
INTEGRATION OF STRATEGIES FOR REAL-TIME OPTIMIZATION AND
SUPERVISORY CONTROL

Rafael Brandão Demuner

Tese de Doutorado apresentada ao Programa
de Pós-graduação em Engenharia Química,
COPPE, da Universidade Federal do Rio
de Janeiro, como parte dos requisitos
necessários à obtenção do título de Doutor
em Engenharia Química.

Orientador: Argimiro Resende Secchi

Rio de Janeiro
Dezembro de 2022



INTEGRATION OF STRATEGIES FOR REAL-TIME OPTIMIZATION AND
SUPERVISORY CONTROL

Rafael Brandão Demuner

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ
COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA DA
UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS
REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR
EM CIÊNCIAS EM ENGENHARIA QUÍMICA.

Orientador: Argimiro Resende Secchi

Aprovada por: Prof. Argimiro Resende Secchi
Prof. Príamo Albuquerque Melo Jr
Prof. Márcio André Fernandes Martins
Prof. Marcelo Farenzena
Prof. Ardson dos Santos Vianna Junior

RIO DE JANEIRO, RJ – BRASIL
DEZEMBRO DE 2022



Demuner, Rafael Brandão
Integration of Strategies for Real-Time Optimization

and Supervisory Control/Rafael Brandão Demuner. –
Rio de Janeiro: UFRJ/COPPE, 2022.

XXIX, 198 p.: il.; 29, 7cm.
Orientador: Argimiro Resende Secchi
Tese (doutorado) – UFRJ/COPPE/Programa de

Engenharia Química, 2022.
Referências Bibliográficas: p. 174 – 198.
1. Otimização em Tempo Real. 2. Controle Preditivo

Baseado em Modelo. 3. Sistemas Não-Lineares. 4.
Identificação On-line. I. Secchi, Argimiro Resende.
II. Universidade Federal do Rio de Janeiro, COPPE,
Programa de Engenharia Química. III. Título.

iii



Ninguém ignora tudo. Ninguém
sabe tudo. Todos nós sabemos

alguma coisa. Todos nós ignoramos
alguma coisa. Por isso aprendemos

sempre.
Paulo Freire

iv



Agradecimentos

Primeiramente, gostaria de agradecer ao Professor Argimiro, o qual tive o
privilégio de ter sido seu orientado desde o mestrado. Agradeço por todos os en-
sinamentos, pela sabedoria, pela paciência, pelo incentivo e pelas oportunidades
concedidas.

Aos demais professores do PEQ, aos quais contribuíram para minha formação
e educação. Ao Professor Príamo, que foi meu orientador no mestrado, pelas
discussões sobre modelagem de processos e pelas contribuições para minha for-
mação. Aos funcionários do PEQ, em especial, a Vera Cruz, por sempre estar
disponível em ajudar.

À minha família, Braz, Tania e Gabriela, por todo o apoio e incentivo e pela
oportunidade de estudo e educação. Obrigado pelo amor e carinho, mesmo que
distante.

À minha esposa, Mariele, a qual faz parte da minha vida e das conquistas.
Obrigado por me incentivar a ser um profissional e pessoa melhor. Agradeço
pela paciência, compreensão e apoio.

Ao Aldo, Lucilene, Verena, Poline, Lucas e Tadeu, obrigado pelo apoio e in-
centivo ao longo desses anos.

Aos colegas do LADES, LASAP e G-130, pela amizade, pelas discussões filosó-
ficas e troca de conhecimento e pelas boas risadas.

Ao CNPq, CAPES e FAPERJ, que ao longo desses anos, contribuíram com o
suporte financeiro para o desenvolvimento deste trabalho.

v
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CONTROLE SUPERVISÓRIO
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Dezembro/2022

Orientador: Argimiro Resende Secchi
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Uma das dificuldades nas implementações práticas da estratégia de Otimiza-
ção em Tempo Real (RTO) é a integração entre as camadas de otimização e con-
trole, principalmente devido às diferenças entre os modelos utilizados em cada
camada, o que pode resultar em objetivos inalcançáveis provenientes da camada
de otimização para a camada de controle. Nesse contexto, o Controle Preditivo
Econômico baseado em Modelo (EMPC) é uma estratégia em que problemas de
otimização e controle são resolvidos simultaneamente. O presente trabalho apre-
senta uma estratégia de RTO baseado em EMPC considerando uma abordagem
baseada em dados para obtenção do modelo dinâmico do processo. Para isso,
é considerada a estrutura de um modelo de Hammerstein, em que a função es-
tática não-linear é um modelo em estado estacionário da planta identificado uti-
lizando Processos Gaussianos. O EMPC proposto considera a minimização da
norma do gradiente da função objetivo econômica, sendo calculado através do
modelo baseado em Processos Gaussianos. É considerada uma estratégia de es-
timação dinâmica de estados e parâmetros, baseado no Filtro de Kalman Esten-
dido (EKF), para estimação de distúrbios. Essa estratégia foi aplicada ao prob-
lema benchmark do Reator de Willians-Otto e apresentou resultados superiores
às abordagens clássicas de RTO e RTO Híbrida (H-RTO) em termos econômicos,
além de menor tempo médio de iteração.
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One of the difficulties in the practical implementations of the Real-Time Op-
timization (RTO) strategy is the integration between the optimization and con-
trol layers, mainly due to the differences between the models used in each layer,
which may result in unreachable setpoints coming from optimization to the con-
trol layer. In this context, Economic Model Predictive Control (EMPC) is a strat-
egy where optimization and control problems are solved simultaneously. The
present work presents an RTO framework based on an EMPC structure consid-
ering a data-driven approach to obtain the dynamic model of the process. For
this, a Hammerstein model structure is considered, in which its nonlinear static
function is the steady-state model of the plant identified using a Gaussian Process
model. The proposed EMPC considers the minimization of the norm of the gra-
dient of the economic objective function, being calculated through the Gaussian
Process model. It is also considered a dynamic state and parameter estimation
based on the Extended Kalman Filter (EKF) in order to estimate the disturbances.
This strategy was applied to the Willians-Otto Reactor benchmark and presented
superior results to the classic RTO and Hybrid RTO (H-RTO) in terms of economic
benefit, besides a lower average iteration time.
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ādyn Hammerstein model linear operator extended vector of pa-
rameters [−], p. 130
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Chapter 1

Introduction

1.1 Motivation and Contextualization

Industrial process plants are characterized by several unit operations aiming
to convert raw materials into products. In the current fierce economic competi-
tiveness, chemical processes have become increasingly integrated, showing more
significant interactions and dependence among the process variables, justified by
an increase in energy efficiency and an intensification of mass and heat transfer
phenomena (YUAN et al., 2012). Consequently, this increase in process complex-
ity also challenges defining the control and optimization structures.

