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Resumo da Dissertação apresentada à COPPE/UFRJ como parte dos requisitos
necessários para a obtenção do grau de Mestre em Ciências (M.Sc.)

CÁLCULOS DE EQUILÍBRIO DE FASES PARA SISTEMAS EM ALTA
PRESSÃO ENVOLVENDO HIDRATOS

Matheus Caputo Bello

Setembro/2022

Orientadores: Frederico Wanderley Tavares, D.Sc.
Iuri Soter Viana Segtovich, D.Sc.

Programa: Engenharia Química

Os clatratos são sólidos compostos por uma estrutura cristalina em que as
moléculas hospedeiras encontram-se confinadas. Embora os hidratos (clatratos de
água) sejam indesejados no setor de óleo e gás por representarem um problema
de segurança em cenários de garantia de escoamento, as aplicações industriais re-
centemente descobertas os tornaram economicamente atraentes para a indústria.
O presente trabalho busca expandir os estudos relacionados à modelagem termod-
inâmica de hidratos de gás natural, principalmente no que concerne à estimação
dos parâmetros dos modelos termodinâmicos Intersticial e Pshift para hidratos sII
de formador único (um único hóspede), verificar o desempenho desses modelos para
descrever a formação e o volume de hidratos sII e estender o escopo do modelo Pshift
para a predição de hidratos mistos (mais de um hóspede). Embora os dois modelos
tenham sido implementados, o modelo Pshift é o ponto central dessa pesquisa, por
ser mais consistente termodinamicamente. Diferentes métodos de parametrização
foram usados para estimar os parâmetros dos modelos Intersticial e Pshift. En-
quanto os parâmetros do primeiro modelo foram estimados por meio do método de
máxima verossimilhança, a parametrização do segundo se deu por uma metodologia
mais empírica por conta de sua complexidade. O estudo mostrou que existe uma
boa concordância entre os dados experimentais e os calculados pelos modelos para
hidratos com um único hóspede. Entretanto, para hidratos mistos, os resultados
mostraram que existe necessidade de melhorar a estratégia de estimação para que o
modelo Pshift descreva adequadamente os dados experimentais.
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Clathrates are solid-phase composed of a crystalline structure in which guest
molecules are confined. Even though gas hydrates (water clathrate) have been
treated as villains in the oil and gas industry, the recently discovered applications
made them economically attractive to the industry. The present research mainly as-
pires to expand the investigations concerning gas hydrate thermodynamics modeling.
The study aims to obtain Interstitial and Pshift models’ parameters for hydrates in
sII structure, investigate their performance for pure sII hydrates, and expand the
latter methodology to calculate mixed hydrates formation. Although two models
have been implemented, the Pshift model is the central point of this research, as
it is more thermodynamically consistent. Different parameterization methods were
used to estimate the parameters of the Interstitial and Pshift models. While the pa-
rameters of the former model were estimated using the maximum likelihood method,
the parameterization of the latter was made using a more empirical methodology
due to the complexity of the model. The study shows that both models agreed well
with the experimental data for pure hydrates. However, we showed that more stud-
ies should be carried out for mixed hydrates so that the Pshift model can adequately
describe the experimental data.
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Chapter 1

Introduction

Clathrates are solid-phase compounds composed of a crystalline structure in
which guest molecules are confined. First observed in laboratory experiments in
1810, clathrates were initially seen as a scientific curiosity. Some reports in the XIX
century revealed carbon dioxide, hydrogen sulfide, and light hydrocarbons hydrates.
Nonetheless, although these components are commonly encountered in natural gas
streams, the industry initially refused to recognize the possibility of pipeline block-
age above the water freezing point. Therefore, not only until HAMMERSCHMIDT
(1934) attributed these natural gas pipeline blockages to hydrates that these com-
pounds were extensively examined.

Regarding the crystalline structure, clathrates can exist through various con-
figurations. The most thermodynamically stable and commonly observed are sI, sII,
and sH. These structures are presented by Figure 1.1.

As illustrated below, the three arrangements mentioned above comprise a com-
bination of five cage types. Usually, these polyhedral cages are identified by the
number of polygons that build their surface. For instance, a 512 cage is a polyhe-
dron of 12 pentagonal faces. As illustrated in Figure 1.1, the combination of two 512

cages and six 51262 cages produces an sI clathrate unit cell. For convenience, the
former cage type is typically called "small cavity"; while the latter, "large cavity."

In terms of composition, the clathrates are non-stoichiometric compounds, and
their cavities can be occupied by pure guests or mixtures. Customarily, clathrates
formed by a single light component are referred to as "single" or "pure"; otherwise,
"mixed."

1



Figure 1.1: Cage types and clathrates’ configurations. Reproduced from WARRIER
et al. (2016)

1.1 Gas hydrates research history

In his groundbreaking work, HAMMERSCHMIDT (1934) details the empir-
ical tests performed to study the leading causes of hydrate formation in natural
gas flow systems. Natural gas hydrates, which comprise a specific category within
the clathrates class, are crystalline solids composed of water and light components.
The water molecules form, through hydrogen bonds, the cages in which the guest
molecules are entrapped, which, in turn, stabilizes the hydrate lattice. Since HAM-
MERSCHMIDT (1934)’s report, natural gas hydrates have been treated as villains
in the oil and gas industry for representing a safety concern in flow assurance sce-
narios. For many years the industry’s goal was to identify the possibility of hydrate
formation.

In this sense, a myriad of empirical models emerged to predict hydrate for-
mation conditions in natural gas systems pragmatically. However, despite these
models’ practicality to the industry, their empirical nature limited their applicabil-
ity. Phenomenological approaches were developed to rectify this restraint; the most
eminent model was designed by VAN DER WAALS and PLATTEEUW (1959),

2



which is considered a milestone in applied statistical thermodynamic and hydrate
modeling frameworks. VAN DER WAALS and PLATTEEUW (1959)’s approach
can accurately describe hydrate formation in mild conditions when combined with
a phase equilibrium algorithm, like the one conceived by PARRISH and PRAUS-
NITZ (1972) for example. For this reason, their model is still widely used. As it
will be explored in Chapter 2, some subsequently proposed modifications enhanced
VAN DER WAALS and PLATTEEUW (1959)’s model capability to predict hydrate
formation conditions.

1.2 Industrial applications

Initially seen as a scientific curiosity and, later, as a safety issue in flow as-
surance scenarios, natural gas hydrates have been taking on relevant roles within
the energy sector. Since the natural methane hydrates’ first observation in Siberian
permafrost, its exploration has been profoundly investigated for energetic purposes.
The vast energetic potential combined with the search for cleaner alternatives to
coal and oil justifies the efforts made by both the academy and industry to make
the exploration of natural methane hydrates reservoirs viable.

Moreover, the industrial applications discovered made clathrate hydrates very
economically attractive throughout the years. Natural gas storage (SNG technol-
ogy), secondary refrigerants on refrigeration cycles, and porous media in separation
processes are recently discovered industrial applications for gas hydrates.

1.2.1 Natural methane hydrates reservoirs exploration

It is widely known that the population increase and the development of eco-
nomic activities are two of the primary factors responsible for the global consump-
tion of energy growth. In figures, the World Energy Outlook 2019 estimated that
the energy demand should rise progressively by approximately 50 percent between
2018 and 2050 (IEA, 2019), making the Earth’s temperature rise control even more
challenging as established by the Paris Agreement (COP21). Hence, alternative
technologies that match the energetic global demand regarding the carbon emission
restrictions imposed by the above agreement must be developed. Furthermore, given
that the global energetic matrix transition to renewable energy sources is being car-
ried out at a languid pace, natural gas (NG) – considered the cleanest fossil fuel –
emerges as an appealing solution to replace coal and oil. In this sense, it is estimated
that the global demand for NG should grow by 44 percent from 2019 to 2040 (YIN
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and LINGA, 2019).

Interestingly, as reported by YIN and LINGA (2019), the largest available
methane reservoirs, NG main component, are the methane hydrates that occur be-
neath the seafloor or permafrost region (SLOAN JR and KOH, 2007). It is predicted
that such reserves have more than twice the energetic potential of all the fossil fuels
combined (MAKOGON, 1997). According to MAKOGON (2010), this potential is
so vast that if only 20 percent of its totality is produced, it can be an adequate energy
supply for 200 years. Figure 1.2 illustrates the known NG hydrates deposits. In this
context, numerous studies about the exploration of these natural reserves have been
conducted throughout the years, aiming to make the NG production from methane
hydrates economically viable.

Figure 1.2: World Map of Found NG Hydrate Reservoirs. BSR = deposit located
by seismic refraction Reproduced from MAKOGON et al. (2004)

1.2.2 Natural gas storage

There are several available technologies within the natural gas storage/trans-
portation field. According to VELUSWAMY et al. (2018), although liquefied natural
gas (LNG) is considered the natural gas transportation/storage technology with the
best cost-benefit ratio, the extreme low-temperature prerequisite, and some other
operational issues restrain its employment in large-scale projects. On the other
hand, solidified natural gas (SNG) – a promising technique to transport natural gas
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in hydrates – has an impressive capability to compress multi-fold volumes of natu-
ral gas in relatively compact hydrate structures. Furthermore, in their review, the
authors also mentioned some other advantages of this technology’s employment; it
provides safe and environmentally friendly NG storage and does not demand severe
temperature and pressure conditions.

In this context, there are some initiatives to develop commercially viable tech-
niques, such as the one presented by the Department of Energy of the United
States of America (USDOE). In a recent collaborative study between the USDOE,
academia, industry, international research organizations, and other U.S. government
agencies, a solution for transporting/storing NG through hydrates is introduced.
The research consisted of technical and economic analysis of the proposed tech-
nique, which comprises transporting NG through gas hydrates filled tanks that can
be carried on ships. Even though this technology is still considered unconventional,
this study shows that the Hydrastor Modular Platform – the name given to the tech-
nique – could potentially cut down shipping costs by half compared to the already
established LNG technology (CARSTENS, 2019).

1.2.3 Refrigeration cycles

According to ZHANG et al. (2017), the most prominent technologies used to
design refrigeration cycles are vapor compression, absorption, and ejector expansion.
The refrigerant, which is then used to remove heat from the process stream, naturally
has a tremendous influence on the refrigeration cycle’s efficiency. They are catego-
rized into three groups according to their generation. The first generation comprises
carbon dioxide, ammonia, and sulfur dioxide. Later, Freon-based refrigerants were
developed; CFCs, HCFCs, and HFCs are industrially used. These chemicals com-
prise the second generation of refrigerants. For the third generation, the refrigerants
were designed to work in pairs: lithium bromide-water, lithium chloride-water, and
ammonia-water.

Contrary to what one might think, according to ZHANG et al. (2017), second-
generation refrigerants present a higher coefficient of performance (COP) than those
of the third generation. However, as stated by FOURNAISON et al. (2004), the ex-
clusive use of these second-generation refrigerants in refrigeration cycles contributes
immensely to the depletion of the ozone layer since this operation mode requires
large volumes of these chemicals. In order to cut down greenhouse gas emissions,
researchers have been investigating the employment of a two-phase secondary refrig-
erant to reduce the load of primary refrigerants, such as CFCs, HCFCs, and HFCs.
A promising alternative involves using hydrate as the phase-change material in the
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two-phase secondary refrigerant. As reported by the authors, hydrate dissociation
not only presents a higher latent heat than ice but also is more environmentally
benign than conventional technologies.

1.2.4 Separation processes

Finally, gas hydrates can also be employed in separation processes. Researchers
have recently investigated the clathrate hydrates’ potentiality to separate certain
compounds from gas mixtures, along with the novel applications reported above.
Recent studies have clarified that clathrate hydrates’ affinity concerning some com-
ponents typically present in industrial gas streams enables their capture by hydrate
formation. As reported by ESLAMIMANESH et al. (2012), hydrogen, nitrogen,
and greenhouse gases – such as carbon dioxide, methane, and hydrogen sulfide – are
some of the compounds that hydrate formation processes can segregate. Since H2

and N2 are profitable components for their properties, and CO2, CH4 and H2S are
the key players in the global warming phenomenon, their separation from flue gas
streams is fundamental for the chemical industry. Furthermore, KHAN et al. (2019)
have written about applying gas hydrates in desalination processes. According to
the authors, seawater desalination through hydrate formation is an up-and-coming
technique that can be applied on a large scale if its kinetics are thoroughly under-
stood.

1.3 New demands, new models

Bearing in mind the benefits associated with the numerous applications cited
above, aside from the elementary prediction of incipient hydrate phase formation, the
focal point of hydrate research has shifted to investigate formation and dissociation
kinetics. Therefore, more sophisticated methods were required to comply with this
new demand.

Novel approaches have been devised to amplify our awareness of hydrate for-
mation/dissociation processes in this context. Ballard and Sloan published a series
of papers to present their contribution to hydrate phase equilibrium prediction. The
authors have followed the new experimental observations on clathrates’ compress-
ibility and cage radii’s guest-dependency. Driven by Ballard and Sloan’s findings,
multiple authors enhanced the existing predictive methodology for determining hy-
drates’ fugacity at and above formation conditions, which, according to BALLARD
and SLOAN (2004), is the most suitable variable to describe the driving force.
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Aligned with this trend, SEGTOVICH et al. (2022) proposed a model which
introduces a new phenomenon related to guest molecules adsorption. Analogously to
the methodology formulated by BALLARD and SLOAN JR (2002), SEGTOVICH
et al. (2022)’s model also incorporated lattice compressibility and cage radii vari-
ation with guest size. However, the latter noticed some inconsistencies associated
with the phase equilibrium calculation in previous models. Even though these novel
approaches present promising results, the authors of the former model did not revise
van der Waals and Platteuw’s equations after modifying the lattice incompressibility
hypothesis. Hence, according to SEGTOVICH et al. (2022), these models had in-
consistencies in their attempt to represent the influence of guest adsorption on host
chemical potential and lattice volume. In virtue of the lattice guest-dependency,
the author states that the pressure of the hydrate ought to differ from its reference
state (empty lattice) in a calculation at a specified volume, which is the case for the
semi-grand canonical partition function approach. SEGTOVICH et al. (2022), then
named this phenomenon "Pressure shift" and presented their interpretation of how
the phase equilibrium calculation should be carried out.

1.4 Motivation and objectives

Driven by the recently unveiled promising potential of gas hydrates, this work
mainly aspires to expand the investigations concerning its modeling at and above
phase equilibrium conditions. Furthermore, since SEGTOVICH et al. (2022)’s ap-
proach appears to be the most promising, the undertaken study shall be based on
this model, with the necessary adjustments.

In this sense, the undertaken study’s goal is to implement the Pshift model
(SEGTOVICH et al., 2022) to represent sII hydrates equilibrium condition and
volume, as well as to adjust it to available experimental data through parameter
estimation. More specifically, we intend to:

• implement the hydrate thermodynamic modelling through the Interstitial
(KLAUDA and SANDLER, 2000) and Pshift (SEGTOVICH et al., 2022) mod-
els;

• perform phase equilibrium calculations;

• estimate parameters for pure sII hydrates;

• produce phase equilibrium and volume diagrams for pure hydrates;

• generate phase equilibrium diagrams for mixed hydrates.
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1.5 Text structure

This document is segmented into six sections. Subsequently to the introduc-
tion, the literature review is presented in Chapter 2. Afterward, the methodology is
demonstrated in the two succeeding chapters; the thermodynamic concepts support-
ing the gas hydrate modeling are scrutinized in Chapter 3, while the computation
details are given in Chapter 4. Then, the outcomes and repercussions are closely
examined in Chapter 5. Ultimately, Chapter 6 presents the final considerations and
the outlined prospects for this field of research.
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Chapter 2

Literature review

Hydrates have been known for over two centuries, yet the first complete phe-
nomenological characterization method is only about 60 years old. According to
MEDEIROS et al. (2020), this setback was caused by various reasons. To name a
couple, not only the statistical thermodynamics foundations were not well estab-
lished in the XIX century, but also there was not enough experimental microscopic
information on clathrates.

Sustained by the breakthroughs made in crystallographic studies, the first
complete phenomenological models based on statistical thermodynamics emerged
in the late 1950s. Previously, compelled by HAMMERSCHMIDT (1934)’s report,
some empirical models had already been devised. However, the latter is somewhat
limited to predicting hydrate formation in various conditions because of its empirical
nature.

Even though the approach devised by VAN DER WAALS and PLATTEEUW
(1959) is the most eminent methodology for hydrate prediction, it was not the first
to use statistical thermodynamics to represent clathrates. This position belongs
to the model conceived by BARRER and STUART (1957). In their paper, the
authors presented a thorough statistical thermodynamic interpretation of hydrates’
properties. However, their most relevant contribution was the combinatory analysis
to deal with all the possible ways of guest occupation. Two years later, van der Waals
and Platteeuw would publish the paper to impact statistical thermodynamics and
hydrate modeling framework irreversibly.

In the paper entitled "Clathrate Solutions", VAN DER WAALS and PLAT-
TEEUW (1959) presented a general model – called the "vdWP model" from now on
– that can be used to describe clathrates with any number of guest and cage types.
Furthermore, their approach could deal with non-ideal fluid phase equilibria since
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the guests were represented by their fugacity (MEDEIROS et al. (2020)). Under
these qualities, this model is universally used to predict hydrate formation. Never-
theless, some adjustments were necessary to make it produce more reliable results at
high pressures. Thus, efforts have been made to broaden its range of applicability.

A myriad of derived models was developed throughout the years to improve
the limited approach proposed by van der Waals and Platteeuw (vdWP model) to
deal with the phase equilibrium calculation in systems with natural gas hydrates.
Since the authors did not describe the reference state – namely, the empty hydrate
lattice – directly from statistical thermodynamics, the proper computation of its
properties (i.e., the chemical potential of the host molecule in the empty lattice and
empty lattice volume) depended on parameter estimation. According to BALLARD
and SLOAN JR (2002), the deviation of the vdWP model’s predictions from experi-
mental data at high pressures indicates that the hydrate reference state’s properties
were not well defined. In this context, the proposed modifications to the vdWP
model aspired mainly to calculate these properties.

The earliest adjustments to the vdWP model consisted of extending the ref-
erence state for the host component. In this sense, MARSHALL et al. (1964) ac-
knowledged the possibility that the water and the hydrate-forming compound could
have some degree of miscibility. Hence, the phase equilibrium calculation could be
carried out with a non-pure aqueous phase as a reference to chemical potential in
the empty lattice. Analogously, PARRISH and PRAUSNITZ (1972) also considered
this scenario in their work, in which a set of estimated parameters associated with
the thermodynamic properties of the empty lattice and liquid water relative to ice
are presented. Furthermore, the authors contributed with an iterative method that
enabled statistical thermodynamics application in an industrial setting, a turning
point in the field.

In 1980, HOLDER et al. (1980) used experimental data to generate chemical
potential, enthalpy, and heat capacity functions for sI hydrates. Interestingly, in
their research, the authors proposed a more straightforward equation to compute the
chemical potential difference between the empty lattice and the water-rich solution.
Originally, this variable was calculated by the expression given by Equation 2.1.

∆µw (TF , P )

RTF
=

∆µ0
w (T0, 0)

RT0

+

∫ P0

0

∆vw
RT0

dP −
∫ TF

T0

∆hw
RT 2

dT +

∫ PR

P0

∆vw
RT

dPR

+

∫ P

PR

∆vw
RTF

dP − lnXw

(2.1)
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According to the authors,

The first term on the right is an experimentally determined chem-
ical potential difference between the unoccupied hydrate and pure
water at some reference temperature, usually 0 °C, and zero ab-
solute pressure. The second term corrects the chemical potential
of pure water from zero pressure to the dissociation pressure of a
reference hydrate (at T0). The third and fourth terms correct the
chemical potential for changes in temperature and pressure along
the reference hydrate curve. The temperature dependence of ∆hw

and reference pressure are needed in these integrations. The terms
∆hw and ∆vw are the enthalpy and volume differences, respec-
tively, between the empty hydrate and pure ice or liquid water
phases. The fifth term corrects the chemical potential from the
dissociation pressure of the reference hydrate to the final pressure,
P . This is an isothermal integration. The last term corrects the
chemical potential from that of a pure water or ice phase to that
water-rich solution. At temperatures below 273 K, Xw is unity.
(HOLDER et al. (1980), pp. 283).

The equation introduced above is reproduced with the original. Later, a more
modern notation is employed in the methodology section to represent the same
terms.

Thus, to eliminate the reference equilibrium curve dependence, HOLDER et al.
(1980) proposed a new approach to perform this calculation. Their contribution is
illustrated in Equation 2.2.

