model 1 could also be done for the
results using model 2. The use of model 2 enhances the accuracy of the dynamic
model. Despite that, HRTO tuning 1 also presented the worst economic perfor-
mance previous to the second disturbance and approached HRTO tuning 2 per-
formance after it. However, it is important to highlight that another tuning that
better balances the trade-off between noise filtering and parameter convergence
speed could be used, but we kept tunings 1 and 2 for the sake of comparison.
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Appendix D

The Reinforcement Learning
Problem

In an RL problem, an agent learns a specific task by direct interaction with its
environment (SUTTON and BARTO, 2018b).

The interaction between the agent and its environment ismodeled as aMarkov
decision process (MDP), that SUTTON and BARTO (2018b) defined by a tuple
(S,A, P,R), where S is the state space, A is the action space, P is the stochastic
state transition function P : S × A × S → [0, 1], and R is the reward function
R : S×A×S → R. The state s ∈ S is some information available to the agent about
its environment, and the state space S is the set of all possible states. The state is
assumed to be Markov, meaning that the next state is independent of the past
states given the present one, as expressed by the following property (SUTTON
and BARTO, 2018b):

Pr[st+1 | st] = Pr[st+1 | s1, s2, ..., st] (D.1)

The action space A is the set of possible actions the agent may implement upon
the environment. The stochastic state transition function P gives the probability
for the current state s ∈ S to transition to state s′ ∈ S when action a ∈ A is taken
by the agent:

P a
ss′ = Pr[st+1 = s′ | st = s, at = a] (D.2)

The reward function R gives the immediate reward obtained by the agent by tak-
ing action a when state s transitions to state s′:

r = R(s, a, s′) (D.3)

In the context of process control, the terms agent, environment, and action can be
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interpreted as controller, process to be controlled, and control signal, respectively.
When learning, at time instant t, the agent takes an action at ∈ A under which the
environment moves from state st ∈ S to state st+1 ∈ S, and receives an immediate
reward rt+1 ∈ R, to give the agent an idea of how well it is performing. The
objective of the agent is to learn to take the actions that maximize the expected
value of the cumulative sum of future rewards from a given state s ∈ S. The
behavior of the agent at a given time is defined by a policy π : S × A → [0, 1],
which is a mapping from states to probabilities of selecting each possible action.
In other words, if the agent is following policy π at time instant t, then π(a | s) is
the probability that at = a if st = s. In the deterministic case, the policy becomes
a mapping from states to actions: if the agent is following the policy π at time
instant t, then at = π(s) if st = s. The expected value of the cumulative sum of
future rewards following a given policy π from a given state s ∈ S is defined by
the following state-value function:

Vπ(s) = Eπ

{ ∞∑
k=1

γk−1rt+k, st = s

}
(D.4)

where γ ∈ [0, 1] is a discount factor that is a measure of how far-sighted the agent
is regarding the rewards. Let us note that for the control of continuous tasks, one
must have that γ < 1 to guarantee that the value function is limited.

Similarly, the expected sum of future rewards following a given policy π from
a given state s ∈ S when the action a ∈ A is taken is defined by the following
action-value function:

Qπ(s, a) = Eπ

{ ∞∑
k=1

γk−1rt+k, st = s, at = a

}
(D.5)

A fundamental property of these value functions in the context of RL is that they
satisfy the Bellman Expectation Equations shown in Equations D.6 andD.7. These
recursive relationships form the basis of several iterative algorithms to learn Vπ

and Qπ from learning episodes (SUTTON and BARTO, 2018b).

Vπ(s) = Eπ[rt+1 + γVπ(st+1), st = s] (D.6)

Qπ(s, a) = Eπ[rt+1 + γQπ(st+1,t+1 ), st = s, at = a] (D.7)

In an RL problem, the objective may be expressed as to find the policy π∗ that
maximizes the state-value function with V ∗(s) = maxπ V

∗
π (s) or the action-value

function with Q∗(s, a) = maxπ Q
∗
π(s, a). Note that, in the latter case, the optimal

policy can be produced directly fromQ∗(s, a) by solving the optimization problem
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defined in Equation D.8.