One of the challenges in designing control and optimization structures is how
to guarantee at the same time a safe operation, meeting process constraints and
product specifications, as well as ensuring that the operation is as profitable as
possible. Additionally, the dynamic characteristics, such as fluctuations in raw
material and product costs, the different specifications and grades of the prod-
ucts, and unmeasured and unexpected disturbances, impose robustness require-
ments for the designed solutions (ARKUN and STEPHANOPOULOS, 1980).

In modern process plants, the control structure is typically hierarchical, where
each level has a specific function in this structure and operates at different fre-
quencies. Decision-making actions interconnect the structure layers. The output
action of a higher-level layer is a setpoint or reference for a lower-level layer to
execute an action. The lower-level layers’ feedback to a higher-level layer is also
essential to continue the cycle. Figure 1.1 illustrates the hierarchy between layers
in a conventional control structure.

The time scale of each layer is related to its objective. The upper layers are re-
lated to management and business strategy activities, while the lower layers are
related to the operational activities of an industrial plant. In general, the upper
layers (strategic decisions) occur in the long term, while the lower layers (opera-
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Figure 1.1: Hierarchical control structure (adapted from MENDOZA et al. (2016)).

tional decisions) occur in the medium and short term.
At the upper levels, the production planning layer is related to the economic

objectives of the plant regarding the evaluation and allocation of materials, pro-
duction rates, product grades, and sales. This layer can also be disturbed by
fluctuations in the market, demand, and prices (MARCHETTI, 2009).

At the lowest level, the regulatory control layer is responsible for executing
the cycles of the PID controllers, following the setpoints given by the immediately
above control layer, the supervisory control (ELLIS et al., 2014). The regulatory
control layer is responsible for maintaining the stability of the plant by control-
ling the variables involving, for example, flow rates in the pipes, gas pressure,
temperatures, and reservoir levels, which suffer high-frequency disturbances in
the shortest time scale of the control structure.

In the supervisory control layer, advanced control algorithms are applied,
such as model-based predictive control (MPC). MPC is an optimization-based
and multivariate control strategy well suited for leading with constraints, being a
well-accepted strategy for industrial applications (ELLIS et al., 2014). Indeed, one
of the main reasons for the MPC’s success in the industry is dealing with input
variables coupling in multiple-input multiple-output (MIMO) systems.

Regarding the MPC optimization problem, its objective function is typically
defined considering three main contributions. The first one represents the devia-
tion of the controlled variables from their setpoints. A second term represents the
magnitude of the control action, mainly used to avoid aggressive control poli-
cies. Finally, a third contribution can be considered in the formulation, which
describes the difference between the manipulated variables to a reference trajec-
tory or a target value.
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The controlled variables’ setpoints and the manipulated variables’ reference
values could be determined by an upper layer named Real-Time Optimization
(RTO). This layer represents a centralization of information from higher levels,
which are strategic. Thus, the optimization level consolidates this strategic infor-
mation and sends decisions to lower levels associated with operational questions.
This layer aims to maximize some performance index oriented to operational
profit, satisfying process constraints, such as operational, safety, and environ-
mental limits (NAYSMITH and DOUGLAS, 1995). For this, one of the ways to
obtain the optimal operating conditions and respect these constraints is through
a model-based optimization problem, typically nonlinear (ELLIS et al., 2014).

Additionally, the RTO layer plays a fundamental role when disturbances oc-
cur. Due to disturbances (operational or strategic), the economic optimum oper-
ating point of the process could change, needing to be updated. The RTO layer
does this last task by updating the setpoints of the supervisory control layer. The
prominent disturbances examples and frequencies are presented in Table 1.1. Ac-
cording to ARKUN and STEPHANOPOULOS (1980), the disturbances classifica-
tion in terms of frequency and its impact on the economic index of the plant is an
essential criterion for determining RTO cycle frequency.

Table 1.1: Main disturbances and its frequencies (Adapted from BAILEY et al.
(1993))

Main disturbances Examples Time Scale

Utility limitations cooling water, electricity and steam hours/days

Feedstock variation composition and availability hours/days

Product demand desired production days/weeks

Equipment limitation lower heat exchange due to fouling days/weeks

Market changes product price and raw material costs weeks

Product specification changes product purity weeks/months

Catalyst deactivation activity loss due to coke deposition weeks/months

Among the benefits of the RTO structure is the increase in the yield and purity
of the products, the reduction of energy consumption and operational costs, and
the reduction of maintenance costs. It means that the RTO structure leads the
plant to a most profitable point (LEE and WEEKMAN, 1976).

The most widespread RTO strategy is called a two-step approach, which was
proposed by SHI-SHANG et al. (1987). In this strategy, sequential steps of identi-
fication and optimization are carried out in an RTO cycle. The identification step
uses the reconciled process data to update the process model parameters and in-
crease model prediction accuracy. An optimization step is then carried out based
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on the updated model to determine the optimum solution to be applied to the
plant.

Despite being the most popular strategy, the limitations of the two-step ap-
proach have also been discussed. The main disadvantage of this strategy is that
it does not guarantee convergence to the plant optimum, which may even lead to
process instability (MARCHETTI, 2009). Previous work of FORBES et al. (1994)
and FORBES and MARLIN (1996) proposed adequacy criteria of the model,
which are sufficient conditions that the model should present to guarantee the
convergence to the plant optimum point.

Other strategies have been developed, focusing on optimality and feasibility
whenever the model does not meet the model adequacy criteria. Those strate-
gies are based on adding terms to the objective function and constraints, called
modifiers. These modifiers depend on the plant measured variables gradients
(MARCHETTI, 2009). ROBERTS (1979) proposed the Integrated System Opti-
mization and Parameter Estimation (ISOPE) strategy, which considers a modified
optimization problem with a step of identification. TATJEWSKI (2002) proposed
a variant of this strategy considering a shift term in the objective function, such
that an identification step is no longer necessary. MARCHETTI (2009) proposed
the Modifier-Adaptation (MA) approach, such that correction terms are added to
the optimization problem objective function and the constraints, eliminating the
identification step. These modifiers are intended to meet the Necessary Condition
of Optimality (NCO) upon convergence.

However, calculating the gradients based on measurements could also lead
to other issues. First, in the case of uncertainties and noise in the process’ mea-
sured variables, such fluctuations also affect the calculation of gradients, often
estimated from finite difference formulas. Moreover, gradient estimation also im-
plies the need for additional perturbations applied to the process at each iteration
of the RTO system to update the modifiers. In order to overcome the gradient es-
timation and its drawbacks, FERREIRA et al. (2018) proposed a Modifier Adapta-
tion strategy based on Gaussian Process (GP) models. In this approach, the GP is
applied to model the plant-model mismatch. This approach can be interpreted as
a higher-order correction term. DEL RIO CHANONA et al. (2021) expanded the
methodology by introducing Bayesian Optimization concepts, such as using ac-
quisition functions in the RTO approach. DELOU et al. (2022) expanded the orig-
inal work of FERREIRA et al. (2018) and proposed a modifier-adaptation strategy
such that the correction terms are applied to the output variables instead of the
objective function and constraints, also using GP.