∆µw
RTF

=
∆µ0

w

RT0

−
∫ TF

T0

(
∆hw
RT 2

)
P=0

dT +

∫ P

0

(
∆vw
RTF

)
TF

dP − lnXw (2.2)

Computing fugacity instead of chemical potential has some practical advan-
tages. The former variable’s employment allows us to describe a system without the
presence of a condensed phase. This feature can be handy, for instance, in cases in
which all water is dissolved in non-polar fluids, especially in the case of NG with
low water content. Under these circumstances, the most convenient equilibrium
condition criterion is given by Equation 2.3.

f̂Hw = f̂Gw (2.3)

In which f̂Hw represents the water fugacity in the hydrate phase, and f̂Gw depicts
the water fugacity in the guest component-rich phase.
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In this sense, SLOAN et al. (1976) were the first to use water fugacity to per-
form phase equilibrium calculations in systems with hydrates; this was achieved by
applying the intrinsic correlation between chemical potential and fugacity. Then, the
authors derived an equation to compute water fugacity in the empty lattice regard-
ing water sublimation pressure, its fugacity coefficient, and a Poynting correction
term. A few years later, NG and ROBINSON (1980) published their approach on
water content estimation in natural gas systems in equilibrium with a hydrate. In
the undertaken study, the authors used the equilibrium condition criterion based
on fugacity and extended this methodology for single and mixed hydrates of both
sI and sII structures. Nonetheless, in their approach, the parameters were not
guest-dependent, which later was shown to be inconsistent with future experimental
results.

Driven by the repercussions of the latest experimental developments, re-
searchers incorporated these new traits into their phenomenological models. In
this context, HOLDER et al. (1988) published a review on the existing technolo-
gies within the hydrate characterization framework. In their study, the authors
commented on the influence that guest-dependent parameters and lattice distortion
could have on empty lattice properties calculation. Following this trend, HWANG
et al. (1993) showed, via molecular dynamics, that the lattice unit cell parameter
was guest-dependent, corroborating with experimental observation.

Later, KLAUDA and SANDLER (2000) would propose a fugacity based-model
capable of estimating the formation of hydrates with different guests and structures
that do not need the reference energy parameter used in the vdWP model. Fur-
thermore, the authors removed the assumption of constant crystal lattice for guests
of different sizes and lowered the number of fitted parameters by using quantum
mechanical calculations. Despite the promising results presented in their paper and
the efforts to devise a more practical method, Klauda and Sandler’s model is inac-
curate. Even though their approach assumes possible volume variations with lattice
pressure, it neglects cage deformation. In other words, their modeling predicts a
compressible lattice with cages with a constant radius. For that reason, henceforth,
this model will be referred to as being part of the "Interstitial model" group.

Aware of this inaccuracy, BALLARD and SLOAN JR (2002) proposed a
model capable of accounting for volume lattice temperature-, pressure- and guest-
dependency, including a linear correlation between the cage radii and the hydrate
lattice parameter. The authors made the Langmuir adsorption coefficient – com-
monly referred to as the ’Langmuir coefficient’ – lattice volume-dependent so that
the lattice deformation is recognized at high pressures. In addition, a non-ideality
assumption was introduced by including a water activity coefficient, correlating the
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non-ideal hydrate to the idealized one. The authors observed encouraging results
at high-pressure conditions with these modifications, including the hydrate lattice
retrograde behavior. Also motivated by the aspiration to appropriately model hy-
drates at high pressures, HSIEH et al. (2012) idealized a fugacity-based model that
combines the vdWP model with a pressure- and temperature-dependent Langmuir
adsorption constant. Unlike the approach devised by KLAUDA and SANDLER
(2000), which includes a distorted empty lattice as a reference state, the reference
phase for the equilibrium calculation of the two latter models is an undistorted
empty lattice.

Nonetheless the models formulated by BALLARD and SLOAN JR (2002)
and HSIEH et al. (2012) are thermodynamically inconsistent, as noticed by SEG-
TOVICH et al. (2022). According to SEGTOVICH et al. (2022), a revision of phase
equilibrium equations must follow the Langmuir adsorption coefficient expression
modification. Since BALLARD and SLOAN JR (2002) and HSIEH et al. (2012) did
not revise the derived expressions for the water chemical potential and fugacity, the
correlation between the Langmuir coefficient and the lattice volume was neglected.

As a sequence for the part I of the series, BALLARD and SLOAN (2004) pub-
lished their work on mixed hydrates modeling through Gibbs energy minimization
formalism. In this part III of the series, the authors aim to employ a Gibbs energy
minimization routine for multiple phases and execute a multi-phase flash calcula-
tion. Even though this methodology is not limited to hydrate phase equilibrium
calculations, it is an alternative to the prominent algorithm proposed by PARRISH
and PRAUSNITZ (1972) to predict mixed hydrate formation.

Based on BALLARD and SLOAN JR (2002)’s model, HIELSCHER et al.
(2018) proposed an approach focused on mixed hydrate modeling. Unlike the former,
the latter applies a simpler mixing rule for the volume calculation with no adjustable
parameters. Furthermore, the model devised by HIELSCHER et al. (2018) presents
results in good agreement with experimental data.

In order to rectify the inconsistency introduced by BALLARD and SLOAN
JR (2002)’s approach, SEGTOVICH et al. (2022) proposed a model capable of
accounting for hydrate compressibility and cage deformation due to temperature
and pressure conditions and guest size. The distinction between BALLARD and
SLOAN JR (2002)’s and SEGTOVICH et al. (2022)’s approaches is that the former
derived a water chemical potential expression that embodies the Langmuir adsorp-
tion constant lattice volume-dependency. Hence, their model not only incorporates
important experimental observations but also yields thermodynamically consistent
results. In addition, the authors observed another relevant consequence related to
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the correlation involving the Langmuir coefficient: the reference state (empty lat-
tice) pressure is different from the hydrate pressure at a derivation with constant
volume – as is the case for the semi-grand canonical partition function approach.
SEGTOVICH et al. (2022) attributed this phenomenon to a natural pressure shift
generated by the guest adsorption into the empty hydrate lattice. For this reason,
the authors often refer to the new model as the "Pshift" model. Further details
about the Pshift model are given in the next chapter.
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Chapter 3

Gas hydrate thermodynamic
modeling

In Chapter 2, the hydrate modeling framework was outlined chronologically,
from the first phenomenological model to the most sophisticated interpretation of
the vdWP model’s hypothesis. Here, the model idealized by VAN DER WAALS and
PLATTEEUW (1959) is thoroughly investigated. Firstly, we present the premises
and the theory on which the model is built. Next, some macroscopic properties’
equations are derived. Then, a brief discussion about the hydrate’s reference state
is carried out, and the Langmuir adsorption coefficient calculation methodology is
presented. Eventually, the Pshift approach (SEGTOVICH et al., 2022) is scruti-
nized, and the hydrate phase equilibrium calculation is disclosed.

It is worth highlighting that we are not attempting to reproduce the thermo-
dynamic modeling developed by other authors. Instead, we intend to implement our
interpretation of the approaches.

3.1 The van der Waals and Platteeuw model

The model devised by VAN DER WAALS and PLATTEEUW (1959) is a
statistical thermodynamic-based model which utilizes a solution theory to describe
clathrate phase behavior. The vdWP model is based on three fundamental – letters
(a) to (c) – and three complementary hypotheses – letters (d) to (f). Here we present
our interpretation of the original assumptions.

a. Given an a priori description of the lattice, the guest molecules can only be
placed within the clathrate cavities, and each cage can only host one guest
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molecule.

b. Guest-guest interactions are negligible.

c. The partition function associated with guest molecules’ internal degrees of
freedom is independent of the number of guest types.

d. Classical statistical mechanics is sufficient to predict all relevant properties.

e. Solute (guest) molecules can rotate freely within their cages.

f. The potential energy of a guest molecule located at a distance r from its cage
center is given by the spherically symmetric potential proposed by Lennard-
Jones and Devonshire.

As stated in the first hypothesis, the lattice is characterized by an a priori
description so that the empty lattice potential energy is not a function of guests’ po-
sitions. Therefore, the system’s potential energy can be separated into two contribu-
tions: one related to the empty lattice and the other the individual guest molecules.
Mathematically, the effect of this assumption can be illustrated by Equation 3.1.

QH = QELQguest (3.1)

QH represents the hydrate’s canonical partition function, QEL is the empty
lattice canonical partition function, and Qguest is the canonical partition function
associated with the guest molecules.

According to the approach developed by HILL (1986), the formal definition of
the canonical partition function of a system can be represented by Equation 3.2.

Q (T, V,N) =
∑
k

exp (−βHk) (3.2)

In which β is 1
kBT

, and Hk represents the Hamiltonian of a k state. The latter
variable can be decomposed as shown by Equation 3.3.

H = Hh + Hg + Hhh + Hgg + Hhg (3.3)

In this expression, the subscript indicates the source of each energy contribu-
tion. In this manner, the first two terms refer to the energy associated with the
host and guest molecules’ internal degrees of freedom, respectively. The third term
represents the energy contribution from the interaction between two or more host
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molecules (empty lattice contribution). The fourth term illustrates the Hamiltonian
from the interaction between guest molecules in different cages, which is neglected by
assumption (b). The last term symbolizes energy contribution from the interaction
between host and guest molecules.

Assumption (c) states that the guest molecules’ motion is independent of the
number of types of guests. In other words, the guest molecules’ modes of oc-
cupation are independent of each other, so their contributions can be separated.
Consequently, Equation 3.1 can be rewritten as Equation 3.4 to discriminate the
contribution of the motion of each solute molecule.

QH = QEL
∏
i

∏
j

q
Nij

ij (3.4)

In which qij represents an internal partition function that describes the motion
of a guest j in a cavity i, and Nij the number of j-type guest molecules in i-type
cages. However, since the guest molecules are differentiable and can occupy the
lattice in multiple ways, permutations must be considered. Equation 3.5 includes
the combinatorial term Wi, representing the number of possible permutations in a
i-type cavity.

QH = QEL
∏
i

Wi

∏
j

q
Nij

ij (3.5)

Thermodynamically, Wi can be understood as the entropy associated with the
possible permutations. This variable is a function of the number of host molecules
(Nh), the number of guests j in cages i (Nij), and the ratio between the number
of i-type cavities and the number of host molecules – defined as νi. Equation 3.6
shows how Wi is calculated.

Wi =
(νiNh)![(

νiNh −
∑nguest

j=1 Nij

)
!
]∏nguest

j=1 (Nij!)
(3.6)

Where:

νi =
N cages
i

Nh

(3.7)

The partition function equation shown above was devised for a system whose
temperature, volume, and the number of host and guest molecules were specified,
thus, corresponding to a canonical ensemble. Nevertheless, for systems with hy-
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drates, the most convenient ensemble, according to VAN DER WAALS and PLAT-
TEEUW (1959), has temperature, volume, number of host molecules, and absolute
activity of guest species as independent variables. In their review, MEDEIROS et al.
(2020) justify this choice by listing its advantages. According to the authors, the
hydrate’s volume is chosen as an independent variable because it also defines the
volume of the clathrate structure in which the solute molecules are trapped, namely
the empty lattice volume. In addition, they pointed out that the empty lattice
and the hydrate have a well-characterized structure with a known number of host
molecules. Eventually, they also mentioned that the hydrates are non-stoichiometric
compounds since the number of guest molecules that stabilize the crystalline struc-
ture is a function of other properties. Hence, MEDEIROS et al. (2020) claim that
specifying the guest species’ chemical potential is more valuable than defining the
number of guest molecules.

This new ensemble created by VAN DER WAALS and PLATTEEUW (1959)
is currently referred to as the semi-grand canonical, and it is represented by the
Greek letter Ξ. It is possible to rewrite the hydrate’s partition function using this
new set of independent variables by performing a Laplace transformation, illustrated
by Equation 3.8.

Ξ (T, V,Nh, λ) = QEL

Ncages
1∑

N1,1=0

Ncages
2∑

N2,1=0

· · ·
Ncages

ncage∑
Nncage,nguest=0

ncage∏
i=1

[
Wi

nguest∏
j=1

(
q
Nij

ij λ
Nij

ij

)]
(3.8)

The expression above is subject to the restriction imposed by assumption (a),
which says there can be as many guest species molecules as cages in the lattice.
Equation 3.9 summarizes this corollary.

nguest∑
j=1

(Nij) +N empty
i = N cages

i ∀ i = 1 , 2 , 3 , · · · , ncage (3.9)

Where N empty
i represents the number of empty i-type cages.

Furthermore, the absolute activity of a guest species j in a cavity i, given by
λij, is defined in Equation 3.10.

λij = exp

(
µij
kBT

)
(3.10)
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After expanding Wi and comparing the outcome in contrast with the multino-
mial theorem, Equation 3.8 can be rewritten as follows:

Ξ (T, V,Nh, λ) = QEL

ncage∏
i=1

[
1 +

nguest∑
j=1

(qijλij)

]νiNh

(3.11)

The partition function derived above (Equation 3.11) was devised by van der
Waals and Platteeuw in their 1959 paper.

3.2 Derived macroscopic properties

Several macroscopic properties can be obtained from Equation 3.11. However,
it is necessary first to correspond the semi-grand canonical partition function to
its correlative thermodynamic potential, represented by the Greek symbol Ψ. The
mathematical definition of this variable is given by Equation 3.12.

Ψ (T, V,Nh, λ) = −kBT ln Ξ (T, V,Nh, λ) (3.12)

Once more, with the aid of the Legendre transform technique, it was possible
to derive an expression for Ψ (T, V,Nh, λ) from its canonical ensemble equivalent
A (T, V,Nh, N

guest). This expression is illustrated by Equation 3.13.

Ψ = A−
nguest∑
j=1

{
ncage∑
i=1

[
Nij

(
∂A

∂Nij

)
T,V,Nh,Nmn 6=Nij

]}
= A−

nguest∑
j=1

ncage∑
i=1

Nijµij (3.13)

Using the definition of absolute activity, expressed by Equation 3.10, the hy-
drate thermodynamic potential above can be rewritten as a function of its natural
coordinates.

Ψ = A−
nguest∑
j=1

ncage∑
i=1

NijkBT lnλij (3.14)

Equation 3.15, below, illustrates the differential form of Equation 3.14.
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dΨ = −SdT − PdV + µhdNh − kB

(
nguest∑
j=1

ncage∑
i=1

NijTd lnλij

+

nguest∑
j=1

ncage∑
i=1

Nij lnλijdT

) (3.15)

Which, for convenience, can be displayed as Equation 3.16.

dΨ = −

(
S + kB

nguest∑
j=1

ncage∑
i=1

Nij lnλij

)
dT − PdV + µhdNh

−kBT
nguest∑
j=1

ncage∑
i=1

Nijd lnλij

(3.16)

The correlation between Equations 3.12 and 3.16 enables us to derive expres-
sions for some macroscopic properties from microscopic ones easily. The total num-
ber of guest molecules, hydrate’s entropy and pressure, and the host molecules’
chemical potential are the macroscopic properties directly obtained by differentia-
tion of the clathrate’s potential.

Nij = − 1

kBT

(
∂Ψ

∂ lnλij

)
T,V,Nh,λmn 6=ij

= − λij
kBT

(
∂Ψ

∂λij

)
T,V,Nh,λmn6=ij

(3.17)

S = −
(
∂Ψ

∂T

)
V,Nh,λ

− kB
nguest∑
j=1

ncage∑
i=1

Nij lnλij (3.18)

P = −
(
∂Ψ

∂V

)
T,Nh,λ

(3.19)

µh =

(
∂Ψ

∂Nh

)
T,V,λ

(3.20)

Where the total number of molecules of a guest species j is given by:

Nj =

ncage∑
i=1

Nij (3.21)

Moreover, since the system is in equilibrium, the absolute activities for a guest j in
any cage i are the same regardless of occupation mode.
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λj = λij ∀ i = 1 , 2 , 3 , · · · , ncage (3.22)

In addition, with some effort, one can deduce the remaining macroscopic prop-
erties’ expressions. Both internal energy and enthalpy expressions derive from the
differentiation of Ψ/ (kBT ). Equation 3.23 demonstrates the application of the chain
rule.

d

(
Ψ

kBT

)
=

1

kBT
dΨ− Ψ

kBT 2
dT (3.23)

Combining Equations 3.14, 3.16, and 3.23, the differential form of Ψ/ (kBT )

can be written as:

d

(
Ψ

kBT

)
= − U

kBT 2
dT − P

kBT
dV +

µh
kBT

dNh −
nguest∑
j=1

Njd lnλj (3.24)

Applying the same reasoning used to derive the other properties’ expressions,
the internal energy of the hydrate can be calculated by differentiating Ψ/ (kBT ) for
temperature, as demonstrated by Equation 3.25.

U

kBT 2
= −

[
∂ (Ψ/kBT)

∂T

]
V,λ,Nh

(3.25)

Finally, the hydrate enthalpy is given by:

H = U + PV = −kBT 2

[
∂ (Ψ/kBT)

∂T

]
V,λ,Nh

− V
(
∂Ψ

∂V

)
T,Nh,λ

(3.26)

3.3 Hydrate empty lattice and guest molecules con-

tributions

One of the effects of van der Waals and Platteeuw’s assumptions was the segre-
gation of empty lattice and guest molecules’ contributions to the partition function.
This section exhibits the separation process of these contributions at a macroscopic
level. Equation 3.12 above shows us that the thermodynamic potential of the hy-
drate is proportional to the natural logarithm of the associated partition function.
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Hence, the logarithmic form of Ξ (T, V,Nh, λ) is crucial to further developments.
This expression is displayed by Equation 3.27.

ln Ξ = lnQEL +

ncage∑
i=1

νiNh ln

[
1 +

nguest∑
j=1

(qijλij)

]
(3.27)

One can correlate the hydrate partition function from Equation 3.27 and the
derived expressions for the macroscopic properties presented in Section 3.2. This
correlation is essential to identify empty lattice and guest molecules’ contributions
to macroscopic properties. The subsequent subsections will address each property.

3.3.1 Number of guest molecules and cage occupancy

From Equation 3.17, it is known that:

Nij = − λij
kBT

(
∂ ln Ψ

∂λij

)
T,V,Nh,λim 6=ij

= − λij
kBT

[
∂ (−kBT ln Ξ)

∂λij

]
T,V,Nh,λim 6=ij

(3.28)

which can be expressed as:

Nij = λij

(
∂ ln Ξ

∂λij

)
T,V,Nh,λim 6=ij

(3.29)

The differentiation of the right side of Equation 3.27 with respect to λij results
in: (

∂ ln Ξ

∂λij

)
T,V,Nh,λim6=ij

=
νiNhqij

1 +
∑nguest

j=1 (qijλij)
(3.30)

Hence, Equation 3.29 can be rewritten as Equation 3.31.

Nij =
νiNhqijλij

1 +
∑nguest

j=1 (qijλij)
=

νiNhqijλj
1 +

∑nguest

j=1 (qijλj)
(3.31)

or even, according to Equation 3.21:

Nj =

ncage∑
i=1

νiNhqijλj
1 +

∑nguest

j=1 (qijλj)
(3.32)

Nevertheless, the number of guest molecules trapped within the crystalline
structure is a less practical property than the cage occupancy. The latter property
is defined as the ratio between the number of guest species j within cages i and the
total number of i-type cages, as illustrated by Equation 3.33.
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θij =
Nij

νiNh

(3.33)

Equation 3.34 describes the cage occupancy in terms of the natural coordinates
of the semi-grand canonical ensemble.

θij =
qijλj

1 +
∑nguest

j=1 (qijλj)
(3.34)

3.3.2 Entropy

Analogously, the development of Equation 3.18 gives:

S = −
[
∂ (−kBT ln Ξ)

∂T

]
V,Nh,λ

− kB
nguest∑
j=1

ncage∑
i=1

Nij lnλij (3.35)

S = kB

[
ln Ξ

(
∂T

∂T

)
V,Nhλ

+ T

(
∂ ln Ξ

∂T

)
V,Nh,λ

]
− kB

nguest∑
j=1

ncage∑
i=1

Nij lnλij (3.36)

Where the differentiation of ln Ξ with respect to temperature gives:

(
∂ ln Ξ

∂T

)
V,Nh,λ

=

(
∂ lnQEL

∂T

)
V,Nh,λ

+

ncage∑
i=1

νiNh

∑nguest

j=1 [λij (∂qij/∂T)]

1 +
∑nguest

j=1 (qijλij)
(3.37)

(
∂ ln Ξ

∂T

)
V,Nh,λ

= −
[
∂ (AEL/kBT)

∂T

]
V,Nh,λ

+

+

ncage∑
i=1

νiNh

∑nguest

j=1 [λij (qij/qij) (∂qij/∂T)]

1 +
∑nguest

j=1 (qijλij)
(3.38)

(
∂ ln Ξ

∂T

)
V,Nh,λ

= − 1

kB

[
1

T

(
∂AEL

∂T

)
V,Nhλ

− AEL

T 2

]

+

ncage∑
i=1

νiNh

∑nguest

j=1 [λijqij (∂ ln qij/∂T)]

1 +
∑nguest

j=1 (qijλij)

(3.39)
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(
∂ ln Ξ

∂T

)
V,Nh,λ

=
1

kBT

[
TSEL + AEL

T

]
+

ncage∑
i=1

nguest∑
j=1

[
Nij

(
∂ ln qij
∂T

)]
(3.40)

The combination of Equations 3.36 and 3.40 results in Equation 3.41, shown
below.