π∗(s) = max
a

Q∗(s, a) (D.8)

The Bellman Expectation Equations shown in Equations D.6 and D.7 applied
to the optimal state and action-value functions are the Bellman Optimality Equa-
tions shown in Equations D.9 and D.10. The resolution of an RL problem and the
learning of the optimal policy relies on finding the solution to the Bellman Opti-
mality Equation. The following section presents the main approaches that can be
employed to address this objective.

V ∗(s) = max
a

E[rt+1 + γV ∗(st+1), st = s, at = a] (D.9)

Q∗(s, a) = E[rt+1 + γmax
a′

Q∗(st+1, a
′), st = s, at = a] (D.10)

The resolution of the Bellman Optimality Equation

Equations D.9 and D.10 cannot be solved analytically. However, the recursive re-
lationship between the value functions allowed the development of iterative al-
gorithms for its resolution. Dynamic Programming considers the case where the
state transition function P is known, and Reinforcement Learning deals with the
case where the environment dynamics are not known a priori. In RL, the agent
learns through its experiences of interaction with the environment, referred to as
episodes. The simplest approach is the value-based approach where the value
function is learned, and the policy is directly generated from selecting the actions
that maximize the action-value function. More specifically, the following iterative
process is implemented until convergence of the policy:

• Policy evaluation: the value function associated with the current policy is
estimated from themean of the accumulated rewards, denominated returns,
obtained in the pairs state-action visited by the agent during the learning
episodes;

• Policy improvement: the current policy is improved by selecting the actions
that maximize the current value function estimate by solving the optimiza-
tion problem defined in Equation D.11.

π(s) = max
a

Q(s, a) (D.11)

For low-dimension finite MDPs, solving the optimization problem defined in
Equation D.11 is straightforward as the solution is the maximum value among
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a finite set of real numbers. However, with continuous state and action spaces,
this problem becomes a complex Nonlinear Programming (NLP) problem. Dis-
cretization may be considered, but the RL problem is then confronted with the
curse of dimensionality: the data needed for training increases exponentially with
the number of pairs (state, action), and the discretization rate.

To address continuous problems without discretization and the resolution of
the NLP optimization problem defined in Equation D.11, policy-based methods
may be applied. In this approach, the policy is explicitly represented by a pa-
rameterized approximator, and policy-gradient algorithms are used to directly
learn the policy. The policy is iteratively improved by gradient ascent towards an
improvement of the value function where the gradient is estimated using the cu-
mulative rewards obtained during the experience episodes. Because of their high
variance, the improvement of the policy is slower, and consequently less efficient
than value-based methods.

Instead of using the cumulative rewards, estimates of the value function may
then be used to reduce variance, to give rise to the actor-critic methods, where
both policy and value function are learned. The actor is the component that learns
the policy while the critic keeps evaluating the value function associated with the
current policy to criticize the actor’s action choices. This class of methods is nowa-
days the most popular approach to tackle continuous MDPs as they combine the
best features of the two other classes of methods (SHIN et al., 2019a). To represent
the value function and the policy, linear combinations of state-dependent RBFs,
neural networks, and kernel-based approximators may be used (BUSONIU et al.,
2010).

The actor-critic algorithm

The idea behind the actor-critic algorithm is described in Figure D.1.
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Figure D.1: The actor-critic framework (SUTTON and BARTO, 2018b). License:
creativecommons.org/licenses/by-nc-nd/2.0/legalcode.

At each time step t, from the state st ∈ S representing the environment, the ac-
tor selects and implements an action at ∈ A upon which the environment evolves
to a new state st+1 ∈ S. From this transition, the immediate reward rt+1 ∈ R is ob-
tained, and a new estimate of V (st) is then rt+1+γV (st+1). The critic evaluates how
well the agent went using the Temporal Difference (TD) error defined in Equation
D.12, which is the difference between the new and current estimates of V (st). If
this value is positive, it indicates that the choice of at should be strengthened in
the future, and weakened if negative (SUTTON and BARTO, 2018b).

δt = rt+1 + γV (st+1)− V (st) (D.12)

Then, the TD error is used by the critic to update the value function parameters
towards its minimization, and by the actor to update the policy parameters to-
wards the maximization of the value function. This procedure is repeated until
the convergence of the policy.