Another drawback of the classical RTO structures is related to the low fre-
quency of the optimization cycles. Since RTO is based on a steady-state model,
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optimization and identification steps can only be carried out if the process is at
a steady-state. This condition is verified by an steady-state detection step (SSD)
(DARBY et al., 2011). However, due to changes in input variables or disturbances,
the optimization step can be delayed until the plant reaches a new steady-state
(SCHULTZ, 2015). Thus, the RTO strategy can present a low frequency of opti-
mization cycles, especially in processes with slow dynamics and frequent distur-
bances. Consequently, the plant operates suboptimally until a new steady-state
is reached, and the optimum point can be updated (GRACIANO et al., 2015).

In order to increase the frequency of optimization cycles, optimization strate-
gies based on regulation have been proposed. In this scenario, the optimiza-
tion problem is rewritten as a control problem, as in the Self Optimizing Control
(SOC) strategy (SKOGESTAD, 2000b) or the NCO Tracking (SRINIVASAN et al.,
2003a,b). Thus, the control objective is to keep the objective function gradient
null or, at least, a minimum acceptable deviation from the true optimum of the
process, ensuring optimality. However, feasibility guarantee is one limitation of
this formulation, such that the constraints are satisfied within a typical range of
operation of the process. It is important to highlight that these methods are based
on the knowledge of the active constraint regions, which are often assumed to be
fixed, regardless of disturbances, which is not necessarily true.

Another possible strategy to overcome the low frequency of the RTO strategy
is to apply a dynamic model for optimization purposes. This strategy is called
dynamic RTO (D-RTO). However, D-RTO also requires accurate dynamic mod-
els, which can be a limitation (GRACIANO et al., 2015). Also, there are still open
numerical issues associated with D-RTO to be addressed before practical imple-
mentations, especially for large-scale systems (KRISHNAMOORTHY et al., 2018).
Additionally, accordingly to BINETTE and SRINIVASAN (2016), another diffi-
culty associated to the D-RTO is the dynamic model update, mainly related to
the persistence of the excitation.

An intermediate approach between RTO and D-RTO is called Hybrid RTO (H-
RTO). VALLURU et al. (2015) proposed a strategy considering a dynamic model
and a parameter estimation step through a dynamic observer, such as Extended
Kalman Filter (EKF). In this strategy, the dynamic model parameters are updated
iteratively using a dynamic observer, so an SSD is not needed. The updated
model is applied in a steady-state optimization step, considering the steady-state
model version of the dynamic model. This approach was also discussed by KR-
ISHNAMOORTHY et al. (2018) and MATIAS and LE ROUX (2018), which showed
that the economic performance obtained in H-RTO strategy was between RTO
and D-RTO approaches, with the benefit of lower computational cost when com-
pared to D-RTO. Again, the H-RTO presupposes a dynamic model is available,
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which may not be true. In this sense, DELOU et al. (2021) recently developed an
H-RTO framework considering that only a steady-state model is available and an
approximate dynamic model is obtained using a Hammerstein model structure.

The classic RTO structure has another significant drawback related to model
compatibility between steady-state and dynamic layers. Indeed, the MPC and
RTO layers apply different mathematical models to achieve their objectives.
While, typically, the models of the RTO layer are rigorous, the models used in the
MPC layer are usually linear and obtained from identification strategies around
an operating point. Thus, the steady-state predicted by each model is not ex-
pected to be the same, which can generate unachievable operating points from
the RTO layer to the control layer. Therefore, one crucial aspect is the mismatch
between optimization and supervisory control layers.

Some strategies have been proposed to mitigate the model mismatch between
RTO and MPC layers. One possibility is using an intermediate optimization layer
between the RTO and supervisory control layers to adjust the setpoints deter-
mined by the RTO layer. This step considers the steady-state version of the dy-
namic model used in the control layer to satisfy the MPC constraints (MORSHEDI
et al., 1985; YING et al., 1998; YOUSFI and TOURNIER, 1991). In this approach, the
intermediate optimization problem is written as Linear or Quadratic Program-
ming and, therefore, is called LP-MPC (Linear Programming MPC) or QP-MPC
(Quadratic Programming MPC). In this approach, the setpoints for the MPC layer
are updated based on minimizing the deviations between the MPC setpoint and
the optimum point provided by the RTO layer under the MPC constraints. The
execution of this intermediate layer occurs at the same frequency as the MPC
(YING et al., 1998). As a drawback, since this approach still depends on the opti-
mal setpoints, it can operate at a suboptimal point until the plant reaches a new
steady-state.

The one-layer optimization approach, latterly called Economic Model Predic-
tive Control (EMPC) (HEIDERINEJAD et al., 2012), is another strategy aiming to
deal with the model mismatch between MPC and RTO layers. It consists of simul-
taneously solving the economic optimization and control problem, incorporating
economic aspects in the MPC formulation. DE GOUVÊA and ODLOAK (1996)
proposed to include linearized terms of the economic objective function in the
MPC objective function. Despite the simple formulation, this strategy may not
represent the economic problem of the real process since this optimization prob-
lem may be nonlinear. In addition, according to DE GOUVÊA and ODLOAK
(1998), these formulations can lead to instability of the closed-loop. ENGELL
(2007) presented a strategy consisting of an Nonlinear Model Predictive Control
(NMPC) by considering a rigorous nonlinear rigorous dynamic model of a sim-
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ulated moving bed (SMB) separation system. In the proposed formulation, the
controller’s objective function was replaced by an economic objective function
aiming to minimize the solvent consumption for a constant feed flow rate and a
given purity requirement, in the presence of plant-model mismatch.

DE SOUZA et al. (2010) proposed the integration of MPC and RTO layers by
including the gradient of the economic objective function in the MPC controller
objective function. As a drawback of the strategy, the penalty term associated
with economic performance requires the objective function to be convex. In order
to address this issue, ALVAREZ and ODLOAK (2012) replaced the gradient of the
economic objective function with a weighted norm of its linear approximation
around the RTO optimal solution. Thus, the modified problem is convex, and the
gradient of the economic objective function is null when the control actions are
equal to the values provided by the RTO layer.

Regarding the one-layer optimization or EMPC approaches, as only one
model is used for optimization and supervisory control, there is no risk of in-
consistencies between the different models used in each layer (ENGELL, 2007).
However, the use of nonlinear predictive models requires the solution of an op-
timal control problem in real time. Additionally, computational complexities, the
requirement for online identification techniques for nonlinear processes, the ro-
bustness of the solution, and the stability for nonlinear systems are important
issues for the practical implementation of the EMPC for large problems.