S = kB

{
− AEL

kBT
+

ncage∑
i=1

νiNh ln

[
1 +

nguest∑
j=1

(qijλij)

]
+
SEL

kB
+
AEL

kBT

+T

ncage∑
i=1

nguest∑
j=1

[
Nij

(
∂ ln qij
∂T

)]}
− kB

ncage∑
i=1

nguest∑
j=1

Nij lnλij

(3.41)

S = SEL + kB

ncage∑
i=1

{
νiNh ln

[
1 +

nguest∑
j=1

(qijλij)

]
+

+T

nguest∑
j=1

[
Nij

(
∂ ln qij
∂T

)
V,Nh,λ

]
−

nguest∑
j=1

Nij lnλij

} (3.42)

The first term on the right-hand side of Equation 3.42 corresponds to the
empty lattice’s entropy, whereas the second term represents the guest molecules’
enclathration’s contribution.

3.3.3 Pressure

Equation 3.19 gives us the correlation between the hydrate’s pressure and Ψ.
Through Equation 3.12, it is possible to calculate the system’s pressure as a function
of microscopic properties.

P = −
[
∂ (−kBT ln Ξ)

∂V

]
T,Nh,λ

(3.43)

P = kBT

(
∂ ln Ξ

∂V

)
T,Nh,λ

(3.44)

where the differentiation of ln Ξ concerning the hydrate’s volume gives:
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(
∂ ln Ξ

∂V

)
T,Nh,λ

=

(
∂ lnQEL

∂V

)
T,Nh,λ

+

ncage∑
i=1

νiNh

∑nguest

j=1 [λij (∂qij/∂V )]

1 +
∑nguest

j=1 (qijλij)
(3.45)

(
∂ ln Ξ

∂V

)
T,Nh,λ

= −
[

(AEL/kBT)

∂V

]
T,Nh,λ

+

ncage∑
i=1

νiNh

∑nguest

j=1 [λij (qij/qij) (∂qij/∂V )]

1 +
∑nguest

j=1 (qijλij)

(3.46)

(
∂ ln Ξ

∂V

)
T,Nh,λ

=
PEL

kBT
+

ncage∑
i=1

νiNh

∑nguest

j=1 [qijλij (∂ ln qij/∂V )]

1 +
∑nguest

j=1 (qijλij)
(3.47)

(
∂ ln Ξ

∂V

)
T,Nh,λ

=
PEL

kBT
+

ncage∑
i=1

nguest∑
j=1

Nij

(
∂ ln qij
∂V

)
T,Nh,λ

(3.48)

The substitution of the derived expression for (∂ ln Ξ/∂V ) in Equation 3.44 results
in Equation 3.49.

P = PEL + kBT

ncage∑
i=1

nguest∑
j=1

Nij

(
∂ ln qij
∂V

)
T,Nh,λ

(3.49)

The first term on the right-hand side corresponds to the empty lattice’s pres-
sure, while the second represents the contribution of guest molecules enclathration.

3.3.4 Host molecules’ chemical potential

Finally, for the host’s chemical potential, the expansion of Equation 3.20 gives:

µh = −kBT
[
∂ (ln Ξ)

∂Nh

]
T,V,λ

(3.50)

Where the differentiation of ln Ξ concerning the number of host molecules
results in:

(
∂ ln Ξ

∂Nh

)
T,V,λ

=

(
∂ lnQEL

∂Nh

)
T,V,λ

+
∂

∂Nh

{
Nh

ncage∑
i=1

νi ln

[
1 +

nguest∑
j=1

(qijλij)

]}
(3.51)
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(
∂ ln Ξ

∂Nh

)
T,V,λ

= − 1

kBT

(
∂AEL

∂Nh

)
T,V,λ

+

ncage∑
i=1

νi

{
ln

[
1 +

nguest∑
j=1

(qijλij)

]
+

+Nh

∑nguest

j=1 λij (∂qij/∂Nh)

1 +
∑nguest

j=1 (qijλij)

} (3.52)

(
∂ ln Ξ

∂Nh

)
T,V,λ

= − µ
EL
h

kBT
+

ncage∑
i=1

νi

{
ln

[
1 +

nguest∑
j=1

(qijλij)

]
+

+Nh

∑nguest

j=1 qijλij (∂ ln qij/∂Nh)

1 +
∑nguest

j=1 (qijλij)

} (3.53)

Replacing the expression above (Equation 3.53) in Equation 3.50 generates:

µh = µELh − kBT
ncage∑
i=1

{
νi ln

[
1 +

nguest∑
j=1

(qijλij)

]
+

nguest∑
j=1

Nij

(
∂ ln qij
∂Nh

)
T,V,λ

}
(3.54)

Again, contributions from the empty lattice and the guest species can be ade-
quately distinguished.

3.3.5 Internal Energy and Enthalpy

For the internal energy and enthalpy, the same procedure is performed.

U = kBT
2

[
∂ (ln Ξ)

∂T

]
V,λ,Nh

(3.55)

Where the differentiation of ln Ξ with respect to temperature results in:

(
∂ ln Ξ

∂T

)
V,λ,Nh

=

(
∂ lnQEL

∂T

)
V,λ,Nh

+

ncage∑
i=1

νiNh

∑nguest

j=1 λij (∂qij/∂T)

1 +
∑nguest

j=1 qijλij
(3.56)

(
∂ ln Ξ

∂T

)
V,λ,Nh

= − 1

kB

[
∂ (AEL/T)

∂T

]
V,λ,Nh

+

ncage∑
i=1

νiNh

∑nguest

j=1 qijλij (∂ ln qij/∂T)

1 +
∑nguest

j=1 qijλij
(3.57)
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(
∂ ln Ξ

∂T

)
V,λ,Nh

= − 1

kB

[
1

T

(
∂AEL

∂T

)
V,λ,Nh

− AEL

T 2

]
+

+

ncage∑
i=1

nguest∑
j=1

Nij

(
∂ ln qij
∂T

) (3.58)

(
∂ ln Ξ

∂T

)
V,λ,Nh

=
UEL

kBT 2
+

ncage∑
i=1

nguest∑
j=1

Nij

(
∂ ln qij
∂T

)
V,λ,Nh

(3.59)

Substituting the derived expression for (∂ ln Ξ/∂T) depicted above in Equation
3.55 we arrive at:

U = UEL + kBT
2

ncage∑
i=1

nguest∑
j=1

Nij

(
∂ ln qij
∂T

)
V,λ,Nh

(3.60)

For the enthalpy, we have:

H = U + PV = UEL + kBT
2

ncage∑
i=1

nguest∑
j=1

Nij

(
∂ ln qij
∂T

)
V,Nh,λ

+

+PELV + kBTV

ncage∑
i=1

nguest∑
j=1

Nij

(
∂ ln qij
∂V

)
T,Nh,λ

(3.61)

And since
HEL = UEL + PELV (3.62)

Equation 3.61 can be simplified into:

H = HEL + kBT

{
ncage∑
i=1

nguest∑
j=1

Nij

[
T

(
∂ ln qij
∂T

)
V,Nh,λ

+ V

(
∂ ln qij
∂V

)
T,Nh,λ

]}
(3.63)

Through Equations 3.60 and 3.63, it is possible to clearly distinguish both
empty lattice’s and guest’s contributions (a melting and a heat of adsorption effect,
respectively).
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3.4 Langmuir adsorption coefficient calculation

In order to segregate the empty lattice’s contribution from the guest species’
contribution, it was necessary to write the macroscopic properties as functions of
microscopic coordinates. So, from the derived expressions presented in Section 3.3,
it is evident the macroscopic properties’ dependence on λij and qij. Nevertheless,
these variables are not the most convenient ones.

The Langmuir adsorption coefficient – henceforth called Langmuir coefficient
– is a key property within thermodynamic calculations involving the adsorption
phenomenon since it describes how the adsorbate interacts with the adsorbent’s
surface. In the context of hydrate phase equilibrium prediction, we need to compute
the Langmuir coefficient to contemplate the guest-host adsorption interaction within
the thermodynamic modeling.

3.4.1 The Langmuir coefficient expression

Regarding the guest species representation in a coupled model scenario (vdWP
model and fluid phase equation of state), the fugacity is a more appropriate variable
to be employed as a substitute for λij. The guest molecules’ fugacity is defined by
Equation 3.64.

f̂ij = P exp

(
µij − µIGj
kBT

)
(3.64)

As in Equation 3.22, the chemical potential of guest species j in cages i will be
expressed simply as µj from now on. It is worth highlighting that, in this work, the
abbreviation "IG" always refers to a pure ideal gas, never to a mixture. In addition,
we dropped the index i from the fugacity because we assume equilibrium between
small and large as well as between each cage and bulk.

Since both fugacity and absolute activity are representations of the chemical
potential in an exponential scale, the replacement of λj for f̂j is rather straightfor-
ward. Combining Equations 3.10 and 3.64 we arrive at:

λj =
f̂j
P

exp

(
µIGj
kBT

)
(3.65)

According to MCQUARRIE (1976), the ideal gas (IG) state’s chemical poten-
tial can be written as:
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µIGij = −kBT ln (kBTΦj) + kBT lnP (3.66)

In which Φj portrays the configurational integral for particle momentum and
internal degrees of freedom. This variable represents the product of intramolecular
partition functions associated with translational, rotational, and vibrational ener-
gies. It should be noted that Φj is component-specific and exclusively dependent
on temperature. Moreover, Φj can be described as the ratio between the internal
partition function of a guest molecule j in the ideal gas state and its volume, as
follows.

Φj =

(
2πmjkBT

h2
Planck

)3/2

qIG,rotationalj qIG,vibrationalj (3.67)

Hence, Equation 3.66 enables us to write the absolute activity of a guest j in
terms of its fugacity.

λj =
f̂j

kBTΦj

(3.68)

Likewise, the internal partition function qij is not the most suitable way to
describe the molecules’ behavior. Since the hydrate’s formation is, essentially, an
adsorption phenomenon, it is more convenient to calculate the guest’s Langmuir
adsorption coefficient (Cij). Therefore, we must find means of writing qij as a
function of Cij. One method consists of substituting the λij in Equation 3.34 for
the right-hand side of Equation 3.68.

θij =
qij f̂j/ (kBTΦj)

1 +
∑nguest

j=1

[
qij f̂j/ (kBTΦj)

] (3.69)

If closely examined, this is identical to a Langmuir adsorption isotherm, as
depicted by Equation 3.70.

θij =
Cijfj

1 +
∑nguest

j=1 (Cijfj)
(3.70)

In which fj represents the fugacity of component j in the fluid phase.

Comparing Equations 3.69 and 3.70, it is easy to correlate the Langmuir ad-
sorption coefficient to the internal partition function.
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Cij =
qij

kBTΦj

(3.71)

Worth noticing that, because of assumption (e), the internal partition function
of a guest j in a cage i gets the same contribution Φj that this molecule would get
in the ideal gas state. In other words, since the cage does not interfere with guest
molecules’ rotation and vibration, the internal degrees of freedom contribution is
the same as if the ideal gas state condition was imposed.

Furthermore, as a result of assumptions (e) and (f), an expression for the
internal partition function (qij) can be formulated. Equation 3.72, below, illustrates
this expression.

qij = Φj

∫ Ri

0

[
exp

(
−wij
kBT

)
4πr2

]
dr (3.72)

In which the second term of the right-hand side of Equation 3.72 expresses the
configurational integral for the free volume in spherical coordinates. Ri represents
the spherical cavity radius of a cage i – which can be a mean radius or the actual
distance between host and guest molecules, depending on the assumptions –, wij
expresses the interaction potential function on a guest species j in a cage i, and r
is the radial coordinate.

Now we can devise a more handy expression for the Langmuir coefficient,
depicted below by Equation 3.73.

Cij =
1

kBT

∫ Ri

0

[
exp

(
−wij
kBT

)
4πr2

]
dr (3.73)

Moreover, with Equations 3.68 and 3.71 it is possible to arrange a clearer
correlation between the original variables (λj and qij) and the most convenient ones
(f̂j and Cij).

λjqij = f̂jCij (3.74)

Nonetheless, to use f̂j and Cij to compute the macroscopic properties, we still
need to make some adjustments. Through algebraic manipulation Equation 3.34
can be rewritten as:
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1 +

nguest∑
j=1

(qijλj) =
1

1−
∑nguest

j=1 θij
(3.75)

With Equation 3.75, the logarithm form of Ξ is revised.

ln Ξ = lnQEL −
ncage∑
i=1

[
νiNh ln

(
1−

nguest∑
j=1

θij

)]
(3.76)

It should be noted that every derived property presented in Section 3.3 depends
on the differential form of ln qij, depicted by Equation 3.77.

d ln qij = d ln (CijkBTΦj) = d ln (CijkBT ) + d ln Φj (3.77)

As previously mentioned, Φj can be defined as the ratio between the internal
partition function of a molecule j at the ideal gas state and its volume. Mathemat-
ically, this variable can be depicted as:

Φj (T ) =
qIGj (T )

V̄ IG
j

(3.78)

ln [Φj (T )] = ln
[
qIGj (T )

]
− ln V̄ IG

j (3.79)

Thus, the differential form of ln [Φj (T )] is given by:

d ln (Φj) =

[
∂ ln

(
qIGj
)

∂T

]
dT =

ūIGj
kBT 2

dT (3.80)

Being ūIGj the internal energy of a guest species j at ideal gas state, i.e., solely
function of temperature. Unlike the Langmuir adsorption coefficients, which also
depend on the lattice’s intensive volume. Therefore, the differential form of Cij is
represented by:

dCij =

(
∂Cij
∂V̄ EL

)
T

dV̄ EL +

(
∂Cij
∂T

)
V̄ EL

dT (3.81)

Where:

V̄ EL =
V

Nh

(3.82)
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The differential form of Cij in natural coordinates, thus, can be expressed as:

dCij =

 ∂Cij

∂
(
V
Nh

)

T

(
dV

Nh

− V

N2
h

dNh

)
+

(
∂Cij
∂T

)
V,Nh

dT (3.83)

The first parcel of the first term on the right-hand side of Equation 3.83 is
directly connected to the geometric relations between cages radii and intensive lattice
volume. Therefore, the assumptions regarding the Langmuir coefficients’ dependence
on intensive lattice volume, and the latter’s relation with cage radii, will dictate the
model’s capability to predict the influence of temperature, pressure, and guest size
on the phase equilibrium calculation.

3.4.2 Guest-host adsorption interaction

Now that the Langmuir coefficient expression (Equation 3.73) has been de-
vised, we should focus on how the guest-host interaction due to guest adsorption is
computed.

According to MEDEIROS et al. (2020), one of the most common approaches to
modifying the vdWP model consists of changing the Langmuir coefficient expression,
which includes interaction potential between host and guest molecules. Since we
are not concerned with describing every variation, we will limit our discussion to
studying the Langmuir coefficient expressions that use a spherically symmetrical
potential function. More specifically, we will focus on two possible variations of the
LENNARD-JONES and DEVONSHIRE (1937) model: the Square Well and the
Kihara potentials.

3.4.2.1 Square Well potential

Conceptually, a square well potential can be defined as a potential-energy
function to which a particle is subjected which is infinite everywhere except for
a specified portion of space (LEVINE, 2014). For a spherically symmetrical sys-
tem such as the one used to model clathrates’ cages, BARRER and EDGE (1967)
proposed the following mathematical definition to describe guest adsorption:

wij (r) =

−w0, 0 < r < Ri

+∞
(3.84)
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The substitution of Equation 3.84 on Equation 3.73 produces:

Cij =
4πR3

i

3kBT
exp

(
−w0,ij

kBT

)
(3.85)

A close examination of Equation 3.85 reveals that its right-hand side contains
the volume of the spherical cavity. Moreover, one can also notice that, except for
T , all the other variables are parameters estimated from equilibrium data. Thus,
conveniently, the above expression can be rewritten as follows:

Cij =
Aij
T

exp

(
Bij

T

)
(3.86)

The equation above is the empirical relation used by PARRISH and PRAUS-
NITZ (1972) to calculate the Langmuir coefficients within the temperature range
of 260K–300K. Nevertheless, the authors pointed out that for calculations outside
the mentioned temperature range, Equation 3.73 should be used along with the
Kihara potential. Using Equation 3.86 PARRISH and PRAUSNITZ (1972) and
MUNCK et al. (1988) estimated Aij and Bij for some guest species, for both sI and
sII configurations. e

3.4.2.2 Kihara potential

As shown in MCKOY and SINANOǦLU (1963) ’s work, the original potential
function devised by Kihara looks identical to the prominent 12-6 Lennard-Jones
potential equation, and both can be written as follows.

w (d) = 4ε

[(σ
d

)12

−
(σ
d

)6
]

(3.87)

However, while the Lennard-Jones considered d as the distance between inter-
action points in each particle, Kihara used the same variable to embody the shortest
distance between the hard cores of interacting species (MEDEIROS et al., 2020).
To avoid misinterpretations, the Kihara potential function is generally written as:

w (d) = 4ε

[(
σ

d− a

)12

−
(

σ

d− a

)6
]

(3.88)

where d represents the distance between interaction points in each particle, σ is
the distance for which the potential is 0 – also called the soft-core parameter –, ε
represents the depth of the energetic well located at d = 21/6σ and a, the molecule’s
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Figure 3.1: Graphic representation of Kihara’s parameters for carbon dioxide and
methane molecules. Reproduced from MEDEIROS et al. (2020)

hard-core radius. Figure 3.1 illustrates a graphic representation of these parameters
for carbon dioxide and methane molecules.

In this sense, (d − a) is an alternative, straightforward way of representing
the shortest distance between the hard cores of interacting species, as intended by
Kihara. It is worth mentioning that, for multi-component systems, the parameters
a, σ, and ε are the outcome of some combining rule application, usually the Lorentz-
Berthelot rules. Specifically for gas hydrates, the Lorentz-Berthelot combining rule
applied to combine each guest and water of the shell yields:

a =
a0
j + a0

w

2
(3.89)

σ =
σ0
j + σ0

w

2
(3.90)

ε =
√
ε0
jε

0
w (3.91)

Where superscript 0 indicates pure component parameters, the subscripts rep-
resent either the guest (j) or the host – w stands for water. In Equations 3.89 -
3.91 the combined parameters are indicated with a bar. However, since we are only
dealing with natural gas hydrates, in which the host is always water and the guest
is a light component j, for simplicity, the bar will be omitted, and the resulting
parameter will be accompanied by the subscript j to indicate the guest. There-
fore, for instance, the combination between the soft-core parameter of the pure light
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component j (σ0
j ) and the pure water (σ0

w) will be represented as σj.

According to VAN DER WAALS and PLATTEEUW (1959), the LENNARD-
JONES and DEVONSHIRE (1937) ’s approach, which comprised of the application
of the 12-6 Lennard-Jones potential equation to the cell theory archetype, pro-
vides a robust method for the quantitative assessment of the partition function of
a guest species within its cage. Nonetheless, MCKOY and SINANOǦLU (1963) ’s
study revealed that Lennard-Jones and Devonshire’s methodology’s effectiveness is
restricted to spherical molecules, such as methane. According to the authors, the
Kihara potential was the most suitable for rod-like molecules.

A variation of the original Kihara’s potential was used in this work. The
modification, proposed by JOHN et al. (1985) to improve the original Kihara’s
potential performance, introduces new parameters as portrayed in Equations 3.92.

wij = 2εjZi

[
σ12
j

R11
i r

(
δ10 +

aj
Ri

δ11

)
−

σ6
j

R5
i r

(
δ4 +

aj
Ri

δ5

)]
(3.92)

Where:

δn =
1

n

[(
1− r

Ri

− aj
Ri

)−n
−
(

1 +
r

Ri

− aj
Ri

)−n]
(3.93)

Zi represents the coordination number of a cage i, and aj, σj, and εj are the Ki-
hara pair interaction potential parameters between a host molecule from the lattice
and a guest species j.

In their paper, PRATT et al. (2001) pointed out that the physical meaning of
r = Ri − aj for the Kihara potential is the guest molecule’s spherical core touching
the cage’s edge. For this reason, according to the authors, the evaluation of the
integrand of Equation 3.72 in r > Ri−aj does not physically make sense. Therefore,
the upper limit of the integrand mentioned above should be changed to Ri − aj.