Policy evaluation methods

Consider the learning episode represented by Equation D.13.

s1, a1, s2, r2, a2, s3, r3, a3, ..., sT−1, rT−1, aT−1, sT , rT (D.13)

where sT ∈ S is the episode terminal state. From this sequence, the state-value
function associated with the states visited in the episode is updated using new
estimates. Different options may be considered for their computation depending
on how many steps ahead the rewards from the episode are considered. In that
regard, the n-step ahead return from state st ∈ S, defined in Equation D.14, is
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the sum of the discounted sum of the n consecutive rewards of the episode and
the value function associated with state st+n. The higher the value of n, the more
episode rewards will be taken into account, and consequently, the more the cur-
rent episodewill impact the value function update (SUTTONandBARTO, 2018b).

G
(n)
t =

n∑
k=1

γk−1rt+k + γnV (st+n) (D.14)

The n-step ahead return defined in Equation D.14 is then used to update the value
function associated with state st using Equation D.15.

V (st)← V (st) + α(G
(n)
t − V (st)) (D.15)

where α ∈ R is the learning rate.
Particular cases are:
• The Monte Carlo (MC) evaluation method for which n = T − t − 1, and

all the subsequent rewards of the episodes are considered. For this reason,
it has the advantage of being unbiased. However, it is not applicable for
nonending episodes (e.g. the control of continuous processes) as it requires
the episode to end for the value function update. Moreover, the high vari-
ance of the MC returns leads to slow convergence properties (NIAN et al.,
2020; SUTTON and BARTO, 2018b).

• The TD evaluationmethod is the case where n = 1. For only considering the
one-step ahead return, this evaluation method is biased, has a low variance,
converges faster than theMCmethod, and has the great advantage of allow-
ing the online update of the value function since it can be implemented at
each time step of the episode (NIAN et al., 2020).

Between these two extremes, there is a spectrum of possibilities that could be ben-
eficial for learning. To benefit from each of them, the forward view TD(λ) policy
evaluation method considers the λ-return, which is a weighted mean of all the
n-step ahead returns for the estimation of the value function V (st), as shown in
Equation D.16 (SUTTON and BARTO, 2018b).

Gλ
t = (1− λ)

T−t−1∑
n=1

λn−1G
(n)
t + λT−t−1G

(T−t)
t (D.16)

where λ ∈ [0, 1] is a tuning parameter.
However, the use of Gλ

t for the value function evaluation still has the disad-
vantage of requiring the end of the episode to be computed. To address this issue,
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an equivalent backward view TD(λ) policy evaluation method was developed to
allow an online update of the value function. With this methodology, the state-
value function associatedwith each s ∈ S is updated towards the current TD error
at a rate dependent on an eligibility trace function of the corresponding stateE(s).
It is defined in away to attributemore responsibility to themost recent and visited
states on the value of the last obtained reward.

At the beginning of each episode, the eligibility trace of each state s ∈ S is
initialized to 0, E0(s) = 0. Then, at each time step t of the episode, the TD error is
computed using Equation D.12, and the eligibility trace of each s ∈ S is updated
according to Equation D.17 (SUTTON and BARTO, 2018b).

Et(s) = γλEt−1(s) + 1(s = st) (D.17)

where λ is the eligibility trace decay parameter. The first term of the right-hand
side of equation D.17 decays at γλ rate, and allows the agent to forget states that
haven’t been visited for some time. The second term adds one unit to the eligibility
trace of the current state and allows to give responsibility to the most recently
visited states in the update of the value function. Then, for each state s ∈ S, the
state-value function is updated towards the TD error at a αE(s) rate according to
Equation D.18 (SUTTON and BARTO, 2018b).

V (s)← V (s) + αδtE(s) (D.18)

Exploration

Independently of the algorithm, the optimal policy will be obtained provided that
the spaces of states and actions are sufficiently explored by the agent, otherwise,
sub-optimal policies may be obtained. As a consequence, it is important to imple-
ment an exploration mechanism to guarantee that all actions and states are suffi-
ciently considered during the training. The convergence to the optimal policy will
be achieved if enough data is available and sufficient exploration is implemented.
Taking random action with a certain probability (SUTTON and BARTO, 2018b)
or adding white noise to the control actions (BRADTKE et al., 1994) are common
ways for the agent to implement exploration during training.

It is also important that the exploration decreases with time as training is un-
dergone in order to allow the policy to improve by being greedy regarding the
value function maximization, and finally converge to its optimal value.
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