In summary, based on the previous works, the RTO methodologies present
issues and opportunities, which are considered as the base for the development
of the present thesis and are highlighted as follows:

• Issue 01 (I1): A steady-state detection step (SSD) in the RTO strategy is nec-
essary before optimization. It leads to an RTO low frequency depending on
the frequency of disturbances and suboptimal operation.

• Issue 02 (I2): The model-based optimization problem converges to the
model optimum, which may not coincide with the plant optimum. This
issue is known as the model adequacy problem.

• Issue 03 (I3): Typically, rigorous models are applied to describe the plant
in the RTO layer, while identified models around a reference point are ap-
plied in the Supervisory Control layer. This issue leads to incompatibility
between RTO and MPC layers.

• Opportunity 01 (Op1): Since rigorous models are applied to describe the
plant in the RTO layer when considering large-scale problems require high
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computational demand. Therefore, using the surrogate and identified mod-
els for optimization is a research opportunity.

• Opportunity 02 (Op2): when dealing with nonlinear models to be applied
to NMPC or EMPC frameworks, the computational cost may be an issue,
depending on the model structure. Thus, applying dynamic model identi-
fication and updating strategies through data-driven approaches represent
a research opportunity.

1.2 Objectives

Based on the issues and opportunities presented before, the hypothesis of this
thesis is the study of a real-time optimization (RTO) strategy that enables the in-
tegration between the optimization and supervisory control layers, minimizing
the effects of the divergence between the models used in each of the layers. The
strategy to be developed must seek to guarantee convergence and lower com-
putational cost when compared to the use of rigorous models in the real-time
optimization layer. Furthermore, the proposed methodology must include, in
addition to the integration between the layers, the use of process measurements
to update the process model, also enabling the use of identified surrogate models.

Therefore, the main objective of this thesis is the development of an EMPC
framework that can be applied in the absence of any first-principles model.

In order to achieve the general objectives, the following specific objectives of
this work were outlined:

1. Apply Gaussian process for RTO purposes, such that a model could be iter-
atively built in a scenario in which a steady-state model is not available;

2. Combine steady-state and dynamic data for model development using a
Hammerstein model structure, enabling a data-driven modeling strategy;

3. Develop a Multiple-Input-Single-Output Hammerstein model structure to
deal with input variables coupling by considering the system’s state vari-
ables interactions;

4. Develop a complete control framework for RTO and NMPC integration
based on a data-driven modeling approach, which presents:

• An EMPC framework that can be applied in the absence of any first-
principles model (dynamic or steady-state models);

• The tracking of the first-order NCO of the plant optimization problem;
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• full compatibility between the models used in optimization and control
layers;

• Disturbance and model updating for both optimization and control
layers through an Extended Kalman Filter.

1.3 Thesis Outline

This thesis is organized into 06 chapters, such that Chapters 1 and 2 contain
the Introduction and Literature Review, respectively. Chapter 3 presents the back-
ground of Gaussian Process models, Chapters 4 and 5 contain the main contribu-
tions and results of the present thesis, and Chapter 6 contains the conclusions
about the thesis. A brief description of the content of each chapter is presented
below.

Chapter 1 presents a brief contextualization of the theme, showing the sce-
nario in which real-time optimization strategies are presented and the difficulties
encountered in the methodologies found in the literature. In addition, the objec-
tives of this work are also presented.

Chapter 2 presents the literature review on the subject, showing the typical
formulation of model-based real-time optimization problems, as well as the main
strategies found in the literature, discussing the advantages and disadvantages of
each of these. Next, the model-based predictive control strategy is presented, and
how real-time optimization and predictive control strategies are integrated into a
hierarchical control structure. Finally, still in that chapter, it is discussed the use
of alternative models to the rigorous model of the process and the applications in
optimization and control formulations.

Chapter 3 presents the fundamentals of surrogate-model based optimization
strategies, such as Sequential Approximation Optimization and Bayesian Opti-
mization, and introduces surrogate model classes, such as the Gaussian Process,
which are an important tool for the development of the present thesis.

Chapter 4 presents the usage of Gaussian Process models applied in RTO
strategies. The Gaussian Process is applied to model the plant instead of using
it to model the plant-model mismatch, as in modifier-adaptation strategies. The
proposed methodology is applied to benchmark problems, such as an exothermic
continuous stirred-tank reactor and the Williams-Otto reactor, and compared to
strategies present in the literature.

Chapter 5 presents an RTO framework based on an EMPC structure based on
a data-driven modeling strategy based on a Gaussian Process and Hammerstein
models. The proposed approach presents full compatibility since the optimiza-
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tion and control problems are solved simultaneously. The proposed methodology
is applied to the Williams-Otto reactor benchmark problem and compared to the
strategies in the literature.

Finally, in Chapter 6, the final comments and future research suggestions are
presented.
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Chapter 2

Literature Review

2.1 Real-Time Optimization Problem Formulation

2.1.1 RTO Formulation

Real-time optimization consists of solving an optimization problem oriented
from an economic point of view, which can be minimizing costs, maximizing
profit, or maximizing the production of a product, satisfying the process con-
straints.

The notation adopted in this work uses the subscript p when referring to the
variables associated with the plant and is exempt from this subscript when deal-
ing with the model. Thus, the plant optimization problem can be written accord-
ing to Equation 2.1.

uSP = arg min
u

Φp := φec(yp, u)

s.t. Gp := g(yp, u) ≤ 0
(2.1)

where uSP ∈ Rnu is the optimal solution of the problem, u ∈ Rnu represents de-
cision variables of the optimization problem, yp ∈ Rny are the measured (out-
put) variables, φec : Rny × Rnu → R is the economic objective function and
g : Rny ×Rnu → Rng is the vector of inequality constraints.

However, the mapping of the process outputs, which is a function of input
variables, is not necessarily known. Thus, this mapping is obtained and described
by a steady-state model, implicitly written as follows:

f ss(y, u, α) = 0 (2.2)

where α ∈ Rnα are model parameters, f ss : Rny ×Rnu ×Rnα → Rny represent the
relationship between input and output variables.
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Therefore, the model-based optimization problem of the plant is described as
follows:

uSP = arg min
u

Φ := φec(y, u)

s.t. f ss(y, u, α) = 0,

G := g(y, u, α) ≤ 0

(2.3)

As presented before, it is assumed that the RTO is executed in an upper layer,
based on the problem described by Equation 2.3. The solution of this layer de-
termines optimal targets for the process, giving rise to the setpoints for the con-
trolled variables and the reference values for the manipulated variables of the su-
pervisory control, which are denoted as ySP ∈ Rny and uSP ∈ Rnu , respectively,
such that ySP is obtained by solving f ss(y, uSP, α) = 0.