Cij =
1

kBT

∫ Ri−aj

0

[
exp

(
−wij
kBT

)
4πr2

]
dr (3.94)

The Equation 3.94 presents the final form of the expression applied to calculate
the Langmuir coefficients whenever the Kihara parameters (aj, σj, and εj) were
available.

35



3.5 The pressure shift phenomenon

In their 1959’s paper, VAN DER WAALS and PLATTEEUW (1959) sug-
gested that the host lattice, supposedly a rigid structure, would not be affected by
the guest molecules. In addition, the authors neglected cage radii variation. Never-
theless, through recent experiments, it is known that both assumptions are at least
inaccurate. Not only do we know that the lattice is compressible and its parameters
in the original vdWP framework are guest-dependent, but the hydrate’s cavities do
not have a constant radius. In this context, several models emerged to enhance
hydrate formation prediction’s reliability.

The first phenomenological model to assimilate these new features was the one
devised by KLAUDA and SANDLER (2000). In their paper, the authors acknowl-
edged variations of hydrate volume with temperature and pressure for a specific
guest species and hydrate lattice distortions caused by guest size. However, their
approach still assumed that the cages’ radii were constant. Unlike BALLARD and
SLOAN JR (2002) and HSIEH et al. (2012), whose models included both hydrate
lattice compressibility and cavities radii variation. The latter assumption was carried
out through Langmuir adsorption coefficients’ dependence on the lattice intensive
volume. In their work, SEGTOVICH et al. (2022) noticed that, as a consequence of
the correlation between Cij and V̄ EL, the hydrate should have a different pressure
value from the empty lattice with the same volume. The authors attributed this
phenomenon to a natural pressure shift generated by the isochoric enclathration of
guest molecules into the hydrate’s crystalline structure. Mathematically, this phe-
nomenon can be observed by rewriting Equation 3.49 and employing the correlations
presented in Equations 3.73 and 3.86.

P − PEL = kBT

ncage∑
i=1

nguest∑
j=1

νiθij

∂ (lnCij)

∂
(
V
Nh

)

T

(3.95)

where the difference P − PEL represents the pressure shift caused by guests’ en-
clathration; here, we will address this difference by using ∆PH−EL, similarly to
SEGTOVICH et al. (2022).

Visually, this phenomenon can be represented by Figure 3.2, which presents
the enclathration of small and large guests through two perspectives: an isobaric
and an isochoric.

In Figure 3.2, the letter D represents the empty lattice (EL), which, despite
being hypothetical, is the hydrate reference state at reference volume (V0) and pres-
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Figure 3.2: Graphic representation of the pressure shift phenomenon through both
isochoric and isobaric perspectives. The blue squares and gray circles depict the
hydrate lattice and its cavities, respectively. The green particles represent a compo-
nent of large molecular size, whereas the orange particles are a component of small
molecular size. Reproduced from SEGTOVICH et al. (2022).
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sure (P0). The transition depicted by D → E describes the isochoric enclathration
process of large guests (green particles) as they fit tightly within the cavities. After
the enclathration, the hydrate illustrated by letter E in Figure 3.2 would still have
a volume of V0 since the system volume is specified. However, according to the new
model’s premises, there is a computable pressure shift between the states D and E.
In this case, the calculation shows a positive pressure shift (∆PH−EL > 0), so that
P > P0. With this reasoning, to compute the volume that this hydrate would have
at P0, we must assume that the reference state – i.e., the empty lattice – exists at a
pressure lower than P0 (PEL > P0) so that PEL + ∆P (+) = P0. This new reference
state is given by letter A and, by virtue of the EL’s intrinsic compressibility, its
volume is greater than V0 (V EL > V0) since it is assumed to exist in a pressure lower
than P0. Thus, considering a hydrate whose guests fit tightly within its cages (letter
B), its volume is greater than V0 at P0.s

The reasoning behind the enclathration process of small guests (orange parti-
cles) is very similar. At constant volume (V0), this process is given by D → C and
a pressure shift can be computed by implementing the Pshift model. Nonetheless,
contrarily to what was observed for large guests, the pressure shift associated with
the path D → C is negative (P < P0). Now, to analyze this enclathration from an
isobaric perspective regarding P0, the EL must be assumed to exist at a pressure
PEL > P0, so that PEL + ∆P (−) = P0. In Figure 3.2, this new reference state is
represented by the letter G, and, since it occurs at a pressure greater than P0, it has
a volume V EL < V0. Hence, at reference pressure (P0), a hydrate whose guests fit
loosely within its cavities (letter F) has a lower volume when compared to an empty
lattice with V0 (letter D).

To summarize, from the reasoning employed to interpret the phenomena il-
lustrated by Figure 3.2, it can be observed that the Pshift model offers a perspec-
tive that corroborates with the experimental observations that the enclathration of
prominent guests expands the hydrate lattice, whereas small guests shrink it.

Even though the Pshift approach appears to conflict with the assumptions
used by VAN DERWAALS and PLATTEEUW (1959), SEGTOVICH et al. (2022)’s
proposition is a new interpretation of the vdWP model’s hypotheses. Conversely
to what one might think, no assumptions are violated by stating that the actual
hydrate must have a different pressure from the empty lattice. These two states are
not in thermodynamic equilibrium. The vdWP model only requires that both states
have the same volume.
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3.6 Hydrate lattice volumetric properties

In Section 3.4, it was demonstrated that the Langmuir adsorption coefficients
depend on temperature and lattice intensive volume. Hence, to accurately represent
the crystalline structure of a compressible hydrate, we must correlate the cages’ radii
variation to the lattice intensive volume. Some geometric relations between the crys-
talline structure’s unit cell and the whole hydrate will be addressed in this section.
Similar to SEGTOVICH et al. (2022), the cage radius deformation is considered to
be isotropic.

It is known that sI and sII hydrates are of cubic symmetry. In this manner,
the volume of a cubic unit cell is given by:

V uc = (auc)3 (3.96)

Where auc represents the cubic unit cell’s edge length.

The correlation between the unit cell’s edge and the cages radii (R) is ex-
perimental by nature. Here, following SEGTOVICH et al. (2022)’s approach, we
correlated auc and R via Equation 3.97.

R = f
0
aucf (3.97)

The factor of proportionality f
0
depicts the array that correlates R0 to auc0 .

The latter variables are experimental parameters representing the cages’ radii and
the unit cell’s edge length, respectively.

f
0

=
R0

auc0

(3.98)

Likewise, f is another proportionality factor; however, its computation is not
as straightforward as the former.

f = exp

[(
κR
κhyd

)
ln

(
auc

auc0

)]
(3.99)

f = exp

ln

(auc
auc0

) κR
κhyd


 =

(
auc

auc0

) κR
κhyd


(3.100)
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In Equation 3.99 κhyd and κR portrays the unit cell and cages compressibility
factors, respectively. The array κR has as many elements as there are cage types.

The differential form of the Langmuir adsorption coefficient presented in Sec-
tion 3.4 indicated its variable’s dependency with the lattice intensive volume. Since
the latter is the ratio between V and Nh, the Langmuir coefficient is a function of
these two variables. Decomposing the partial derivative ∂Cij/∂

(
V
Nh

)
in terms of the

lattice geometric parameters, we have:

∂Cij

∂
(
V
Nh

) =
∂Cij
∂Ri

∂Ri

∂auc
∂auc

∂V uc

∂V uc

∂
(
V
Nh

) (3.101)

From Equation 3.73, the first term on the right-hand side of Equation 3.101
can be calculated by:

∂Cij
∂Ri

=
1

kBT

∫ Ri−ai

0

[
−4πr2

kBT

(
∂wij
∂Ri

)
exp

(
−wij
kBT

)
dr

]
(3.102)

The second term of 3.101 is obtained through the application of the chain rule,
as shown below.

∂Ri

∂auc
=

∂

∂auc

[
f

0
aucf (auc)

]
(3.103)

Since f
0
is not a function of auc, the former can be withdrawn from the deriva-

tion.

∂Ri

∂auc
= f

0

∂

∂auc
[
aucf (auc)

]
(3.104)

∂Ri

∂auc
= f

0

(
f + auc

∂f

∂auc

)
(3.105)

Where:

∂f

∂auc
=

(
κR
κhyd

)(
1

auc0

)(
auc

auc0

) κR
κhyd

−1


(3.106)

The multiplication of the right-hand side on Equation 3.106 by (auc/auc) results
in:
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∂f

∂auc
=

(
κR
κhyd

)(
1

auc

)(
auc

auc0

) κR
κhyd


(3.107)

The variable f is recovered in the right-hand side’s last term.

∂f

∂auc
=

(
κR
κhyd

)(
1

auc

)
f (3.108)

Substituting the (∂f/∂auc) expression on Equation 3.105 we have:

∂Ri

∂auc
= f

0

[
f + auc

(
κR
κhyd

)(
1

auc

)
f

]
(3.109)

Through some algebraic manipulation, Equation 3.109 turns into:

∂Ri

∂auc
= f

0

(
κR
κhyd

)
f (3.110)

As for the third term on Equation’s 3.101 right-hand side, we have:

∂auc

∂V uc
=

1

3
(V uc)−2/3 =

(auc)−2

3
(3.111)

Before we deduce the expression for the last term of ∂Cij/∂
(

V
Nh

)
decomposition,

a consideration must be made. The hydrate and its unit cells have the same specific
volume since, by definition, the crystalline structure of the former is assembled by
the replication of the latter. Therefore:

V

Nh

=
V uc

Nuc
h

= V̄ EL (3.112)

Finally, we have:

∂V uc

∂
(
V
Nh

) = Nuc
h (3.113)

Now the partial derivative of Cij in terms of lattice intensive volume can be
obtained through some lattice parameters (κhyd, κR, a

uc
0 , N

uc
h , R0) and the calculation

of auc, which, in turn, is a function of temperature, pressure and composition of
hydrate-forming phase. Interestingly, the correlation displayed by Equation 3.112
shows us that auc – which is tied to V uc – can be computed through V̄ EL.
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The expression used to calculate the empty lattice volume is given by:

V̄ EL/
(
m3mol−1

)
=

[
auc0 + α1

(
T − T crystal0

)
+ α2

(
T − T crystal0

)2

+

+α3

(
T − T crystal0

)3
]3

10−30NA

Nuc
h

exp
[
−κhyd

(
PEL − P crystal

0

)] (3.114)

Where α1, α2 and α3 are the linear parameters from a cubic fit for the ther-
mal expansion term; NA is the Avogadro number; κhyd is the hydrate compressibil-
ity; T crystal0 and P crystal

0 are the experimental reference temperature and pressure of
the experiments used to regress the volumetric parameters of crystalline structures.
Usually, T crystal0 = 0 K and P crystal

0 = 101 325 Pa. In addition, to calculate V̄ EL in
m3/mol, auc0 must be provided in Å.

It should be emphasized that auc0 , α1, α2, α3, κhyd and κR are parameters that
will be estimated from experimental data promptly.

Although Equation 3.114 describes how the empty lattice’s pressure and vol-
ume are correlated, it is known that it is virtually impossible to reproduce such a
state in the laboratory. Therefore, the parameters related to crystallographic mea-
sures – henceforth called volumetric parameters – exhibited in Equation 3.114 must
be regressed from hydrates’ experimental data. This approximation is not an issue,
since

V H
(
PH
)

= V EL
(
PEL

)
(3.115)

for a hydrate modeled by the vdWP model considering the pressure shift phe-
nomenon.

In conclusion, the above mathematical modelling informs that the computa-
tion of

[
∂Cij/∂

(
V
Nh

)]
depends on the value of PEL, which, in turn, according to

Equation 3.95, is a function of the former. Therefore, to calculate PEL and, con-
sequently, V̄ EL, we need an iterative algorithm. Here, we used the convergence
method designed by SEGTOVICH et al. (2022). Further details will be addressed
in Chapter 4.

3.7 Hydrate phase equilibrium

The aim of thermodynamic calculations of systems with clathrates usually
consists of building a phase equilibrium problem. More specifically, a three-phase
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equilibrium problem composed of a pure, non-volatile phase containing the host
species; a solid solution phase; a hydrate-forming fluid phase containing the guest
molecules. It is worth mentioning that the mutual solubility between the phases
which contain the host and guest species is neglected in the calculation. Therefore,
the activity coefficients are unity.

The scheme replicated from SEGTOVICH et al. (2022) displayed in Figure 3.3
portrays the states involved in the phase equilibrium calculation. In addition, this
diagram also shows how the physical states – such as pure liquid water (PW), pure
ice (I), hydrate (H), and vapor (V) – are correlated to their respective reference
state – namely, the empty hydrate lattice (EL) and the pure ideal gas state (PIG).
It is worth noticing that the hydrate-forming phase will not always be present in the
equilibrium as a vapor. Depending on the compound’s nature and the conditions,
this phase can stabilize as a liquid or vapor.

Figure 3.3: Diagram that presents the states involved in hydrate phase equilibrium
calculations. The arrows depict the chemical potential difference between the two
states. For phase transitions from the pure ideal gas state (PIG), the chemical
potential difference is represented by its fugacity. Reproduced from SEGTOVICH
(2018).

As mentioned in Chapter 2, the phase coexistence computation can be either
based on fugacities or chemical potential differences. For an approach based on the
former property, the necessary condition for the equilibrium is:

f̂Hw = f̂PWw (3.116)

Using the latter criterion, the necessary condition is given by:

∆µH−ELw = ∆µPW−ELw (3.117)
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The subscripts of the variables displayed by Equations 3.116 and 3.117 rep-
resent a component within the phase equilibrium, which, in this case, is the water.
While the superscripts represent the phase to which the water molecules belong.
Here, the initials "PW" (pure water) can serve as liquid water as well as ice.

It is worth highlighting that the equality between µHw and µPWw does not de-
fine the chemical potential-based criterion because the former variable’s calculation
depends on µELw , for which there is no statistical thermodynamic-based expression.
Hence, the hydrate’s chemical potential is evaluated relative to the empty lattice
reference state. In order to maintain equality, the pure water chemical potential
must be calculated as a variation concerning the same reference state.

In both approaches cited above (Equations 3.116 and 3.117), the hydrate mod-
eling must be combined with condensed phase modeling (for host molecules) and a
fluid phase equation of state (for guest species). Fortunately, since the non-volatile
and the hydrate-forming phases are considered immiscible, the latter phase’s mod-
eling is rather straightforward. The representation of guest molecules within the
phase equilibrium calculation is implemented by its fugacity, estimated through an
EoS application. This property is essential to compute its cage occupancy (θij) and,
therefore, other fundamental macroscopic properties, as shown in previous sections.

Following SEGTOVICH et al. (2022)’s approach, this work aspires to per-
form phase equilibrium calculations using chemical potential differences. Thus, we
shall address the further developments of Equation 3.117, starting with a thorough
investigation concerning its variables: ∆µH−ELw and ∆µEL−PWw .

According to the reasoning presented in Section 3.3.4, ∆µH−ELw can be esti-
mated through the manipulation of Equation 3.54 combined with the application of
the mathematical modeling developed in Section 3.4.

∆µH−ELw = µHw − µELw = kBT

ncage∑
i=1

[
νi ln

(
1−

nguest∑
j=1

θij

)
−

nguest∑
j=1

Nij

(
∂ ln qij
∂Nw

)
T,V,λ

] (3.118)

As we are dealing with a specific class of clathrates whose crystalline structure
is composed of the hydrogen bond between water molecules, the generic subscript
"h" for the host has been replaced by "w" for water.

Even though the modeling matured in Section 3.3.4 enabled us to replace the
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term
[
1 +

∑nguest

j=1 (qijλij)
]
for a more convenient one, it does not help us to rewrite

the partial derivative in more handy variables. Therefore, we now turn our attention
to the Equation 3.49, which can be rewritten as:

PH − PEL = ∆PH−EL = kBT

ncage∑
i=1

nguest∑
j=1

Nij

(
1

qij

)(
∂qij
∂V H

)
T,Nw,λ

(3.119)

We still do not have an expression to properly represent the last term on the
right-hand side of Equation 3.119, so this gap must be filled before further progress.

At this point, it is known that qij is a function of T , V H and Nw. Hence,
assuming constant temperature, the differential form of the former variable can be
written as the sum of contributions from the partial derivatives concerning the two
latter variables.

dqij
(
T, V H , Nw

)
=

(
∂qij
∂V H

)
T,Nw

dV H +

(
∂qij
∂Nw

)
T,V H

dNw (3.120)

It should be mentioned that the temperature was fixed at a constant value
because both hydrate pressure and water chemical potential in the hydrate phase
are properties derived at a constant temperature. This hypothesis must not be
assumed for other properties like hydrate internal energy.

Moreover, in Section 3.4 it has been established that Cij, which is directly
correlated to qij, can be expressed exclusively as a function of V̄ EL and T . Thus,
assuming constant temperature, the Equation 3.120 can be rewritten as:

dqij =

[
∂qij

∂ (V H/Nw)

]
T

d

(
V H

Nw

)
(3.121)

Analogously, the last term of the right-hand side of Equation 3.121 can be
written as a function of its partial derivatives.

d

(
V H

Nw

)
=

[
∂ (V H/Nw)

∂V H

]
Nw

dV H +

[
∂ (V H/Nw)

∂Nw

]
V H

dNw (3.122)

The computation of the partial derivatives yields:
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d

(
V H

Nw

)
=

1

Nw

dV H − V H

N2
w

dNw (3.123)

By substituting the last term on the right-hand side of Equation 3.121 for the
expression derived in Equation 3.123 we have:

dqij =

(
∂qij
∂V̄ EL

)
T

(
1

Nw

dV H − V H

N2
w

dNw

)
(3.124)

Finally, the comparison between Equations 3.120 and 3.124 enable us to deduce
that:

(
∂qij
∂V H

)
T,Nw

=

(
∂qij
∂V̄ EL

)
T

(
1

Nw

)
(3.125)

(
∂qij
∂Nw

)
T,V H

=

(
∂qij
∂V̄ EL

)
T

[(
−V H

)
N2
w

]
(3.126)

In possession of these new equations, we can infer it is possible to replace the
partial derivative term of Equation 3.119 with a more handy one.

∆PH−EL = kBT

ncage∑
i=1

nguest∑
j=1

Nij

(
1

qij

)(
1

Nw

)(
∂qij
∂V̄ EL

)
T

(3.127)

Rearranging the terms of Equation 3.126 it is possible to isolate (∂qij/∂V̄ EL)T,Nw
.

This procedure enables us to rewrite the above equation as:

∆PH−EL = −kBT
ncage∑
i=1

nguest∑
j=1

Nij

(
1

qij

)(
Nw

V H

)(
∂qij
∂Nw

)
T,V H

(3.128)

Eventually, the Equation 3.128 can be reorganized to a more convenient form,
which is illustrated below by Equation 3.129.

V̄ EL∆PH−EL = −kBT
ncage∑
i=1

nguest∑
j=1

Nij

(
∂ ln qij
∂Nw

)
T,V H

(3.129)

Therefore, comparing Equation 3.129 with the last term of Equation’s 3.118
right-hand side, and changing kB for R, ∆µH−ELw (in molar basis) can be described
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by:

∆µH−ELw = RT

ncage∑
i=1

[
νi ln

(
1−

nguest∑
j=1

θij

)]
+ V̄ EL∆PH−EL (3.130)

Regarding the chemical potential difference between the pure water and the
empty lattice phases, VAN DER WAALS and PLATTEEUW (1959) did not devise
a statistical thermodynamics-based expression to estimate this variable. Hence,
∆µPW−ELw at a certain T and P is calculated from ∆µPW−ELw at a reference T0 and
P0 (∆µPW−ELw,00 ) through classical thermodynamics.

The differential form of
(
∆µPW−ELw /RT

)
is given by Equation 3.131.

d

(
∆µPW−ELw

RT

)
=

[
∂

∂T

(
∆µPW−ELw

RT

)
P

]
dT +

[
∂

∂P

(
∆µw

PW−EL

RT

)
T

]
dP (3.131)

From Van’t Hoff’s equation, we have:

−
[
∂

∂T

(
∆Ḡ

RT

)]
P

=
∆H̄

RT 2
(3.132)

Moreover, from classical thermodynamics, it is known that:

[
∂

∂P

(
∆Ḡ

RT

)]
T

=

[
∂

∂P

(
∆µ

RT

)]
T

=
∆V̄

RT
(3.133)

Using Equations 3.132 and 3.133, the integral form of Equation 3.131 can be
written as a line integral – an integral in which the integrand is evaluated along a
curve:

∫ µf (Tf ,Pf )

µ0(T0,P0)

d

(
∆µ̄w

PW−EL

RT

)
=

∫ Tf

T0

[
∂

∂T

(
∆µ̄w

PW−EL

RT

)
P

]
dT+

+

∫ Pf

P0

[
∂

∂P

(
∆µ̄w

PW−EL

RT

)
T

]
dP

(3.134)
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∆µPW−ELw (Tf , Pf )

RTf
− ∆µPW−ELw (T0, P0)

RT0

=

∫ Tf

T0

(
−∆H̄w

PW−EL

RT 2

)
P

dT+

+

∫ Pf

P0

(
∆V̄w

PW−EL

RT

)
T

dP

(3.135)

In phase equilibrium calculations, a P × T diagram is constructed through an
algorithm whose convergence criterion is based on an alternative arrangement of
Equation 3.117, as shown below.

∆µH−ELw + ∆µEL−PWw = 0 (3.136)

Where:

∆µEL−PWw = −∆µPW−ELw (3.137)

Thus, the chemical potential difference between pure water and empty lattice
states is preferably represented by ∆µEL−PWw .

Via the Pshift model, SEGTOVICH et al. (2022) proposed a new hydrate and
empty lattice pressure paradigm. As mentioned in Section 3.5, since these two phases
are not in equilibrium, there are no restrictions concerning their pressures. There-
fore, differently from HOLDER et al. (1980)’s proposition – displayed by Equation
2.2 –, in a phase transition whose final state is the empty lattice, the final pressure
(Pf ) is PEL for V̄ EL

w and PH for V̄ PW
w .

Therefore,

∆µEL−PWw = RTf

[
∆µEL−PWw,00

RT0

−
∫ Tf

T0

(
∆H̄EL−PW

w

RT 2

)
P0

dT+

+

∫ PEL

P0

(
V̄ EL
w

RT

)
Tf

dP −
∫ PH

P0

(
V̄ PW
w

RT

)
Tf

dP

] (3.138)

Where ∆H̄EL−PW
w represent molar enthalpy of dissociation. Since it is impossi-

ble to measure the dissociation enthalpy directly, the same procedure used to derive
an expression for ∆µEL−PWw will be applied here. From classical thermodynamics,
we have:
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∆H̄EL−PW
w (Tf , P0) = ∆H̄EL−PW

w (T0, P0) +

∫ Tf

T0

∆C̄P
EL−PW
w dT (3.139)

Where ∆H̄EL−PW
w (T0, P0) is the molar dissociation enthalpy at a reference

state (T0, P0) – also designated by ∆H̄EL−PW
w,00 –, and ∆C̄P

EL−PW
w represents the

dissociation specific heat capacity. Here, the latter variable is fixed to a value that
is assumed to be equal to the experimental ∆C̄P

EL−PW
w,00 of actual hydrate in a given

structure. Likewise, ∆H̄EL−PW
w,00 is also expected to be close to experimental hydrate

dissociation, while the actual value concerning the empty lattice is estimated from
phase equilibrium data. Hence,

∆H̄EL−PW
w (Tf , P0) = ∆H̄EL−PW

w,00 + ∆C̄P
EL−PW
w,00 (Tf − T0) (3.140)

In conclusion, Equation 3.138 can be rewritten as:

∆µEL−PWw

RTf
=

{
∆µEL−PWw,00

RT0

+

∫ PEL

P0

(
V̄ EL
w

RT

)
Tf

dP −
∫ PH

P0

(
V̄ PW
w

RT

)
Tf

dP

−
∫ Tf

T0

[
∆H̄EL−PW

w,00 + ∆C̄P
EL−PW
w,00 (Tf − T0)

RT 2

]
P0

dT

} (3.141)

Depending on the temperature, V̄ PW
w can either represent the liquid water

molar volume (V̄ LW
w ) or the ice molar volume (V̄ I

w). Similarly to the lattice molar
volume, V̄ LW

w and V̄ I
w expressions – depicted by Equations 3.142 and 3.143, respec-

tively – come from empirical correlations. On the other hand, since the pure water
molar volume modeling has been exhaustively validated, its parameters do not re-
quire estimation.

V̄ LW
w /

(
m3mol−1

)
=

[
2.61517× 10−5 − 5.71157× 10−8

(
T − T crystal0

)
+

+1.00453× 10−10
(
T − T crystal0

)2
]

exp
[
3.30859× 10−10

(
P − P crystal

0

)] (3.142)
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V̄ I
w/
(
m3mol−1

)
= 1.912× 10−5 + 8.387× 10−10

(
T − T crystal0

)
+

+4.016× 10−12
(
T − T crystal0

)2 (3.143)

The former correlation was reproduced from MEDEIROS (2018), while the
latter was proposed by KLAUDA and SANDLER (2000).

For the model implementation, the volume correlations must be integrated in
relation to pressure with the temperature fixed at Tf . However, since our program
cannot perform symbolic calculations, these expressions were integrated separately,
and the results were included in the algorithm later. Equations 3.144, 3.145 and
3.146 depict the outcome of the symbolic integration of Equations 3.114, 3.142 and
3.143, respectively.

∫ PEL

P0

[
V̄ EL
w (T, P )

RT

]
Tf

dP =

[
auc0 + α1(Tf − T crystal0 )+

+α2(Tf − T crystal0 )2 + α3(Tf − T crystal0 )3

]3
10−30NA

Nuc
h RTf

exp
(
κhydP

crystal
0

)(
− 1

κhyd

)[
exp

(
−κhydPEL

)
− exp (−κhydP0)

]
(3.144)

∫ PH

P0

[
V̄ LW
w (T, P )

RT

]
Tf

dP =
1

RTf

[
2.61517× 10−5 − 5.71157×

10−8
(
Tf − T crystal0

)
+ 1.00453× 10−10

(
Tf − T crystal0

)2
]

−exp
(
κwP

crystal
0

)
κw

 [exp
(
−κwPH

)
− exp (−κwP0)

]
(3.145)

∫ PH

P0

[
V̄ I
w(T )

RT

]
Tf

dP =

(
PH − P0

)
RTf

[
1.912× 10−5+

+8.387× 10−10
(
Tf − T crystal0

)
+ 4.016× 10−12

(
Tf − T crystal0

)2
] (3.146)
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where κw =, T crystal0 = 0 K, and P crystal
0 = 101 325 Pa.

Parameter estimation is required to adequate the model to the available ex-
perimental data properly. The details concerning the estimation of ∆µEL−PWw,00 ,
∆H̄EL−PW

w,00 and ∆C̄P
EL−PW
w,00 will be discussed in the subsequent topics.

51



Chapter 4

Phase equilibrium calculation

Now that the modeling has been formally presented, this chapter unveils how
the calculation was conducted. Even though the Pshift model was scrupulously
examined in Chapter 3, some gaps must be filled before the exhibition of the results.

The present chapter has been divided into five sections, organized according
to the calculation implementation sequence. Python was chosen to reproduce and
validate the Pshift model because of its simplicity and dynamism.

4.1 Guest fugacity calculation

Hydrate-forming fluid phase modeling is one of the most fundamental aspects
of hydrate phase equilibrium calculation. Since the guest molecules are usually light
hydrocarbons, equations of state (EoS) are extensively used to model the phase
to which they belong. Furthermore, as multiple guest species can be enclathrated
within the same lattice, their fugacity is the most suitable property to express their
contribution.

According to the literature, many EoS can estimate guest fugacity. In this
context, BHAWANGIRKAR et al. (2018) investigate the influence of different EoS
in hydrate phase equilibrium calculation. The authors compared the performance of
three commonly used EoS: Peng-Robinson-Stryjek-Vera (PRSV), Patel-Teja (PT),
and Soave-Redlich-Kwong (SRK). PARRISH and PRAUSNITZ (1972), for instance,
chose a simpler course and resorted to the modified Redlich-Kwong (RK) EoS to
compute guest fugacity. The guest fugacity calculation is executed in the undertaken
study by implementing the Peng-Robinson (PR) equation.

As previously mentioned in Chapter 3, the mutual solubility between the liquid
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water and the hydrate-forming fluid phase – either gas or liquid – is neglected.
For that reason, the interaction between the polar and non-polar phases’ molecules
is not considered in the PVT calculations. Concerning the water molecules, its
PVT behavior is modeled through empirical volume correlations corrected by the
Poynting factor rather than the employment of an EoS. Therefore, the PR equation’s
renowned capability to predict light components’ properties, added to its robustness
and uncomplicated implementation, makes the model devised by Peng-Robinson the
optimal choice.

4.2 Empty lattice pressure convergence and pres-

sure shift calculation

The discussion disclosed in Section 3.5 attempted to present the main fea-
tures of the pressure shift phenomenon. This topic aspires to address the numerical
solution devised to calculate its associated variables.

At some point in Chapter 3 it has become evident that the pressure shift cal-
culation

(
∆PH−EL) depended on the partial derivative of the Langmuir adsorption

coefficients with respect to the lattice intensive volume
(
∂Cij/∂V̄

EL
)
, and vice-

versa. In this sense, SEGTOVICH et al. (2022) suggested that this loop prob-
lem should be resolved using an iterative method. As a solution, the authors thus
proposed two functions: "calcPshift" and "convergePEL." The former takes tem-
perature (T ), empty lattice pressure (PEL), and guest fugacity (f̂j) as input and
calculates ∆PH−EL.

Function calcPShift(T , PEL, f̂j):
V̄ EL ← Equation 3.114
Ri ← Equations 3.97 to 3.100
Cij ← Equation 3.73
θij ← Equations 3.34 and 3.74(
∂Cij/∂V̄

EL
)
T
← Equations 3.101 to 3.111

∆PH−EL ← Equation 3.95
return ∆PH−EL, θ

Nonetheless, since PEL is unknown and depends on a recursive calculation, a
numerical method must be implemented to estimate this variable. Therefore, the
latter consists of an algorithm that receives T , PH and f̂j as input and, through
successive substitution, converges the ∆PH−EL to obtain PEL. In other words,
the algorithms must be used simultaneously: more specifically, the "convergePEL"
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algorithm makes a call recursively to the "calcPshift" function.

Function convergePEL(T , PH , f̂j):(
∆PH−EL)

[k]
← 0

while abs(res) > tolerance do
PEL ← PH −

(
∆PH−EL)

[k](
∆PH−EL)

[k+1]
, θ ← calcPshift

(
T, PEL, f̂j

)
res←

[(
∆PH−EL)

[k+1]
−
(
∆PH−EL)

[k]

PH

]
(
∆PH−EL)

[k]
←
(
∆PH−EL)

[k+1]

end
return PEL, θ

Even though VAN DER WAALS and PLATTEEUW (1959) have established
T , V , Nh, and λ as independent variables, pressure is a much more convenient
variable to determine, in many engineering applications, than volume. Hence, we
specify the hydrate’s pressure instead of its volume.

4.3 Phase equilibrium algorithm implementation

With all the hydrate equilibrium participant phases modeled, the phase coex-
istence problem can be resolved by employing a suitable numerical method. More
specifically, a root-finding problem must be addressed in order to calculate the equi-
librium properties.

In the undertaken study, we chose to specify the hydrate’s pressure and light
fluid-phase composition. By establishing the pressure value, and the fugacity pro-
vided by an EoS, the only remaining unknown variable is the temperature. Concep-
tually, this procedure can be illustrated by rewriting Equation 3.136 as

Res (T ) = ∆µH−ELw (T ) + ∆µEL−PWw (T ) (4.1)

where Res (T ) represents the residue function that indicates the present state’s dis-
tance to the equilibrium. In other words, when Res (T ) = 0, phase coexistence
is reached. Therefore, to determine the equilibrium temperature, we need a one-
dimensional solver capable of finding the temperature that serves as a root for
Equation 4.1.
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The function depicted below details the residue function computation.

Function calcRes(T , PH , y):
f̂ ← Peng-Robinson

(
T, PH , y

)
PEL, θ ← convergePEL

(
T, PH , f̂

)
V̄ EL ← V̄ EL

(
T, PEL

)
[Equation 3.114]

∆µH−ELw ← ∆µH−ELw

(
T, PH , PEL, V̄ EL, θ

)
[Equation 3.130]

intVEL←
∫ PEL

P0

[
V̄ EL
w (T,P )
RT

]
Tf
dP [Equation 3.144]

if T < 273 K then
V̄ PW
w ← V̄ I

w (T ) [Equation 3.143]

intVI←
∫ PH

P0

[
V̄ I
w(T )
RT

]
Tf
dP [Equation 3.146]

∆µEL−PWw ← ∆µEL−Iw

(
T, PH , PEL, intVEL, intVI

)
[Equation 3.141]

else
V̄ PW
w ← V̄ LW

w (T, P ) [Equation 3.142]

intVLW←
∫ PH

P0

[
V̄ LW
w (T,P )
RT

]
Tf
dP [Equation 3.145]

∆µEL−PWw ←
∆µEL−LWw

(
T, PH , PEL, intVEL, intVLW

)
[Equation 3.141]

end
Res← ∆µH−ELw + ∆µEL−PWw

return Res

Since both ∆µH−ELw and ∆µEL−PWw are functions of temperature implicitly, a
numerical method must be implemented. We used the function "root" from the
"optimize" package within the scientific library SciPy, which only requires an initial
guess to find the equilibrium temperature.

One relevant aspect of hydrate phase equilibrium calculations is that the host’s
crystalline structure configuration must be previously defined. Otherwise, there
would be ambiguity in selecting the appropriate set of parameters. On the one
hand, in single hydrate phase equilibrium computations, guessing the most thermo-
dynamically stable configuration is relatively straightforward. On the other hand,
this process can be pretty complicated for mixed hydrates since we do not know be-
forehand the most stable lattice configuration for clathrates with multi-component
guests. In this context, PARRISH and PRAUSNITZ (1972) presented an algorithm
that eliminates this speculation.

In summary, the PARRISH and PRAUSNITZ (1972)’s methodology consists
of calculating the dissociation pressure using the parameters’ sets of sI and sII struc-
tures – after checking that both are possible – and comparing the results for the two
structures. The configuration that presents the lower dissociation pressure is consid-
ered the most thermodynamically stable structure for the analyzed conditions. In
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other words, for a given temperature and composition, the configuration that yields
the lowest dissociation pressure is the most stable.

After calculating the equilibrium temperature for both sI and sII structures,
the PARRISH and PRAUSNITZ (1972)’s computational algorithm was employed
to determine the most stable configuration under the given conditions. It is worth
mentioning that the adopted procedure to implement this algorithm is distinctive
from the original. Since we decided to compute the equilibrium temperature rather
than pressure, the PARRISH and PRAUSNITZ (1972)’s pressure-based criterion
does not apply to our study. Alternatively, the preferred strategy was to define the
most stable structure by taking the highest equilibrium temperature. This procedure
is illustrated in Figure 4.1 that shows a P × T diagram for two different equilibria
for a water/methane/ethane system:

• Water - sI Hydrate - vapor with molar composition: 0.95 methane/0.05 ethane;

• Water - sII Hydrate - vapor with molar composition: 0.95 methane/0.05
ethane.

Figure 4.1: Phase equilibrium prediction for a CH4 (0.95 mol) + C2H6 (0.05 mol)
hydrate. The solid green line represents the equilibrium curve assuming sI structure
for the hydrate, whereas the solid blue line represents the equilibrium curve assuming
sII structure for the hydrate. The dashed grey line indicates the limit pressure where
the hydrate’s most stable configuration changes, i.e., the structural transition point.

In order to explain the reasoning behind this method, two arbitrary points at
T = 310 K have been drawn: a red one (high pressure) and an orange one (moderate
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pressure). Starting from a hypothetical system located at the orange mark, which
was submitted to an isobaric cooling, the diagram depicted in Figure 4.1 shows us
that an sII hydrate should occur when T is approximately 275 K. With further
cooling at constant pressure, all the liquid water is converted into sII hydrate. Now
the system is composed of an equilibrium between the sII hydrate and the remaining
vapor. It is believed that further isobaric cooling would not produce an sI hydrate
phase since the sII configuration is the most stable in this region. This procedure
corroborates with PARRISH and PRAUSNITZ (1972) original approach since, for
temperatures below 281 K, the sII structure curve presents lower pressure values
when compared to the sI curve at the same temperature.

Similarly, taking the red mark as the hypothetical initial stage of the isobaric
cooling process, according to the diagram mentioned above, an sI hydrate phase
should occur near T = 300 K. The sII structure that would supposedly appear with
further cooling is a meta-stable one at best. Once more, the same result would
be obtained if the original algorithm were to be used, as sI configuration hydrates
present a lower equilibrium pressure when compared to sII hydrates at the same
temperature.

4.4 The Interstitial model

As aforementioned, one of this work’s goals is to validate and improve SEG-
TOVICH et al. (2022)’s approach to sII hydrate formation prediction. However,
since there is no data in the literature concerning the Pshift model parameters for
sII hydrates, another approach was used to generate the necessary data to validate
the Pshift model. In the undertaken study, the selected approach is the one devised
by KLAUDA and SANDLER (2000), also called the Interstitial model. Even though
their model is not the most sophisticated, it is thermodynamically consistent and
uncomplicated to implement. On account of its qualities, the Interstitial model was
chosen as a preliminary work to aid in the Pshift model parameter optimization and
to serve as a reliable fallback option when the Pshift model fails to converge. The
Interstitial model can be used in the simulation for a reasonable range of conditions.

The Interstitial model implementation is similar to the Pshift approach, with
a few variations. On the one hand, like SEGTOVICH et al. (2022), KLAUDA and
SANDLER (2000) acknowledged the lattice compressibility. On the other hand, the
latter authors assumed constant cage radii, and their model did not contemplate
the Langmuir coefficient variation concerning the lattice volume. Hence, the Inter-
stitial model recognizes the lattice compressibility - thus predicting the retrograde
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behavior at high pressures - but fails to foresee the effect of guest adsorption on the
hydrate volume. In this context, the KLAUDA and SANDLER (2000)’s approach
is implemented with some modifications.

Mathematically, the hypotheses assumed by KLAUDA and SANDLER (2000)
can be translated to:

(
∂Cij
∂V̄ EL

)
T

= 0 (4.2)

Therefore, tracing a parallel with the Pshift model methodology, we have that:

∆PH−EL = kBT

ncage∑
i=1

nguest∑
j=1

νiθij

[
∂ (lnCij)

∂V̄ EL

]
T

= 0 (4.3)

As illustrated in Equation 4.3, for the Interstitial model implementation, the
empty lattice pressure is assumed to be the same as the hydrate pressure. In other
words, the algorithms "calcPshift" and "convergePEL" are bypassed. Consequently,
the implementation of the equivalent to KLAUDA and SANDLER (2000)’s approach
is much more straightforward and has a lower computational cost when compared
to the Pshift model. Furthermore, its parameters can be, to some extent, helpful in
validating the Pshift model parameter estimation methodology.

4.5 Parameter estimation and experimental data

Following the procedure used by SEGTOVICH et al. (2022), which is an adap-
tation of the methodology introduced by MEDEIROS (2018), a parameterization
was carried out to adjust the model to the experimental data associated with sII
hydrates.

4.5.1 Maximum likelihood method

Prior to presenting the parameterization methodology, it is essential to discuss
some aspects of the technique used to adjust the model to the experimental data:
the maximum likelihood method.

As further explained in the following sections, parameter tuning is carried out
via objective function minimization in the present work. In this sense, it is necessary
to formulate objective functions compatible with the modeling and the experimental
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data set available in the literature.

The least squares method is a prominent technique on which objective func-
tions are based because of its simplicity and effectiveness when employed to pa-
rameterize linear models regarding the parameters (SCHWAAB and PINTO, 2007).
The implementation of this approach to define an objective function results in the
expression portrayed by Equation 4.4.

Fobj =

nexp∑
k=1

[yek − ymk (xk, α)]2 (4.4)

Where y is an arbitrary dependent variable; the superscripts indicate the vari-
able’s nature: e for experimental, and m for values obtained from the model; x
represents an arbitrary independent variable; α represents the parameters vector of
the model.

Nevertheless, in consonance with SCHWAAB and PINTO (2007), the least
squares function is somewhat limited since it considers that all variables are mea-
sured with the same accuracy regardless of the experimental conditions, which is
an inadequate generalization. Not only the equipment performance substantially
influences the measurement errors, but also the measurement of the variables can
be co-dependent. In this context, still according to the authors, it is possible to
weigh these features by implementing the maximum likelihood method.

Fundamentally, the maximum likelihood method is guided by three assump-
tions:

1. the experimental deviations distributions within the experimentation region
are known;

2. the perfect model hypothesis is valid;

3. the experiments are considered to be well-administered.

A consequence of the second assumption is that the model is perfectly capable
of reproducing the experimental data. Nonetheless, each parameter set yields a
different curve. Thus, our goal is to find the parameter set that maximizes the
probability of reproducing the experimental data through modeling. By maximizing
the data probability, we maximize the likelihood of a curve.