2.2 Real-Time Optimization Strategies

The optimization layer also called the real-time optimization layer or online
optimization layer, is responsible for calculating operational conditions of the
process in order to optimize a performance index related to economic objectives,
subject to process constraints (NAYSMITH and DOUGLAS, 1995). This goal is
achieved by employing a steady-state model of the process typically described
by a first-principles, rigorous and nonlinear model (ELLIS et al., 2014).

The RTO layer in a hierarchical control structure is justified by common dis-
turbances, which could have operational or strategic nature. Typically, this last
one is related to strategic decisions made on layers above the RTO layer.

Given disturbances, measurement uncertainties, and noise, updating the RTO
model or structure is necessary. This step is carried out by considering the in-
formation available through process measurements. The RTO strategies can be
grouped according to which variables are updated, being a way to distinguish
the different existing strategies (CHACHUAT et al., 2009; GARCIA and MORARI,
1981).

In this grouping approach, the methods are divided into three main cate-
gories, being this represented by:

• Adaptation model schemes, where the plant measurements are used for
model updating, which is achieved by an identification step;

• Modifiers adaptation schemes, where modifiers terms are added to the orig-
inal optimization problem. In this strategy, the modifiers terms are updated
instead of the model parameters, which are considered to be fixed;
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• Regulation adaptation, where the manipulated variables are directly modi-
fied by a control law, following a feedback control strategy.

The above classification is not unique. However, in the present work, prefer-
ence will be given to this one, as it is considered the easiest to understand and
based on structural issues of RTO strategies.

2.2.1 The Two-Step Approach

The two-step approach is classified as a model adaptation strategy. Simply,
this approach aims to keep or improve the model’s accuracy in a step before the
optimization, which is done through an identification step (data reconciliation
and parameter estimation), once the process is at steady-state condition, which is
achieved by a steady-state detection (SSD) step.

Therefore, in this strategy, two main problems need to be considered, the
identification step and the economic optimization itself (HAIMES and WISMER,
1972), which are solved in a sequential way.

The identification step aims to update the model parameters, minimizing the
model’s prediction errors compared to process measurements. Many factors are
essential for this procedure to be effective, including the computational complex-
ity of the model, the number of parameters, the quality and the quantity of avail-
able data, and the number of degrees of freedom for the identification problem.

An important step that occurs before or concurrently the parameter estimation
step is the data reconciliation, which are part of a comprehensive methodology
for reducing measurement errors known as data rectification (JOHNSTON and
KRAMER, 1995). According to JOHNSTON and KRAMER (1995), data rectifi-
cation aims to remove both the random and non-random errors from measure-
ments. The data reconciliation technique applies the process model equations as
constraints and obtains estimates of process variables by adjusting process mea-
surements so that the estimates satisfy the constraints. Thus, it is expected the rec-
onciled estimates to be more accurate than the measurements, besides satisfying
the model equations (NARASIMHAN and JORDACHE, 1999). The identification
step uses the last reconciled measurements to update the model parameters. An-
other option is to consider the unmeasured variables or model parameters as part
of the data reconciliation problem (KIM et al., 1990; VALKÓ and VAJDA, 1987),
such that data reconciliation and parameter estimation occur simultaneously.

Based on the updated model, the second step corresponding to the economic
optimization problem is solved. In this way, the identification and optimization
problems are posed as follows:
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Identification:

ᾱ = arg min
α

φid(u, α)

s.t. fss(y, u, α) = 0
(2.4)

Economical Optimization

uSP = arg min
u

φec(u, ᾱ)

s.t. fss(y, u, ᾱ) = 0,

g(y, u, ᾱ) ≤ 0

(2.5)

It is important to emphasize that the performance of the RTO and control lay-
ers are also related to the accuracy of the applied models. Thus, the relationship
between the optimal solution and the cost involved in developing the model is
a necessary trade-off to be considered (CHEN and JOSEPH, 1987; HAIMES and
WISMER, 1972).

Despite the two-step approach being simple to understand, which also jus-
tifies the widespread dissemination of this technique, this strategy may have
limitations from the point of view of optimality (MARCHETTI et al., 2009).
Many previous works in the literature used this approach as the central focus
of study (BIEGLER et al., 1985; FORBES et al., 1994; FORBES and MARLIN, 1996;
ROBERTS, 1979), aiming to better understand and address the limitations of the
classical approach. Next, aspects of convergence and stability of this method are
discussed.

2.2.1.1 Model Adequacy in Two-Step Approach

One of the relevant questions about RTO systems is the strategy’s ability to
drive the process to its true optimum. This issue is relevant to model-based sys-
tems because, a priori, there is no guarantee that the optimum point of the model
and the plant are identical. In order to check and ensure that the optimum pre-
dicted by the model coincides with the true process optimum, model adequacy
criteria were developed for model-based optimization systems.

BIEGLER et al. (1985) proposed model adequacy criteria based on the Karush-
Kuhn-Tucker (KKT) optimality conditions, considering an optimization problem
based on a rigorous model and a simple model. Accordingly to the authors, the
first criterion to be verified is that both problems have the same optimum point
based on the KKT optimality conditions. In practice, this verification is challeng-
ing since the optimum point of an industrial plant is not known a priori. Another
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necessary criterion is that the gradients of the rigorous and simplified models are
the same at the optimum point, which means that the gradient of the plant is
equal to the model’s gradient at the optimum point. The difficulty in verifying
this criterion is determining the plant’s gradient from the experimental data.

In the work of FORBES et al. (1994), the authors proposed a methodology for
verifying the model adequacy using the concept of reduced optimization space.
The advantage of using the reduced space is that only the manipulated variables,
i.e., the actual degrees of freedom or problem decision variables, are used. Addi-
tionally, in the works of FORBES et al. (1994) and FORBES and MARLIN (1995),
the concept of local adequacy of the model was established.

Definition 2.2.1 Point-Wise Model Adequacy Criterion. (FORBES et al., 1994) and
(FORBES and MARLIN, 1995) For the manipulated variables u∗p that represent a single
optimum point of the plant, there must be a set of parameters to be adjusted (α) such that
the model-based optimization problem also has an optimum uSP = u∗p, and the model
is considered point-wise adequate. Furthermore, if this optimum point obtained by the
model-based problem is unique, the model is said to be strongly point-wise adequate.

In subsequent work, FORBES and MARLIN (1996) proposed a criterion for
checking the local adequacy of the model. In mathematical terms, the criterion
for verifying Definition 2.2.1 is:

Criterion 2.2.1 Point-Wise Model Adequacy Criterion. According to FORBES and
MARLIN (1996), If u∗p is unique (local) optimum point and exists at least one set of
values for the adjustable parameters α such that:

∇αφid(u∗p, α) = 0 (2.6)

∇2
αφid(u∗p, α) > 0 (2.7)

∇uφec(u∗p, α) = 0 (2.8)

∇2
uφec(u∗p, α) > 0 (2.9)

g(yp, u∗p, α) ≤ 0 (2.10)

then, the combined identification and model-based optimization problems are adequate
for use in an RTO strategy.

and ∇uφec and ∇2
uφec represent the reduced gradient and the reduced Hessian

matrix of the objective function, respectively, and∇αφid and∇2
αφid represent the

reduced gradient and the reduced Hessian matrix of the identification objective
function.