According to SCHWAAB and PINTO (2007), as a result of the third assump-
tion, it is reasonable to assume that the experimental data must be located within
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the region of maximum probability. Therefore, to find the optimal parameters, the
parameter estimation problem must be defined by the maximization of the func-
tion, which describes the probability of finding the obtained experimental data. If
the experimental deviations are submitted to a normal probability distribution and
independent, this function is illustrated by Equation 4.5.

℘ (ze; z, Vz) =
1√

(2π)n det (Vz)
exp

[
−1

2
(z − ze)T V −1

z (z − ze)
]

(4.5)

Where ℘ represents the probability of finding the obtained experimental data
(ze), z is a vector that contains the dependent (x) and independent (y) variables,
and Vz is a diagonal matrix that contains the variance of the experimental errors.

As mentioned before, z is a vector containing independent and dependent vari-
ables. Assuming that the measurements of both types of variables are not correlated,
we have:

℘ (ze; z, Vz) =

nexp∏
k=1

[℘x,k (xek;xk, Vx,k)℘y,k (yek; yk, Vy,k)] (4.6)

℘ (ze; z, Vz) =

nexp∏
k=1

{
1√

2π det (Vx,k)
exp

[
−1

2
(xek − xk)

T V −1
x,k (xek − xk)

]
1√

2π det (Vy,k)
exp

[
−1

2
(yek − yk)

T V −1
y,k (yek − yk)

]} (4.7)

It is worth highlighting that the difference between the value obtained ex-
perimentally and the one provided by the model is simply the experimental error.
According to SCHWAAB and PINTO (2007), it is reasonable to assume that the
values of the independent variables are known with good accuracy, which enables us
to infer that (xe−x) ≈ 0. In other words, the experimental error for the independent
variable is negligible. By applying this reasoning on Equation 4.8, we have:

℘ (ze; z, Vz) =

nexp∏
k=1

{
1√

2π det (Vy,k)
exp

[
−1

2
(yek − yk)

T V −1
y,k (yek − yk)

]}
(4.8)

Since Vy is a diagonal matrix, its determinant is the product of the diagonal
elements. In addition, the term within the exponential results in:
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(yk − ye)T V −1
y,k (yk − yek) =

(yk − yek)2

Vy,kk
(4.9)

Hence, Equation 4.5 can be rewritten as:

℘ (ze; z, Vz) =

nexp∏
k=1

[
1√

2πVy,kk
exp

[
−1

2

(yk − yek)2

Vy,kk

]]
(4.10)

Equation 4.10 illustrates the form of the probability function, which is maxi-
mized in the parameterization procedure of the maximum likelihood method. How-
ever, some algebraic manipulation is necessary to optimize this function maximiza-
tion.

It is known that the maximum point of the function ℘ is the same as the
maximum point of ln℘, as the latter is a monotonic ascending function of the former.
Thus, to maximize ln℘ is the same as maximizing ℘, and vice-versa. In addition,
finding the point of maximum of a function is equivalent to calculating the minimum
point of the same function multiplied by -1. Mathematically, these manipulations
can be represented by:

max(℘) = max(ln℘) = min [− ln(℘)] (4.11)

Now we can rewrite Equation 4.10 as:

− ln(℘) = −
nexp∑
k=1

{
ln

[
1√

2πVy,kk
exp

(
−1

2

(yk − yek)2

Vy,kk

)]}
(4.12)

− ln(℘) = −
nexp∑
k=1

{
ln

(
1√

2πVy,kk

)
+ ln

[
exp

(
−1

2

(yk − yek)2

Vy,kk

)]}
(4.13)

− ln(℘) = −
nexp∑
k=1

[
−1

2
ln (2πVy,kk)−

1

2

(yk − yek)2

Vy,kk

]
(4.14)

Another important realization is that the multiplication or division of ℘ by
any constant would not alter the function’s maximum (or minimum) point location.
By eliminating the constants (for simplicity) and, Equation 4.14 becomes:
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− ln(℘) =

nexp∑
k=1

[
ln (Vy,kk) +

(yk − yek)2

Vy,kk

]
(4.15)

Assuming constant variance regarding the dependent variable measurement,
we have:

− ln(℘) =

nexp∑
k=1

ln (Vy) +

nexp∑
k=1

[
(yk − yek)2

Vy

]
(4.16)

− ln(℘) = n ln (Vy) +

nexp∑
k=1

[
(yk − yek)2

Vy

]
(4.17)

Where n is the number of experiments related to variable y.

The first term from the right-hand side of Equation 4.17 is a constant. There-
fore, searching for the minimum point of (− ln℘) above is equivalent to searching
for the minimum point of the following expression.

Fobj = − ln(℘) =

nexp∑
k=1

[
(yk − yek)2

Vy

]
(4.18)

Equation 4.18 is an objective function that can be used to estimate a model’s
optimal parameters when the maximum likelihood method is applied. Customarily,
this function is referred to as the weighted least squares function. In agreement
with SCHWAAB and PINTO (2007), this function is the natural approach when
the experimental deviations are normally distributed.

In the present work, we intend to use a variation of the Equation 4.18 to
estimate the optimal parameters of the Interstitial model. However, the reasoning
presented so far concerns a generic minimization problem. The independent variable
(x) must be associated with the system’s pressure (P ) and the dependent variable (y)
with the system’s temperature (T ) to represent the minimization problem prescribed
by the thermodynamic modeling adequately.

Furthermore, since the parameterization of the Interstitial model is performed
with data reconciliation, we should disregard the previous hypothesis, which stated
that the experimental deviation associated with the independent value was negligi-
ble, i.e., (xe− x) 6= 0. By doing so, the objective function employed to optimize the
Interstitial model’s parameters is given by Equation 4.19.
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Fobj = n ln (Vy) +

nexp∑
k=1

[
(yk − yek)2

Vy

]
+ n ln (Vx) +

nexp∑
k=1

[
(xk − xek)2

Vx

]
(4.19)

After substituting the generic variables for their equivalent and doing some
algebraic manipulations, Equation 4.19 turns into Equation 4.20, depicted below.
In the current approach, the terms lnVx and lnVy are not constant; rather, the
variances are inferred from the available data along with the parameters.

Fobj = n ln (VT ) +

nexp∑
k=1

[
(Tmk − T ek )2

exp (lnVT )

]
+ n ln (VP ) +

nexp∑
k=1

[
(Pm

k − P e
k )2

exp (lnVP )

]
(4.20)

Finally, Equation 4.20 illustrates the expression used to solve the maximum
likelihood problem with data reconciliation and variance inference so that the Inter-
stitial model’s optimal parameters are estimated.

4.5.2 Estimated parameters

This section scrutinizes the parameters that took part in the parameterization
process. In other words, here we present the parameters for sII hydrate promoting
guests and formation properties, as well as volumetric parameters for sII hydrates.

Since many parameters (around 10) needed to be optimized, we sorted them
into four categories to facilitate the implementation of the parameterization method-
ology. The first set contains the Kihara pair interaction potential parameters, which
solely depend on the nature of the guest species since the host is always the same
throughout the present research: water. The next set consists of the parameters
associated with hydrate dissociation, i.e., transition lattice-liquid, which is used to
calculate phase equilibrium. The third group comprehends the parameters that
characterize the crystalline structure of the hydrate. Finally, the last category con-
tains the estimated parameters in the data reconciliation procedure, that is, recon-
ciled pressure values (Pm), discussed in the following paragraph. In addition, the
variances associated with pressure and temperature measurements – VP and VT ,
respectively – were included in the parameter estimation because there was no in-
formation in the literature about the experimental data standard deviation for any
equilibrium experiment.

Furthermore, since we intend to perform a data reconciliation along with the
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parameterization, we also incorporated the pressure values estimated as a parameter
in the maximum likelihood approach, which corresponds to the pressure at which
the experiment occurred, and which is used in the model to calculated the equilib-
rium temperature Tm(Pm) at given model parameters. For a guest j, there are as
many Pm

j parameters as experimental points available in the literature. Table 4.1
illustrates these categories and its parameters.

As it can be seen from Table 4.1, the volumetric and equilibrium data from
propane and isobutane hydrates were used to perform the parameter regression com-
putations. These compounds were selected not only because they form sII hydrates
– when pure – but also due to their greater data availability than other sII-hydrate-
forming species.

As explained in Section 3.4, our approach is to describe guest-host interaction
through the Kihara potential. However, MEDEIROS (2018) reported that the strong
correlation between the parameters a, σ and ε significantly interferes in parameter
estimation, producing unsatisfactory results. Therefore, although all the expressions
in the section mentioned above have been derived for the Kihara potential, we
decided to fix the hard-core parameters of the Kihara potential to zero, which means
that the potential effectively used in this work was the Lennard-Jones potential –
following the adopted procedure by the authors. Furthermore, it should be noted
that the cavities compressibility (κR) parameter optimization was managed through
its logarithmic form. This strategy was adopted to prevent negative estimation
results associated with this variable, which could produce numerical issues within
the model.

In addition, it is also worth highlighting that, although there is a decent num-
ber of experimental measurements of other pure sII clathrates, such as oxygen and
nitrogen hydrates, the current model is not suitable to represent that data. In
virtue of the N2 molecular size, sII hydrates that contain it as a guest often have
their large cavities occupied by two N2 molecules – especially at high pressures –,
which characterize the double occupancy phenomenon. This was proved by KUHS
et al. (1997), who also recognized that the same behavior could be expected for oxy-
gen molecules (RASOOLZADEH and SHARIATI, 2016). The double occupancy
phenomenon substantially impacts hydrate phase equilibrium prediction since its
consideration conflicts with one of the vdWP model’s fundamental assumptions:
"each cage can only host one guest molecule." Moreover, since the double occu-
pancy phenomenon is significant for O2 and N2 hydrates at high pressures according
to RASOOLZADEH and SHARIATI (2016), we should consider it when analyz-
ing the results generated by the Pshift model, which follows the same premise that
the vdWP model does. To summarize, because of the substantial possibility of the
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double occupation phenomenon occurrence and the Pshift model’s deficiency in pre-
dicting it, we did not use the available experimental data of N2 and O2 hydrates.
The same criterion discarded argon and krypton pure hydrates’ experimental data.

Table 4.1: List of estimated parameters.

Parameter List

Guest-dependent
parameters

Propane (c3)
σc3

εc3/kB

Isobutane (ic4)
σic4

εic4/kB

Dissociation
parameters

∆µEL−PWw,00

∆H̄EL−PW
w,00

Lattice
parameters

auc0

ln (κR,small)

ln (κR,large)

Reconciliation
parameters

ln (VP )

ln (VT )

Pm
c3

Pm
ic4

It is worth mentioning that sI hydrates parameter regression is not within this
dissertation’s scope. Kihara parameters for methane, ethane, and xenon, as well as
formation properties for the sI structure and volumetric properties for the sI empty
lattice, are available in SEGTOVICH et al. (2022).

4.5.3 Experimental data

In order to propose a practical parameter estimation procedure, we have cat-
egorized the experimental data according to the measured properties. The exper-
iments were divided into two broad groups: those that measure the unit cell edge
length at a fixed temperature or pressure – henceforth called volumetric experiments
– and those that provide a set of equilibrium pressure and temperature – henceforth
called equilibrium experiments. Regarding the former data set, we gathered the
volumetric data from propane and isobutane hydrates, further subdivided into two
subsets: isothermal and isobaric data. Propane and isobutane hydrates equilibrium
data were compiled from the literature for the latter data set.

Table 4.2 shows the data sets used in the calculation along with their avail-
ability, number of experiments, and reference.
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Table 4.2: List of data sets used in the optimization.

Comp. Data sets Availability Number of
experiments References

C3

Equilibrium
data Yes 94 NIST

Isothermal
data Yes 1 KOH et al. (1996)

Isobaric
data Yes 4

BELOSLUDOV et al. (2002)
KIRCHNER et al. (2004)
HESTER et al. (2007)

iC4

Equilibrium
data Yes 59 NIST

Isothermal
data No - -

Isobaric
data No - -

4.5.4 Parameter optimization methodology

The preferred approach to carry out the parameter optimization in this work
was through the minimization of objective functions, which were designed in conso-
nance with the parameters’ characteristics, the thermodynamic models, and current
algorithm robustness regarding convergence. We developed a more statistically com-
plete parameter estimation method for the simplest model, whereas more straightfor-
ward objective functions were devised for the most sophisticated model. Therefore,
the adopted strategy consisted of regressing the Interstitial model parameters using
a more complex and robust methodology, whose results would later serve as initial
guesses to the – much simpler – Pshift model parameterization. Both methodologies
are scrutinized in the upcoming subsections.

4.5.4.1 Interstitial model parameterization

For the Interstitial model parameterization, no parameter estimation was per-
formed concerning the lattice parameters; those were taken from the KLAUDA and
SANDLER (2000)’s empty lattice volume correlation. The authors’ auc0 , α and κhyd
were used as input for the equilibrium parameters optimization. It is worth men-
tioning that, since the Interstitial model (KLAUDA and SANDLER, 2000) does not
predict a compressible lattice cavity, κR is zero for both cages.

With the auc0 , α and κhyd provided by KLAUDA and SANDLER (2000), the
parameters related to the equilibrium experimental data were regressed in two steps,
with different parameter sets being optimized in each stage. Firstly, a heuristic op-
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timization method was employed to minimize a preliminary equilibrium adjustment
objective function. Its outcome served as an initial guess for a second step, which
consists of minimizing an objective function of weighted least-squares – derived from
the maximum likelihood method (SCHWAAB and PINTO, 2007) – with data recon-
ciliation. The former objective function is illustrated by the Equation 4.21, whereas
the latter, by the Equation 4.22, henceforth referred as "Fobj_1" and "Fobj_2",
respectively.

Fobj_1eqj =

nexp∑
k=1

[
∆µH−ELw,k

(
T expk , P exp

k , σj,
εj
kB
, auc0 , κhyd, lnκR

)
+

+∆µEL−PWw,k

(
T expk , P exp

k ,∆µEL−PWw,00 ,∆H̄EL−PW
w,00

) ]2

∀ j = c3, ic4

(4.21)

Where nexp is the number of experiments. Inside the parenthesis are high-
lighted the input temperature and pressure followed by the optimizable parameters.

Fobj_2eqj =

nexp∑
k=1

{
[Tmk (Pm

k )− T expk ]2

exp (lnVT )

}
+ nexp (lnVT ) +

+

nexp∑
k=1

[
(Pm

k − P
exp
k )2

exp (lnVP )

]
+ nexp (lnVP ) ∀ j = c3, ic4

(4.22)

As explained in Section 4.5.1, the implementation of Fobj_2 allows us to
contemplate the measurement inaccuracy inherent to every experimental practice in
the parameter estimation. Through this technique, we have adjusted the measured
temperature and pressure.

Our phase equilibrium algorithm was designed to generate an equilibrium tem-
perature from a specified pressure. Thus, the measured equilibrium temperature
after reconciliation (Tm) is calculated with the routines presented in Sections 4.2
and 4.3, using Pm as input. In other words, Pm is an independent variable, and Tm

is a dependent one.

All the sII hydrates’ shared parameters are estimated by minimizing a global
objective function, which is the sum of the guest-specific objective functions. In this
manner, no data set is prioritized. The global objective function is presented by
Equation 4.23.
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Fobjeqglobal = Fobjeqc3 + Fobjeqic4 (4.23)

Using this notation, Fobj_1eqglobal means Fobjeqc3 and Fobjeqic4 are both of the
Fobj_1 kind; and Fobj_2eqglobal means they are both of the Fobj_2 kind.

About the optimization techniques, Fobj_1 was minimized through the im-
plementation of the particle swarm optimization (PSO) method, while Fobj_2 was
minimized by using the Nelder-Mead technique, a direct search method that is
commonly called downhill simplex method. Table 4.3 summarizes the optimization
parameters used in both methods.

Table 4.3: Optimization parameters.

Method Parameter Value
Nelder-Mead Tolerance 1e-9

Number of particles 10PSO Number of generations 1000

The algorithm below explains how the Interstitial model parameterization
methodology was implemented.

1. Estimate σj, εj/kB, ∆µEL−PWw,00 , and ∆H̄EL−PW
w,00 for j = c3, ic4 by minimizing

Fobj_1eqglobal via PSO.

2. Estimate σj, εj/kB, ∆µEL−PWw,00 , and ∆H̄EL−PW
w,00 for j = c3, ic4 by minimizing

Fobj_2eqglobal via Simplex.

3a. Estimate Pm
c3, lnVT , and lnVP by minimizing Fobj_2eqc3 via Simplex.

3b. Estimate Pm
ic4, lnVT , and lnVP by minimizing Fobj_2eqic4 via Simplex.

4. If necessary, return to step 2 until convergence.

In the first step, guest-dependent and dissociation parameters were regressed
against the equilibrium experimental data by minimizing the so-called preliminary
equilibrium adjustment objective function using the PSO method. Despite its em-
pirical nature, the implementation of Equation 4.21 allows us to estimate the param-
eters at the thermodynamic equilibrium without running the equilibrium algorithm
for each experiment. Since this step’s goal consists of finding a good initial guess
for the next stage, we were not overly concerned about its accuracy.

In the second step of the parameterization, guest-dependent and dissociation
parameters were estimated by minimizing the maximum likelihood objective func-
tions using the preliminarily estimated parameters in the first step as initial guesses.
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Noticeably, this step of the Interstitial model parameterization is considerably more
robust than the previous since Fobj_2 is based on statistical principles. In virtue
of the high number of parameters involved within this stage, the parameterization
was performed iteratively to reduce the computational cost of estimating multiple
parameters simultaneously. Hence, not all parameters are optimized at once: while
some are regressed, the other portion remains at a fixed value.

Afterward, the experimental data were reconciled through the Fobj_2 mini-
mization. It should be emphasized that steps 3a and 3b are independent, so their
execution order does not matter. However, the number of parameters involved in
this step is so great that it was necessary to subdivide this step into two sub-
steps: one dedicated to reconciling the experimental equilibrium pressure values for
propane hydrate and the other for the isobutane hydrate. Since these substeps are
not correlated, as explained above, 3a and 3b are interchangeable.

After some parameters subsets estimation cycles, the parameters’ values con-
verged, and the procedure was terminated.

The flowchart displayed by Figure 4.2 resumes the method purported above.

Figure 4.2: Interstitial model parameter estimation methodology flowchart.

4.5.4.2 Pshift model parameterization

Optimizing the Pshift model’s parameters is more straightforward than the im-
plemented methodology to adjust the Interstitial model to the experimental data.
On account of the intrinsic difficulty of converging the algorithm that calculates
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the pressure shift, the objective function based on the maximum likelihood method
application would cost a substantial computational effort. In this sense, for the
Pshift model parameterization, we have regressed the guest-dependent and dissoci-
ation parameters against the experimental data by minimizing only Fobj_1 using
the Nelder-Mead optimization method. No data reconciliation was performed here,
thus:

Pm
j = P exp

j ∀ j = c3, ic4 (4.24)

Analogous to the Interstitial model parameterization methodology, the
KLAUDA and SANDLER (2000)’s empty lattice volume correlation was used. How-
ever, instead of incorporating the all the parameters provided by the authors, auc0 was
estimated, as well as ln (κR,small) and ln (κR,large). The rest of the lattice parameters
remained fixed.

It should be mentioned that KLAUDA and SANDLER (2000)’s empty lattice
data was not the only one used to perform the lattice parameters estimation. In-
stead, we have indirectly used the data provided by BELOSLUDOV et al. (2002).
Figure 4.3 illustrates the diagram presented by the author for the sII empty lattice
and propane hydrate.

From Figure 4.3, it is possible to observe a considerable divergence between
the simulated volume for a propane hydrate and the experimental data. Thus,
we have chosen not to work with the empty lattice simulated volume provided by
the BELOSLUDOV et al. (2002), but to use the difference between the simulated
propane hydrate and the empty lattice unit cell edges – referred to as ∆a in Figure
4.3 – to estimate an optimal value for auc0 empirically.

Even though the Pshift model parameterization does not comprehend more
than one type of objective function, the Fobj_1 minimization was achieved step-
by-step, using the Interstitial model’s optimal parameters as initial guesses and
attending the following procedure (which is illustrated by Figure 4.4):

1. Estimate auc0 empirically;

2. estimate σj, εj/kB, ∆µEL−PWw,00 , and ∆H̄EL−PW
w,00 for j = c3, ic4;

3. estimate ln (κR,small);

4. estimate ln (κR,large);

5. if necessary, return to step 2 until convergence.
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Figure 4.3: Unit cell parameter for sII hydrate of propane and empty lattice of struc-
ture sII at fixed atmospheric pressure. The blue arrows highlight BELOSLUDOV
et al. (2002)’s simulation results: the solid black squares represent the simulated
cell parameter for the propane hydrate, and the white squares depict the simulated
empty lattice for structure sII. The green arrows point out the experimental data
found in the literature by BELOSLUDOV et al. (2002). Adapted from BELOSLU-
DOV et al. (2002).