15



It is important to notice that the criteria represented by Equations 2.6 and 2.7
are the sufficient conditions to α be the strict local minimum point of the iden-
tification problem represented by Equation 2.4 at the plant operation point u∗p.
Additionally, the criteria given by Equations 2.8 to 2.10 represent the sufficient
conditions to u∗p be a strict local minimum of the optimization problem given by
Equation 2.5.

Therefore, if all the criteria described by Equations 2.6 to 2.10 are satisfied, the
plant optimum point u∗p is also the optimum point of the model based optimiza-
tion problem with model parameters α. Additionally, those conditions are also
sufficient to say that the model is point-wise adequate.

Accordingly to MARCHETTI et al. (2009), those equations are sufficient but
not necessary for the model to be adequate. For instance, in the case of u∗p be-
ing an optimal point, but the criterion of Equation 2.9 is not satisfied due to the
reduced Hessian matrix being positive semidefinite. It is also noticed that the
condition represented by Equation 2.6 has nα equations, so that satisfying all the
criteria of Equations 2.6 to 2.10, generally, is not possible, especially for the cases
where there are differences between predicted and observed values due to de-
grees of freedom (FRANCOIS and BONVIN, 2013; MARCHETTI, 2009).

Finally, the criteria represented by Equations 2.6 to 2.10 are based on the
knowledge of u∗p. However, as this value is not known a priori, the utilization
of Criterion 2.2.1 become difficult to be applied in practice for model selection in
the RTO structures.

2.2.1.2 Stability of Two-Step Approach

Another important contribution of the work of FORBES and MARLIN (1996)
for the Two-Step Approach of RTO schemes is related to stability, which is de-
scribed by Criterion 2.2.2, based on the concept of stability proposed by WIG-
GINS (2003).

Criterion 2.2.2 Point-Wise Stability. A system of recursive algebraic equations uk+1 =

Γ(uk) is said to be asymptotically stable at a fixed point u∗p if it is Lyapunov stable and
exists a constant ε > 0, such that:

||u∗p − uk|| < ε (2.11)

then:

lim
k→∞
||u∗p − uk|| = 0 (2.12)

where k is the iteration index.
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Applying nonlinear maps to represent the relation between plant measured
variables (yp), model parameters (α) and model output variables (y), and for arbi-
trarily small deviation from the plant optimum u∗p, FORBES and MARLIN (1996)
have shown that:∣∣∣∣∣∣

∣∣∣∣∣∣ ∂u
∂α

∣∣∣∣
α

∂α

∂yp

∣∣∣∣
yp(u∗p)

∂yp

∂u

∣∣∣∣
u∗p

∣∣∣∣∣∣
∣∣∣∣∣∣ < 1 (2.13)

Equation 2.13 has three useful terms on the left-hand side, as described below:

•
∂u
∂α

∣∣∣∣
α

is the parametric sensitivity matrix of the model-based optimization

problem solution;

•
∂α

∂yp

∣∣∣∣
yp(u∗p)

is the sensitivity of the model parameters to changes in the plant

measurements (yp).

•
∂yp

∂u

∣∣∣∣
u∗p

is the sensitivity of the process measurements (yp) with respect to

the manipulated variables (u).

The criterion presented in Equation 2.13 is a point-wise stability criterion, fo-
cusing on the stability properties in the neighborhood of the plant optimum u∗p,
which is not useful for ensuring global stability. One of the difficulties in applying
this last criterion is the a a priori knowledge of u∗p. Additionally, the criterion also
needs the calculation of the sensitivity gradients, which can be affected by noise

and uncertainties, being the sensitivity
∂yp

∂u

∣∣∣∣
u∗p

the term which is more affected,

as it is mainly associated to measurements.

2.2.2 ISOPE

In order to guarantee the optimality of the solution, ROBERTS (1979) intro-
duced the modifier-based RTO strategies, which essentially aimed to guarantee
the first-order KKT condition. As previously stated, the main advantage of the
developed strategy is the guarantee of convergence to the optimum, even when
the process model used in the optimization is not adequate, which does not hap-
pen in the classic two-step approach.

The work of ROBERTS (1979) is an extension of the previous work of HAIMES
and WISMER (1972), which solved the steps of optimization and parameter esti-
mation through a multi-objective optimization, introducing two new extra vari-
able vectors in the optimization problem, creating a so-called integrated strategy.
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From this premise, the name of the strategy, Integrated System Optimization and
Parameter Estimation (ISOPE), arises. The formulation of this strategy is pre-
sented below:

Optimization

u∗ = arg min
u

φec(u, σ)

s.t. f (y, u, σ) = 0,

g(y, u, σ) ≤ 0

(2.14)

Parameter Estimation:

ᾱ = arg min
α

φid(v, α)

s.t. f (y, v, α) = 0,

g(y, v, α) ≤ 0

(2.15)

where u and α are the model manipulated variables and model parameters, re-
spectively, and v and σ are new variables vectors added to the original problem,
subjected to the following equality constraints:

u = v

α = σ
(2.16)

It is interesting to notice that the equality constraints imposed by Equation
2.16 are only satisfied when the convergence of the problem is reached, which is
a characteristic of an unfeasible path method.

It is common to distinguish between ISOPE algorithms with and without con-
straints in output variables (BRDYŚ et al., 1986; LIN et al., 1988). The problem
was unconstrained in the original work of ROBERTS (1979). In this case, the the-
oretical development for obtaining the proposed modifiers is relatively simple.
Assuming that the estimated parameters are within a feasible region of the prob-
lem, the model parameters can be obtained by solving the following equation:

∇αφid(v, α) = 0 (2.17)

In addition, as it is assumed that the solution is within a feasible region, then
using Equation 2.17 as an equality constraint in the integrated parameter opti-
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mization and estimation problem, it is possible to write:

u∗ = arg min
u

φec(u, σ)

s.t. u = v,

α = σ,

∇αφid(v, α) = 0

(2.18)

Thus, the Lagrangian function of the problem in Equation 2.18 is written as
follows:

L(u, α, v, σ, µ, λ, η) = φec(u, σ)+λT(v− u)+ µT(σ− α)+ ηT∇αφid(v, α) (2.19)

So that the first-order KKT conditions require that:

∇uL = ∇uφec − λ = 0 (2.20)

∇αL = Hααη− µ = 0 (2.21)

∇vL = Hvαη+ λ = 0 (2.22)

∇σL = ∇σφec + µ = 0 (2.23)

where:

[Hαα]ij =
∂2φid

∂αi∂αj
(2.24)

[Hvα]ij =
∂2φid
∂vi∂αj

(2.25)

The introduction of the modifiers proposed by ROBERTS (1979) consists in
satisfying the optimality condition described by Equation 2.20, which would be
equivalent to solving the optimization problem below, introducing equality and
inequality constraints to the problem in Equation 2.14, for given values of λ and
σ.

u∗ = arg min
u

φec(u, σ)− λTu

s.t. f (y, u, σ) = 0,

g(y, u, σ) ≤ 0

(2.26)

Using Equations 2.21 to 2.23, it is possible to arrive at the following expression
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for calculating the modifiers:

λ = HvαHαα
−1∇σφec (2.27)

In the particular case in which the number of parameters to be estimated is
equal to the number of available measurements, the identification problem can
be rewritten as:

y(v, α)− yp(v) = 0 (2.28)

In this case, assuming that the solution is within a feasible region, then using
Equation 2.28 as an equality constraint in the integrated parameter optimization
and estimation problem, it is possible to write:

u∗ = arg min
u

φec(u, σ)

s.t. u = v,

α = σ,

y(v, α)− yp(v) = 0

(2.29)

Thus, the Lagrangian function of the problem in Equation 2.29 is written as
follows:

L(u, α, v, σ, µ, λ, η) = φec(u, σ) + λT(v− u) + µT(σ − α)+

ηT(y(v, α)− yp(v))
(2.30)

So that the first-order KKT conditions require that:

∇uL = ∇uφec − λ = 0 (2.31)

∇αL =

[
∂y
∂α

]
η− µ = 0 (2.32)

∇vL =

[
∂y
∂v
−

∂yp

∂v

]
η+ λ = 0 (2.33)

∇σL = ∇σφec + µ = 0 (2.34)

Combining Equations 2.32 to 2.34, it is possible to show that the modifiers are
calculated by:

λ =

[
∂y
∂v
−

∂yp

∂v

]T [
∂y
∂α

]−1

∇σφec (2.35)
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It is interesting to notice that the modifier λ, in fact, the Lagrange multiplier
of the Lagrangian function written accordingly to Equation 2.19.

As said before, the methodology presented above does not include constraints
in output variables, so the work of BRDYŚ et al. (1986) is an extension of the orig-
inal work of ROBERTS (1979), addressing the optimization problem with con-
straints in output variables. The optimization problem to be solved, in this case,
is the following one:

u∗ = arg min
u

φec(u, α)

s.t. u− v = 0,

g(y, u, α) ≤ 0,

y(v, α)− yp(v) = 0

(2.36)

where the parameter estimation problem was added to the optimization prob-
lem through an equality constraint, which represents the relationship between
the model output variable (y) and plant measurements (yp). It is also important
to mention that in Equation 2.36, the number of estimated parameters and the
number of plant measurements are equal.

The Lagrangian function of the problem in Equation 2.36 is written as follows:

L(u, α, v, µ, λ, η) = φec(u, α) + λT(v− u) + µTg(y, u, α)+

ηT
[
y(v, α)− yp(v)

] (2.37)

where λ, µ e η are Lagrange multipliers.
Applying the first-order necessary conditions of optimization to the problem,

it follows that:

∇uL = ∇uφec − λ +∇u
Tgµ = 0 (2.38)

∇αL = ∇αφec +∇α
Tgµ +∇α

Tyη = 0 (2.39)

∇vL = λ +
[
∇v

Ty−∇v
Typ

]
η = 0 (2.40)

∇λL = u− v = 0 (2.41)

∇ηL = y− yp = 0 (2.42)

∇µL = g(y, u, α) ≤ 0 (2.43)

µTg = 0 (2.44)
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Combining Equations 2.39 and 2.40, gives:

λ = λ(u, v, α, µ) =
[
∇v

Ty−∇v
Typ

] [
∇α

Ty
]
−1
[
∇α

Tgµ +∇αφec

]
(2.45)

Comparing Equations 2.35 and 2.45, it is possible to notice that the difference
between these equations is given by the term ∇α

Tgµ, which refers to the con-
straints g. Additionally, it is important to verify that, in the situation where the
constraints are imposed only on the control variables u, that is, not dependent
on the output variables (y) and therefore not dependent on the α parameters, it
follows that Equations 2.35 and 2.45 are identical, because:

∇α
Tg = 0 (2.46)

In addition to the case mentioned before, there is another situation where
Equations 2.35 and 2.45 are equivalent. It happens when all constraints are in-
active, in such a way that the complementarity conditions enforce that:

µTg = 0, because µ = 0 (2.47)

The modified problem to be solved by the methodology proposed by BRDYŚ
et al. (1986) consists of the following minimization problem, which aims to satisfy
the KKT conditions represented by Equations 2.38, 2.43, and 2.44:

u∗ = arg min
u

φec(u, α)− λTu

s.t. g(y(u, α), u, α) ≤ 0
(2.48)

Subsequently, ZHANG and ROBERTS (1991) proposed a modification of the
algorithm proposed by BRDYŚ et al. (1986), where a penalty term related to the
constraints is added to the objective function of the problem, as described by
Equation 2.48, so that the modified problem becomes an unconstrained optimiza-
tion, as follows:

u∗ = arg min
u

φec(u, α)− λTu +
[
∇v

Tgµ
]T

u (2.49)

Although the problem represented by Equation 2.49 is more straightforward
than the problem represented by Equation 2.48, it does not guarantee that the
optimization path is feasible, satisfying the constraints in the process variables,
except in the convergence of the algorithm.

TATJEWSKI (2002) proposed an optimization strategy such that the parame-
ter estimation step is not considered, which means that the model parameters are
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not updated. Also, a term referring to the difference between the process mea-
surements and model predicted values is added to the objective function, written
as follows:

ak = yp(uk)− y(uk, α) (2.50)

Thus, the modified optimization problem proposed by TATJEWSKI (2002) is
written as follows:

u∗ = arg min
u

φec(u, y(u, α) + ak)− λT
k u

s.t. umin ≤ u ≤ umax

(2.51)

where umin and umax are the decision variable lower and upper bounds, respec-
tively.

The modifiers are calculated as follows:

λT
k =

∂φec

∂y
(uk, yk + ak)

[
∂yp

∂u
(uk)−

∂y
∂u

(uk, α)

]
(2.52)

GAO and ENGELL (2005) proposed a modification of the original ISOPE al-
gorithm, based on the previous work of TATJEWSKI (2002). In this approach, the
model parameters also remain constant during all optimization iterations and it
was also able to deal with the inequality constraints on the output variables (y).
The formulation also deals with plant-model mismatch regarding the constraints
by modifying them as follow:

Gmod(u) = G(u) + Gp(uk)−G(uk) +
[
∇uGp(uk)−∇uG(uk)

]
(u− uk) (2.53)

where Gmod represents the modified constraints of the model-based optimization
problem. Also, for the sake of notation, the dependence of G and Gp on the
output variable were omitted in the above equation.