The first step consisted of estimating the optimal value for auc0 by indirectly
using the volumetric data provided by BELOSLUDOV et al. (2002). In this manner,
we have implemented a more empirical optimization methodology, that comprised of
testing values for auc0 between 17.13Å – figure provided by KLAUDA and SANDLER
(2000) – and 17.03Å – which is, approximately, 17.13Å minus the unit cell edge
difference (∆a ≈ 0.1Å) taken from Figure 4.3.

It is worth mentioning that the cage radii obtained experimentally in standard
conditions (R0) varied along with auc0 during this empirical estimation procedure.
For the auc0 estimation, it is desired to maintain f

0
, which is the ratio between R0

and auc0 . In other words, we applied a simple rule of three to modify R0. To illustrate
this procedure, let us take the R0 associated with auc0 = 17.13Å: [3.91Å, 4.73Å].

f
0

=
[3.91Å, 4.73Å]

17.13Å
= [0.23, 0.28] (4.25)

When auc0 = 17.03Å, to maintain f
0

= [0.23, 0.28] we must work with a new
R0 = [3.89, 4.70].

Subsequently, the guest-dependent and dissociation parameters were regressed
against experimental equilibrium data by minimizing Fobj_1eqglobal. These parame-
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ters are then used as input for the next steps.

Afterward, the small and large cages’ compressibility in log scale (lnκR) were
separately estimated as it was noticed during the parameterization that there was
a significant correlation between them. The small and large cavities’ compressibil-
ity were estimated by minimizing the global version of Fobj_1 in steps 3 and 4,
respectively.

Finally, since the guest-dependent, dissociation, and some of the lattice pa-
rameters are co-dependent, for good fitting, some of the estimated parameters are
reiterated in step 2, and the procedure is repeated until convergence is reached.

Figure 4.4: Pshift model parameter estimation methodology flowchart.
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Chapter 5

Results and discussion

This chapter’s goal is to present and discuss the obtained results from the
thermodynamic modeling implementation, namely the Interstitial and the Pshift
models.

The first section aims at validating the thermodynamic modeling by presenting
how the implemented models perform concerning the available data in the literature.
Hydrates of sI structure were prioritized in the validation process by virtue of their
greater information availability in the literature — specifically, pure methane and
ethane hydrates. Bearing in mind that we do not intend to reproduce KLAUDA
and SANDLER (2000)’s implementation, our results will not compared to theirs.
Alternatively, we aim to validate our own interpretation of KLAUDA and SANDLER
(2000)’s approach against the available experimental data.

Subsequently, the main contributions of the present work are introduced: pure
sII hydrates equilibrium curves, as well as the optimal parameters obtained for the
Interstitial and the Pshift models.

Finally, a stability analysis is carried out to investigate the feasibility of build-
ing mixed hydrates equilibrium curves with the parameters used to assemble the
pure hydrates diagrams previously demonstrated.

5.1 Thermodynamic model validation

Prior to implementing the Pshift model to obtain phase equilibrium and vol-
ume diagrams for sII hydrates, it is fundamental to validate the thermodynamic
modeling with the available data in the literature. Therefore, before the new con-
tributions of this work are demonstrated, results that already exist in the literature
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were reproduced.

First, the Interstitial model was applied to build phase diagrams for pure
methane and ethane sI hydrates. Afterward, the same plots are assembled through
the Pshift model implementation.

Henceforth, the molecules that promote hydrate formation involved in this
research, such as methane, ethane, propane, and isobutane, will be referred to as c1,
c2, c3, and ic4, respectively.

5.1.1 Interstitial model validation

Since the Interstitial model employment to predict the hydrate phase is part
of this research’s scope, its validation is indispensable. In this sense, Figures 5.1 and
5.2 illustrate how equilibrium temperature of c1 and c2 hydrates behave throughout
a specific pressure range.

Even though there are some Kihara parameter sets in the literature, we opted
not to use them. Firstly, for the more straightforward case – which is the Interstitial
model validation for sI hydrates –, the empirical correlation purported by Equation
3.86 was sufficient. Furthermore, for the sII hydrates phase equilibrium calculation,
we preferred to estimate the Kihara parameters to obtain the best possible Intersti-
tial model adjustment to compare to the Pshift model simulations. Therefore, we
used an alternative approach to compute the Langmuir coefficients in this section.

Instead of using the equation based on the free volume integral to calculate the
Langmuir coefficients, we employed the empirical correlation described by Equation
3.86 with the parameters estimated by MUNCK et al. (1988). The square well
function was used to model guest-host interaction. In other words, the same adopted
strategy by PARRISH and PRAUSNITZ (1972).

From Figures 5.1 and 5.2, one can observe that although the equilibrium sim-
ulation does not rigorously agree with all experimental points, the equilibrium tem-
perature behavior predominantly follows the tendency noticed in the experiments
until approximately 2000 bar of pressure. Near the conditions where the equilib-
rium retrograde behavior is observed, the simulations diverge substantially from the
experimental data, consistently underestimating the equilibrium temperatures at
pressures over 2000 bar. This discrepancy is probably a consequence of negligence
concerning the approach’s constraints. Despite the promising results obtained by
PARRISH and PRAUSNITZ (1972), the authors indeed warn about the Equation
3.86 restrictions: according to them, this equation must only be applied to calculate
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the Langmuir coefficients for temperatures between 260 K and 300 K.

Figure 5.1: I-H-V and LW-H-V phase equilibria prediction for CH4 hydrate using
the Interstitial model. Experimental data from NIST in KROENLEIN et al. (2015).

Figure 5.2: I-H-LHc, LW-H-LHc and LW-H-V phase equilibria prediction for C2H6

hydrate using the Interstitial model. Experimental data from NIST in KROENLEIN
et al. (2015).

In conclusion, it is reasonable to assume that the implementation carried out in
this work for the Interstitial model was successful, as the equilibrium curves mostly
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agree with the experimental data.

5.1.2 Pshift model validation

Similar to the Interstitial model validation, equilibrium curves for sI hydrates
were assembled using the Pshift model. Nevertheless, as the Kihara parameters were
available, we could compute the Langmuir coefficients through the free volume inte-
gral. Thus, the Langmuir coefficients used to built the equilibrium curves portrayed
by Figures 5.3 and 5.4 were calculated through Equation 3.94.

Figure 5.3: LW-H-V phase equilibria prediction for CH4 hydrate using the Pshift
model. Experimental data from NIST in KROENLEIN et al. (2015).

From Figures 5.3 and 5.4, one can quickly notice that there is a nearly per-
fect fit between the equilibrium simulation and the experimental data – as it was
expected from a proper Pshift model implementation with the parameters reported
by SEGTOVICH et al. (2022). Including the retrograde behavior region for the c1
hydrate. Contrarily to what was observed in Figure 5.1, the Pshift model implemen-
tation with its optimal parameters (SEGTOVICH et al., 2022) is plainly capable of
predicting the methane hydrate equilibrium at very high pressures.

Therefore, we can conclude that the implementation carried out in this work
for the Interstitial model was also successful. The next step consists of regressing
the parameters for new systems: c3 and ic4 pure hydrates (structure sII).
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Figure 5.4: LW-H-LHc and LW-H-V phase equilibria prediction for C2H6 hydrate
using the Pshift model. Experimental data from NIST in KROENLEIN et al. (2015).

5.2 Results for pure sII hydrates

Both models’ implementation has been validated; thus, we can generate new
diagrams to examine how pure sII hydrates equilibria behave at high pressures.
Furthermore, this section scrutinizes the parameterization outcomes for each model.

5.2.1 Interstitial model

5.2.1.1 Interstitial model optimal parameters

In consonance with the procedure covered by Section 4.5.4.1, the Interstitial
model parameterization was performed in two steps: minimization of Fobj_1 (Equa-
tion 4.21) by using the PSO method – an heuristic global minimum search method
– followed by the minimization of Fobj_2 (Equation 4.22) through the Nelder-Mead
method – a direct local minimum search method. Table 5.1 lists the initial guess
and optimal value found for all the parameters involved in the estimation. More-
over, aiming to facilitate the methodology reproduction, parameters that did not
take part in the parameterization – but are essential to adjust the model – were also
included in Table 5.1.

By including Fobj_2 in the parameterization, we could contemplate the in-
trinsic experimental fluctuations for the temperature and pressure measurements
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within the optimization problem. In this sense, the so-called reconciliation param-
eters were also estimated and their optimal values are exhibited in Figures 5.5 and
5.6 as orange points.

Table 5.1: Optimal parameters for sII hydrates predicted by the Interstitial model
(after simplex method optimization).

Parameter
Initial guess

(after PSO)
Optimal value Status

ac3 - 0Å Fixed

σc3 4.259Å 3.749Å Estimated

εc3/kB 184.6 K 201.6 K Estimated

aic4 - 0Å Fixed

σic4 2.740Å 3.797Å Estimated

Guest-dependent

parameters

εic4/kB 338.0 K 202.1 K Estimated

∆µEL−PWw,00 886.5 J/mol 814.8 J/mol Estimated

∆H̄EL−PW
w,00 -6113.0 J/mol -5702.8 J/mol Estimated

Dissociation

parameters
∆C̄p

EL−PW
w,00 - -39.16 J/(mol·K) Fixed

auc0 - 17.13Å Fixed

α1 - 2.249e-4 Fixed

α2 - 2.013e-6 Fixed

α3 - 1.009e-9 Fixed

κhyd - 1.098e-10 Pa−1 Fixed

κR,small - 0 Pa−1 Fixed

Lattice

parameters

κR,large - 0 Pa−1 Fixed

5.2.1.2 Equilibrium diagrams

This section is designed to demonstrate the sII hydrates equilibria simulations
generated by the Interstitial model.

Here we used the free volume integral, differing from the preferred strategy
used to calculate the Langmuir coefficients within the Interstitial model implemen-
tation to predict sI hydrates equilibria. The parameterization provided the necessary
parameters to use Equation 3.94 instead of the empirical correlation described by
Equation 3.86.

Figures 5.5 and 5.6 show how the equilibrium temperature predicted by the
Interstitial model behaves with pressures ranging from 1 bar to 1000 bar. Moreover,
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since a data reconciliation procedure was carried out along with the parameteriza-
tion, Figures 5.5 and 5.6 also display the experimental data before (dark gray points)
and after the reconciliation (orange points).

Figure 5.5: I-H-LHc, LW-H-LHc and LW-H-V phase equilibria prediction for C3H8

hydrate using the Interstitial model. The dark gray points represent the experi-
mental data obtained from NIST in KROENLEIN et al. (2015). The orange points
illustrate the experimental data after reconciliation.

For the propane hydrate, Figure 5.5 shows an excellent agreement between the
simulated equilibrium and the available data in the literature. No significant dispar-
ity between the experimental data before and after reconciliation can be observed.

Likewise, Figure 5.6 shows that the isobutane hydrate equilibrium prediction
adjusts reasonably well to the experimental data after reconciliation. However, a
slight divergence can be noticed between the dark gray and orange points in Figure
5.6. In other words, assuming the modeling is well implemented, a higher degree
of uncertainty associated with ic4 hydrates equilibrium measurements should be
expected compared to c3 hydrates experiments. Nevertheless, since the standard
deviation associated with hydrate equilibrium experiments is not available in the
literature, we can only make educated guesses about the measurement errors of
such experiments. The estimated values for the variances related to temperature
and pressure measurements (VT and VP ) are displayed in Table 5.2.

In conclusion, despite the minor discrepancy mentioned above for the isobu-
tane hydrate simulation, it is safe to say that the thermodynamic modeling was
successfully implemented. Thus, ratifying the results presented in Section 5.1. Nev-
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ertheless, some comments about the data reconciliation results must be made.

Figure 5.6: I-H-LHc, LW-H-LHc and LW-H-V phase equilibria prediction for iC4H10

hydrate using the Interstitial model. The dark gray points represent the experi-
mental data obtained from NIST in KROENLEIN et al. (2015). The orange points
illustrate the experimental data after reconciliation.

First, by analyzing the figures presented by Table 5.2 one can notice that
estimated value for the pressure variance is excessively high, producing a standard
deviation of approximately 1.4 GPa. Second, from Figure 5.6 it is possible to observe
that the reconciliation of the experimental points measured at high pressures yielded
a systematic adjustment, which conflicts with the hypothesis that considered that
the experimental error followed a Gaussian distribution. Therefore, although the
parameterization enabled a reasonable agreement between the simulation and the
experimental data, the strategy must be revised to incorporate some fundamental
concepts in the calculation.

Table 5.2: Regressed temperature and pressure-related variances.

Parameter Estimated value
lnVT 0.7057
lnVP 42.175
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5.2.2 Pshift model

5.2.2.1 Pshift model optimal parameters

Following the procedure introduced by Section 4.5.4.2, the optimal parameters
for the Pshift model were estimated using the Interstitial model optimal parameters
(presented in Table 5.1) as initial guesses. As explained in the section mentioned
above, all the parameters involved in the parameterization were estimated by mini-
mizing Fobj_1 through the Nelder-Mead optimization method, except for auc0 , whose
optimal value was empirically obtained.

Even though the Pshift parameterization methodology is not as robust as the
one devised to optimize the Interstitial model, the latter model’s optimal parameters
employment as initial guesses compensates for the more empirical approach used to
optimize the Pshift model.

Figure 5.7 depicts the results of empirical estimation procedure devised to
locate the optimal auc0 for the Pshift model. We did not include all the diagrams
generated in the auc0 estimation process because the others would not bring any useful
information. Thus, we focused on showing how the simulation fits the experimental
data for the superior (17.13Å) and inferior (17.03Å) bounds.

With respect to Figure 5.7, subplots (a), (b) and (c) demonstrate equilibrium
and volumetric curves for c3 and ic4 hydrates applying auc0 = 17.13Å. While sub-
plots (d), (e) and (f) show equilibrium and volumetric curves for c3 and ic4 hydrates
applying auc0 = 17.03Å. In addition, subplots (a) and (d) present equilibrium curves,
subplots (b) and (e) display P x auc at 273 K, and subplots (c) and (f) exhibit T x
auc at 1 atm.

Since the value of auc0 greatly influences the parameterization, different optimal
parameters were obtained for each case. Tables 5.3 and 5.4 show these optimal
parameters sets.
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Figure 5.7: Pshift model’s equilibrium and volume prediction of sII empty lattice,
propane, and isobutane hydrates for different values of auc0 . The solid green lines rep-
resent the propane hydrate simulations, the solid blue lines represent the isobutane
hydrate simulations, and the dashed dark gray lines represent the sII empty lattice
simulations. Green points represent experimental data related to propane hydrates,
and blue points represent experimental data related to isobutane hydrates.
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Based on the diagrams displayed by subplots (a) and (d) in Figure 5.7, it
is clear for both auc0 (and R0) values that the equilibrium simulations are in good
agreement with the experimental data. On the other hand, the same conclusion
cannot be drawn for the volumetric diagrams. For auc0 = 17.13Å, subplot (b) shows
that the model over-predicts the c3 hydrate volume at a constant temperature, while
subplot (c) reveals that the simulation agrees with two measurements at constant
pressure. For auc0 = 17.03Å the simulation responds very differently: subplot (e)
reveals that the model correctly predicts the only available experimental point at a
constant temperature, whereas subplot (f) shows that the simulation considerably
under-predicts the c3 hydrate volume at constant pressure.

Table 5.3: Optimal parameters for sII hydrates predicted by the Pshift model for
auc0 = 17.13Å.

Parameter Initial guess Optimal value Status

ac3 - 0Å Fixed

σc3 3.749Å 3.806Å Estimated

εc3/kB 201.6 K 200.7 K Estimated

aic4 - 0Å Fixed

σic4 3.797Å 4.057Å Estimated

Guest-dependent

parameters

εic4/kB 202.1 K 182.4 K Estimated

∆µEL−PWw,00 814.8 J/mol 828.3 J/mol Estimated

∆H̄EL−PW
w,00 -5702.8 J/mol -5508.4 J/mol Estimated

Dissociation

parameters
∆C̄p

EL−PW
w,00 - -39.16 J/(mol·K) Fixed

auc0 17.13Å 17.13Å Fixed

α1 - 2.249e-4 Fixed

α2 - 2.013e-6 Fixed

α3 - 1.009e-9 Fixed

κhyd - 1.098e-10 Pa−1 Fixed

κR,small 1.098e-10 Pa−1 1.104e-10 Pa−1 Estimated

κR,large 1.098e-10 Pa−1 1.098e-10 Pa−1 Estimated

R0,small 3.910Å 3.910Å Fixed

Lattice

parameters

R0,large 4.730Å 4.730Å Fixed

In other words, both parameter sets seem to be equivalently good for pre-
dicting hydrate equilibrium and equally inefficient for simulating hydrate volume
simultaneously. This is evidence of the high correlation between the parameters
when regressed against limited experimental data. Despite the good amount of pure
hydrate equilibrium data, to reduce the parameter correlation, it is crucial to employ
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a more diverse data set in the parameterization: (more) volume data, occupation
data, dissociation enthalpy data, and mixed hydrate equilibrium data.

Table 5.4: Optimal parameters for sII hydrates predicted by the Pshift model for
auc0 = 17.03Å.

Parameter Initial guess Optimal value Status

ac3 - 0Å Fixed

σc3 3.749Å 3.773Å Estimated

εc3/kB 201.6 K 175.7 K Estimated

aic4 - 0Å Fixed

σic4 3.797Å 4.002Å Estimated

Guest-dependent

parameters

εic4/kB 202.1 K 161.9 K Estimated

∆µEL−PWw,00 814.8 J/mol 828.4 J/mol Estimated

∆H̄EL−PW
w,00 -5702.8 J/mol -5512.5 J/mol Estimated

Dissociation

parameters
∆C̄p

EL−PW
w,00 - -39.16 J/(mol·K) Fixed

auc0 17.03Å 17.03Å Fixed

α1 - 2.249e-4 Fixed

α2 - 2.013e-6 Fixed

α3 - 1.009e-9 Fixed

κhyd - 1.098e-10 Pa−1 Fixed

κR,small 1.098e-10 Pa−1 1.104e-10 Pa−1 Estimated

κR,large 1.098e-10 Pa−1 1.098e-10 Pa−1 Estimated

R0,small 3.887Å 3.887Å Fixed

Lattice

parameters

R0,large 4.702Å 4.702Å Fixed

Interestingly, both parameter sets anticipate the lattice contraction for propane
and isobutane hydrates for a wide pressure range. More about crystallography will
be discussed in the following sections.

Since there is not an unequivocally correct optimal parameter set, we chose,
for practical effects, the one presented by Table 5.3 to carry on with the discussion.

5.2.2.2 Equilibrium diagrams

After validating the Pshift model implementation and estimating its optimal
parameters (listed in Table 5.3), it is time to study this model’s ability to predict sII
hydrates’ formation. For that reason, P × T diagrams were assembled to illustrate
the conditions in which pure propane and isobutane hydrates are formed. Figures 5.8
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and 5.9 show the obtained equilibrium curves for c3 and ic4 hydrates, respectively.

Figure 5.8: I-H-LHc, LW-H-LHc and LW-H-V phase equilibria prediction for C3H8

hydrate using the Pshift model. Experimental data from NIST in KROENLEIN
et al. (2015).

Figure 5.9: I-H-LHc, LW-H-LHc and LW-H-V phase equilibria prediction for iC4H10

hydrate using the Pshift model. Experimental data from NIST in KROENLEIN
et al. (2015).

From the equilibrium curves depicted by Figures 5.8 and 5.9, it is clear that
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the Pshift model adjusts almost perfectly to the available experimental data for
propane hydrates. For isobutane hydrates, although there is a slight deviation be-
tween the predicted equilibrium temperature and the one observed in the exper-
iments in the LW-H-V phase equilibrium region, the model mostly concurs with
the available experimental data. This solid agreement between the sII hydrates’
simulation and experiments indicates proper thermodynamic modeling and param-
eterization methodology implementation.

5.2.2.3 Volume diagrams

In addition to the equilibrium curves presented in the previous sections, plots
that correlate the hydrate’s lattice unit cell parameter with pressure (at a constant
temperature) and temperature (at a fixed pressure) were built. Since these plots
indirectly provide information about the hydrate volume, they are referred to as
"volume diagrams" in this work.

Even though the main objective of this research is to expand the Pshift model’s
ability to simulate hydrates formation, it is essential to investigate how accurately
can the Pshift model predict the hydrates’ volume. While the equilibrium curves
provide a great deal of information about the hydrate dissociation, the volume dia-
grams give us vital data about the hydrate’s crystallography. With this information,
it is possible to anticipate if the guests are causing the lattice to expand or shrink
regarding the hydrate’s reference state.

Since there is virtually no usable volumetric experimental data available in
the literature for sII hydrates1, the quantitative analysis of the volume diagrams is
problematic. This unavailability causes a bias in the parameterization procedure,
favoring equilibrium data over volumetric. Consequently, the optimal parameters
presented in Table 5.3 may not adjust the model satisfactorily regarding the – very
scarce – volumetric experimental data. Hence, we intend to discuss the hydrate
volume simulations from a qualitative perspective.

Figures 5.10 and 5.11 show the unit cell parameter as a function of pressure
(at 273 K), and as a function of temperature (at 101 325 Pa), respectively.

Both Figures 5.10 and 5.11 show that c3 and ic4 hydrates’ unit cell edge lengths
are smaller compared to the empty lattice, except when they are submitted to very

1HESTER et al. (2007) presented a considerable amount of propane hydrate thermal expansion
experimental points at atmospheric pressure in their work. However, these measurements were
taken at the fixed occupation ratio found for the highest temperature (230 K). In this sense, except
for the 230 K point, all the others are considered meta-stable, and our model is not properly fit to
represent this kind of data. Therefore, we decided only to use the highest temperature measurement
from the HESTER et al. (2007) experimental data.
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high pressures at 273 K. For the isobutane, the lattice expansion is quite subtle,
but it is possible to observe the solid blue line crossing the dashed dark gray line at
approximately 1× 104 bar.

Figure 5.10: Unit cell parameter versus pressure for C3H8 and iC4H10 hydrates (green
and blue lines, respectively), and empty lattice (dark gray dashed line) at 273 K using
the Pshift model. The green point portrays the propane hydrate experimental data
from KOH et al. (1996).

By applying the reasoning explained in Section 3.5, these graphs indirectly
reveal that propane and isobutane molecules at least fit loosely within the large
cavities, which, in this case, contributes more to the contraction effect than the small
cage since, at a fixed pressure, these pure hydrates have a smaller volume than the
hypothetical sII empty lattice. Considering the isochoric perspective – illustrated
in Figure 3.2 –, a negative pressure shift should be expected for both hydrates for
most temperature and pressure conditions, according to our simulations. However,
not all equilibrium points should present a negative pressure shift since, for very
high pressures, Figure 5.10 shows that the hydrates have a higher volume than the
empty lattice (i.e., positive pressure shift).

As anticipated, nothing can be inferred about the Pshift model’s capability to
predict sII hydrates’ volume. A quick look to Figures 5.10 and 5.11 reveals that
the tuned parameter set presented by Table 5.3 could not represent adequately the
volumetric experimental data.

On the one hand, the model could qualitatively predict the lattices’ edge length
as a function of temperature and pressure. The expected thermal expansion ap-
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Figure 5.11: Unit cell parameter versus temperature for C3H8 and iC4H10 hydrates
(green and blue lines, respectively), and empty lattice (dark gray dashed line) at
273 K using the Pshift model. The green points portray the propane hydrate experi-
mental data from KIRCHNER et al. (2004), HESTER et al. (2007) and BELOSLU-
DOV et al. (2002).

peared for isobaric experiments, and the lattice compression could be identified at
very high pressures for isothermal measurements. Moreover, most experiments dis-
played in Figures 5.11 and 5.10 indicates that the c3 and ic4 hydrates would have a
lower volume than the empty lattice, converging our model’s simulations.

By studying Figure 5.10 some intriguing phenomena are unveiled. First, we
focus on the propane hydrate plot (green line). At moderate conditions, the propane
hydrate volume is almost unaffected by pressure increments since it remains con-
stant until approximately 5× 107 Pa (or 500 bar). Two phenomena co-occur as the
system pressure increases: guest adsorption is favored, and the crystalline lattice is
compressed. Interestingly, right about 1× 103 bar, a lattice swelling can be observed
for the propane hydrate. In this region, the guest adsorption promotion phenomenon
is believed to overwhelm lattice compression, and the crystalline structure expands
to accommodate the new guests until a certain pressure. Along with the lattice,
the cavities swell, facilitating propane molecules’ adsorption within the small cages.
This phenomenon is called gate-opening.

As the pressure increases and the hydrate gets saturated, the guest adsorption
loses intensity until it reaches a point where it becomes to be less favored than the lat-
tice compression; eventually, at extreme conditions (1× 103 bar < P < 1× 104 bar),

88



as the lattice gets compressed, the hydrate volume progressively reduces. At this
point, the importance of considering the cavities’ compressibility becomes very clear
since it is only logical to assume that the cages shrink along with the crystalline
structure. At some point, the cages get too small, and the guests are gradually ex-
pelled from the lattice. This phenomenon is called gate-closing. For the isobutane
hydrate volume simulation (blue plot), Figure 5.10 shows that a different behavior
should be expected compared to the propane hydrate at very high pressures: instead
of dropping after a peak, the unit cell parameter sharply declines. In other words,
according to the Pshift model simulation, ic4 hydrates only present the gate-closing
phenomenon at extreme pressures. The isobutane molecules are probably too big
to fit inside the small cages, and with all the large cages occupied, because of this
steric hindrance, the pressure increase only favors lattice compression, shrinking the
crystalline structure. Possibly, this is why no gate-opening phenomenon should be
expected for ic4.

The simulations mostly disagree with the experimental data. Unfortunately,
we could not satisfactorily adjust the model to the volumetric experimental data.
In addition, our isobaric simulation of the propane hydrate edge length strongly
diverges from BELOSLUDOV et al. (2002)’s. While the author’s simulation predicts
that the propane hydrate would have a larger volume than the empty lattice, ours
suggests otherwise.

Nevertheless, neither is there an agreement between available experimental
data in the literature. We have highlighted two points in the volume diagrams to
illustrate this discrepancy: the sole experimental point at Figure 5.10 (from KOH
et al. (1996) and the point located in the upper right quadrant in Figure 5.11 (from
BELOSLUDOV et al. (2002)). The text near the above-mentioned points represents
their coordinates, for instance: Figure 5.10’s point is situated at approximately
4.2 bar and 17.2Å (measured at 273 K), and 5.11’s point is located at 273 K and
17.4Å (measured at 1 bar). Assuming that, at moderate conditions, the pressure
does not affect dramatically the lattice edge length – which, based on Figure 5.10,
seems a reasonable assumption –, these two points should agree to very similar
auc value. However, a considerable difference between these two measurements is
observed.

Some alternative scenarios were simulated for exploratory research purposes to
enrich the discussion. Figure 5.12 depict the equilibrium and volume predictions for
c3 and ic4 hydrates under a special condition: the guest molecules are not allowed to
occupy the small cavities mathematically – which is a hypothesis used in the square
well approach of PARRISH and PRAUSNITZ (1972) and MUNCK et al. (1988),
where parameters A and B for c3 and ic4 in the small cages are hard-coded to zero,
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and not fitted. For this calculation, we fixed the propane and isobutane molecules’
soft-core parameter (σ) at higher values than the small cage radius. First, for case
1, we fixed σc3 and σic4 at 4.0Å and 4.1Å, respectively. Then, for case 2, the same
variables were set at 4.2Å and 4.3Å. For both cases, the other parameters were re-
estimated – those are displayed in Table 5.5. With this constraint, we hope to force
the hydrate lattice expansion and demonstrate that the analysis employed to verify
lattice compression or expansion depends considerably on the used parameters.

Table 5.5: Optimal parameters for sII hydrates predicted by the Pshift model for
special cases 1 and 2.

Parameter
Optimal value

Case 1

Optimal value

Case 2
Status

ac3 0Å 0Å Fixed

σc3 4.000Å 4.200Å Fixed

εc3/kB 400.2 K 352.8 K Estimated

aic4 0Å 0Å Fixed

σic4 4.100Å 4.300Å Fixed

Guest-dependent

parameters

εic4/kB 388.0 K 360.6 K Estimated

∆µEL−PWw,00 3429.3 J/mol 3123.3 J/mol Estimated

∆H̄EL−PW
w,00 -2681.9 J/mol -3071.5 J/mol Estimated

Dissociation

parameters
∆C̄p

EL−PW
w,00 -39.16 J/(mol·K) -39.16 J/(mol·K) Fixed

auc0 17.13Å 17.13Å Fixed

α1 2.249e-4 2.249e-4 Fixed

α2 2.013e-6 2.013e-6 Fixed

α3 1.009e-9 1.009e-9 Fixed

κhyd 1.098e-10 Pa−1 1.098e-10 Pa−1 Fixed

κR,small 1.104e-10 Pa−1 1.104e-10 Pa−1 Estimated

κR,large 1.098e-10 Pa−1 1.098e-10 Pa−1 Estimated

R0,small 3.910Å 3.910Å Fixed

Lattice

parameters

R0,large 4.730Å 4.730Å Fixed

With respect to Figure 5.12, subplots (a), (b) and (c) demonstrate c3 and
ic4 hydrates equilibrium and volumetric curves for case 1. While subplots (d), (e),
and (f) show c3 and ic4 hydrates equilibrium and volumetric curves for case 2.
In addition, subplots (a) and (d) present equilibrium curves, subplots (b) and (e)
display P x auc at 273 K, and subplots (c) and (f) exhibit T x auc at 1 atm.

From the volume diagrams depicted in subplots (e) and (f) of Figure 5.12, it
is possible to detect the hydrate expansion very clearly. Before, when the guests
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were allowed to occupy the small cavities, the ic4 was too big to fit such cages,
while c3 molecules were too small to expand them (according to our simulations,
the propane molecules fit loosely within the small cages). By forbidding the guests to
fill the small cavities and considerably enlarging the c3 and ic4 soft-core parameters,
we observed the lattice expansion – taking the empty lattice as reference –, which
is represented by a positive pressure shift. In other words, the case 2 parameter set
makes the model simulates c3 and ic4 hydrates whose guests fit tightly within the
large cages.

To summarize, this trial is decent evidence that the employed parameters
deeply influence the interpretation of hydrate volume simulation diagrams. There-
fore, it is reasonable to affirm that the parameterization procedure and the experi-
mental data quality and quantity substantially impact the study of such diagrams.
More reliable volume data is required for a sound estimation.

5.3 Stability analysis

All the simulations so far concern pure hydrates, i.e., hydrates of which guests
of the same species occupy the cavities. Nevertheless, we rarely encounter a pure
hydrate within the engineering systems when it comes to natural gas clathrates.
Usually, natural gas hydrates are composed of more than one guest species since the
natural gas streams are multi-component.

According to SLOAN JR and KOH (2007), natural gas molecules consist of
methane, ethane, propane, and carbon dioxide. Hence, to represent the natural
gas hydrates as close as possible to their natural state, it is crucial to study mixed
hydrates as well.

Differently from single hydrates, clathrates with multiple guest species can
occur in more than one configuration for the same vapor composition. For instance,
for a specific vapor composition, a mixed hydrate can stabilize with the sI structure
at low temperatures, while the sII configuration appears at high temperatures, or
vice-versa. Therefore, a stability analysis is required to determine the most stable
configuration for a specific condition. Otherwise, we would need to guess the correct
structure to select the appropriate parameter set, which is impossible!
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Figure 5.12: Pshift model’s equilibrium and volume prediction of sII empty lattice
(EL), c3, and ic4 hydrates if the guest molecules were not allowed to occupy the
small cavities. The solid green lines represent the c3 hydrate simulations, the solid
blue lines represent the ic4 hydrate simulations, and the dashed dark gray lines
represent the sII EL simulations. The points represent the experimental data: green
for c3 hydrates and blue for ic4 hydrates.
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In this sense, as discussed in 4.3, PARRISH and PRAUSNITZ (1972) developed
an algorithm that eliminates the necessity of structure deduction by indicating the
most stable configuration for a given temperature, pressure, and composition. We
have used a modified version of PARRISH and PRAUSNITZ (1972)’s method. By
comparing the resultant equilibrium temperature – instead of pressure – we could
generate some equilibrium diagrams for mixed hydrates using both Interstitial and
Pshift models.

5.3.1 Interstitial model mixed hydrates prediction

As mentioned, we could not find the Kihara parameters for sI hydrates in
the literature that were optimized regarding the Interstitial model. Thus, we have
resorted to employing the empirical correlation described by Equation 3.86 with
the parameters provided by MUNCK et al. (1988). We are looking to represent
sI and sII forming molecules simultaneously in the thermodynamic model; hence,
we adopted the same approach for both guest types: calculating the Langmuir
coefficients through the above-mentioned empirical correlation.

Figures 5.13, 5.14 and 5.15 respectively depict the phase equilibrium curves
for systems of which vapor compositions are:

• 50% CO2 + 50% C1 (system A);

• 10% CO2 + 90% C1 (system B);

• 90% C1 + 10% C2 (system C).

These systems were selected because there was a greater experimental data
availability associated with these compositions in the literature.

Figures 5.13 to 5.15 portray scenarios in which the sII configuration (repre-
sented by the blue line) occurs for lower temperatures, while the sI structure (rep-
resented by the green line) is the most stable one for higher temperatures. These
diagrams perfectly illustrate the importance of the PARRISH and PRAUSNITZ
(1972)’s algorithm.

Even though there are not many experimental points, it is possible to observe a
good agreement between the simulation and the experiments in Figures 5.13 to 5.15.
Moreover, no evidence in the literature could contradict our simulations regarding
these three systems (A, B, and C). In other words, we did not find the hydrate con-
figuration for all the experimental points, but for the ones we verified, the structure
predicted by the model converges with the one observed in the laboratory.
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Figure 5.13: Interstitial model’s phase equilibrium prediction for a CH4 + CO2

hydrate (50% mol methane). The green line represents the equilibrium simulation
of an sI hydrate, and the blue line the equilibrium simulation of an sII hydrate.
Experimental data from NIST in KROENLEIN et al. (2015).

Figure 5.14: Interstitial model’s phase equilibrium prediction for a CH4 + CO2

hydrate (90% mol methane). The green line represents the equilibrium simulation
of an sI hydrate, and the blue line the equilibrium simulation of an sII hydrate.
Experimental data from NIST in KROENLEIN et al. (2015).

94



Figure 5.15: Interstitial model’s phase equilibrium prediction for a CH4 + C2H6

hydrate (90% mol methane). The green line represents the equilibrium simulation
of an sI hydrate, and the blue line the equilibrium simulation of an sII hydrate.
Experimental data from NIST in KROENLEIN et al. (2015).

5.3.2 Pshift model mixed hydrates prediction

The mixed hydrates equilibrium diagrams obtained via the Pshift model are
displayed here. Contrary to the approach implemented for the Interstitial model,
the Langmuir coefficients were computed via free volume integral; i.e., we employed
the SEGTOVICH et al. (2022)’s sI hydrates tuned parameters with our optimal
parameters for sII-type hydrates in the calculation of the Langmuir coefficients and
the phase equilibrium algorithm.

Figures 5.16 to 5.18 respectively depict the phase equilibrium curves for sys-
tems of which vapor compositions are given by the above-mentioned systems A, B,
and C.

Examining the two models makes it possible to identify similarities and dispar-
ities. On the one hand, like the Interstitial model, the Pshift model fits adequately
to systems’ A and B experimental data, as shown by Figures 5.16 and 5.17. Further-
more, both Pshift and Interstitial models predict the correct hydrate configuration
of the available experimental data: structure sI.

On the other hand, Figures 5.16 and 5.17 show that the Pshift model an-
ticipates that the hydrate would present structure sI at temperatures below the
quadruple point, which diverges from the Interstitial model’s prediction. Moreover,
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for system C the Pshift model could not represent the experiments. Not only does
the simulation overestimate the equilibrium temperature, but also it predicts a dif-
ferent structure compared to the Interstitial model.

This performance discrepancy might be associated with multiple elements.
Nevertheless, since we firmly believe that both the thermodynamic modeling and the
PARRISH and PRAUSNITZ (1972)’s algorithm is implemented correctly – which is
ratified by the results displayed in the previous sections – this inaccurate simulation
might be related to the parameter set selected to execute the calculation.

Figure 5.16: Pshift model’s phase equilibrium prediction for a CH4 + CO2 hydrate
(50% mol methane). Experimental data from NIST in KROENLEIN et al. (2015).

As demonstrated in Section 5.1, the tuned parameters presented by SEG-
TOVICH et al. (2022) are, indeed, optimal to make the Pshift model reproduce
some pure sI hydrates phase equilibria. Likewise, as exhibited in Section 5.2, our
parameterization procedure outcomes also promote a good fit between the Pshift
model simulation and the sII hydrate experimental data. However, both parame-
ter estimation methodologies mainly focused on devising an optimization problem
that would produce the optimal parameters for the hydrate structure experimen-
tally encountered, with no restrictions regarding any alternative configuration. For
instance, to adjust the model to propane and isobutane experimental data, we did
not include any restrictions for the sI structure. In other words, the parameteri-
zation procedure was oriented to the most thermodynamically stable structure and
delivered the optimal parameters accordingly.

Nonetheless, when the PARRISH and PRAUSNITZ (1972)’s algorithm is ap-
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plied, and the hydrate is simulated for both structures, the model might anticipate
the less thermodynamically favored lattice configuration if it presents a higher equi-
librium temperature than the other – which is the used criterion to determine the
equilibrium structure. As there were no constraints regarding the "wrong" struc-
ture in the optimization problem for both approaches – ours and SEGTOVICH et al.
(2022)’s –, the tuned parameters are perfectly capable of representing pure hydrate
phase equilibria (by predicting the "correct" configuration), but the same cannot be
affirmed for mixed hydrates.

Since there is limited information about the most stable configuration of the
equilibrium measured in the experiments, it is delicate to affirm whether our opti-
mal parameters promote or not the simulation of the most stable structure for every
system composition. However, Figure 5.18 is sufficient to affirm that the parameter-
ization procedure needs to be more robust to incorporate the complexity of mixed
hydrates.

Figure 5.17: Pshift model’s phase equilibrium prediction for a CH4 + CO2 hydrate
(90% mol methane). Experimental data from NIST in KROENLEIN et al. (2015).
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Figure 5.18: Pshift model’s phase equilibrium prediction for a CH4 + C2H6 hydrate
(90% mol methane). The green line represents the equilibrium simulation of an sI
hydrate, and the blue line the equilibrium simulation of an sII hydrate. Experimental
data from NIST in KROENLEIN et al. (2015).
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Chapter 6

Conclusions and suggestions

Here, we implemented the Interstitial and Pshift models to predict sII hydrates
equilibria and volume by analyzing P × T diagrams and the unit cell parameter
behavior with temperature and pressure. Furthermore, we estimated the above-
mentioned models’ parameters for sII hydrates.

From the results presented in the previous chapter, it is clear that the Pshift
model was successfully implemented and that the tuned parameters promote a de-
cent fit between the phase equilibria simulation and the experimental data. Never-
theless, due to the sparse availability of sII hydrate volumetric data in the literature,
the optimal parameters mentioned above have proven inadequate to accurately de-
scribe sII hydrates’ volume. Even so, the Pshift model could qualitatively reproduce
some interesting crystallographic features, which might help understand the many
variables that affect the volume of natural gas hydrates.

Even though the Pshift model implementation has yielded promising results,
we still have a long journey regarding mixed hydrate simulation. The Pshift model-
PARRISH and PRAUSNITZ (1972)’s algorithm combination yields decent results
for some specific systems and might be a very appealing alternative to predict mixed
hydrates phase equilibria. However, the results presented in Chapter 5 have shown
that the parameterization methodology immensely impacts the model’s behavior.

Considering the results, we have some suggestions for future research regarding
the hydrate phase equilibrium calculation framework.

• The inclusion of experimental data from mixed hydrates equilibrium, dissoci-
ation enthalpy (as in MEDEIROS et al. (2020)), and cage occupancy in the
parameter estimation would be handy to discorrelate parameters. From the
mixed hydrates equilibrium results, it is known that the parameters have a
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great influence on their prediction. Therefore, incorporating mixed hydrates
experimental data would help us decide the proper parameter for pure hy-
drates.

• We believe that performing more experiments for reliable cage occupancy data
and volume data is essential to improve the quantity and quality of sII hydrate
volumetric experimental data.

• Moreover, the employment of an algorithm to compute how the hydrate volume
behaves with temperature at fixed θ and P (canonical meta-stable calculation)
to represent the isobaric volume data would enable the use of many already
available T × auc experimental points.

• We consider that implementing a parametric statistical analysis to examine
the estimated parameters’ statistical quality would help us perform a more
thorough investigation of the parameterization results.

• Finally, we believe that elaborating a more robust optimization problem by
including constraints regarding the less thermodynamically stable configura-
tion in the mixed hydrate equilibrium calculation would hinder the structure
misprediction.
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