It is important to notice that, at u = uk, the modified constraint value is equal
to the plant constraint value, as so its gradients. Therefore, the feasibility con-
ditions of the process are satisfied. In addition to the modified constraints, the
decision variables (u) search region is bounded so that the modified problem is
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written as follows:

u∗ = arg min
u

φec(u, y(u, α + a))− λTu

s.t. Gmod(u) ≤ 0,

uk − ∆ ≤ u ≤ uk + ∆,

umin ≤ u ≤ umax

(2.54)

where ∆ represents a bound on the search region.
In addition, the work of GAO and ENGELL (2005) also contributed to a new

strategy for obtaining plant gradients, based on the methodology of BRDYŚ and
TATJEWSKI (1994), which uses measurements from past iterations to estimate the
gradients in the k-th iteration. In order to ensure a good approximation of the es-
timated gradients, the condition number of the matrix of differences of the input
variables in past iterations is added to the optimization problem as an inequality
constraint, ensuring that the condition number does not exceed a pre-established
value.

The matrix of differences of input variables is defined as follows:

Sk = [uk − uk−1 · · · uk − uk−m]
T (2.55)

The reciprocal of the condition number of the matrix S is calculated as follows:

1
κ(Sk)

=
σmin(Sk)

σmax(Sk)
≥ δ (2.56)

where κ is the condition number, σmin e σmax are the maximum and minimum
singular values of the matrix S, respectively, and δ is a pre-established tolerance
in the range of (0, 1).

Thus, the value of the decision variable in the k-th optimization iteration (uk)
is obtained taking into account the condition number of the matrix Sk, improving
the approximation of the obtained gradients. On the other hand, the feasible
region of the problem may be reduced, possibly generating a suboptimal point.

Thus, the methodology proposed by GAO and ENGELL (2005) consists of us-
ing the condition number as an indicator to verify if a new perturbation point is
needed. If the reciprocal of the condition number is below the tolerance, a new
perturbation is added to the plant. The new point is obtained through an opti-
mization problem aiming to maximize the condition number, subject to the same
domain constraints of the economic optimization problem. Thus, this strategy
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does not compromise the feasible region of the problem. The main disadvantage
is the need to solve a new optimization problem and the application of a new
perturbation to the plant.

2.2.3 Modifier Adaptation

A real-time optimization system solution converges to the plant optimum if it
iterates to the point that satisfies the plant optimization problem’s NCO. To guar-
antee that convergence, the concept of the modifiers is introduced, representing
the difference between the true and predicted NCO values. The modifiers act as
correction terms in the model-based optimization problem and are updated at
each iteration.

In this type of formulation, unlike two-step optimization and classic ISOPE
methods, the idea is to use the process measurements to update the modifiers
and not the model parameters. The modifiers consist of affine terms added to the
objective function and constraints.

The modified process constraints can be rewritten as (MARCHETTI, 2009;
MARCHETTI et al., 2009):

Gmod(u, α) = G(u, α) + εG +
(

λG
)T

(u− uk) (2.57)

where Gmod : Rnu ×Rnα → Rng is the vector of modified constraints, εG ∈ Rng is
the vector of zeroth-order modifiers of the constraints, λG ∈ Rnu×ng is the matrix
of first-order modifiers of the constraints and uk is the plant operational point at
iteration k.

The zeroth-order and first-order modifiers are given by:

εG = Gp(uk)−G(uk, α)

λGT
= ∇uGp(uk)−∇uG(uk, α)

(2.58)

where the modifiers are calculated based on constraints values and its gradients
at the current operation point (uk). A graphical interpretation of the modifiers is
presented in Figure 2.1.

In Figure 2.1, the zeroth-order modifier is the difference between the con-
straint value predicted by the model and the constraint value calculated at uk.
The first-order modifier is the difference between the predicted constraint slope
and the plant constraint slope.

Additionally, first-order modifiers are also added to the objective function, as
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Figure 2.1: Graphical interpretation of the modifiers applied to a given constraint
function. The real constraint function is given by Gp(u) = −3u2 + 4u + 1 and
the model constraint function is given by G(u) = −1.7u2 + 2.6u + 0.1. At u =
0.5, applying the modifier adaptation approach, the modified constraint function
is given by Gmod = −1.7u2 + 2.7u + 1.325. Therefore, at u = 0.5, Gp(0.5) =
Gmod(0.5) = 2.25, and∇Gp(0.5) = ∇Gmod(0.5) = 1.

presented in Equation 2.59.

Φmod(u, α) = Φ(u, α) +
(

λΦ
)T

u (2.59)

where Φmod is the modified objective function and λΦ is the first-order modifier
of the objective function, given by:

λΦ = ∇uΦp(uk)−∇uΦ(uk, α) (2.60)

So that the following vectors of modifiers and constraints can be written:

Λ =
[
εG1 , ..., εGng , λG1

T
, ..., λGng

T
, λΦT

]T
(2.61)

C =
[

G1, ..., Gng ,∇u
TG1, ...,∇u

TGng ,∇u
TΦ
]T

(2.62)

Such that:

Λ(uk) = Cp(uk)− C(uk) (2.63)

where Λ is the vector that encompasses all the modifiers, C and Cp are vectors
that have information of constraints, its gradients and the objective function gra-
dient from the model based problem and the plant information, respectively. Ad-
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ditionally, C, Cp, Λ ∈ Rnmod , where nmod = ng + nu(ng + 1).
Thus, with the values of the objective function and the constraints based on

the plant information (corresponding to the vector Cp) and the same information
predicted by the model, i.e., C, it is possible to calculate the value of the modifiers
Λ. Therefore, with the definitions presented above, the optimization problem for
the adaptation method is posed as follows:

u∗ = arg min
u

Φmod(u, α) = Φ(u, α) +
(

λΦ
)T

k
u

s.t. Gmod(u, α) = G(u, α) + (εG)k +
(

λG
)T

k
(u− uk) ≤ 0,

umin ≤ u ≤ umax

(2.64)

where the subscript k refers to the k-th iteration.
Typically, to avoid sudden changes in the value of the modifiers for the next

iteration, the information is updated using a first-order filter:

Λ(uk) = (I − K)Λ(uk) + KΛ(uk−1) (2.65)

where I ∈ Rnmod×nmod is the identity matrix and K ∈ Rnmod×nmod is a diagonal
matrix which contains the gains Ki, such that 0 ≤ Ki ≤ 1, which are tuning
parameters of the method.

In terms of implementing the method, the information from Cp can be inferred
from the measurements yp and its respective gradients. Indeed:

∇uΦp(uk) = ∇uφec(uk, ypk) +∇yφec(uk, ypk)∇uyp(uk) (2.66)

∇uGp(uk) = ∇ug(uk, ypk) +∇yg(uk, ypk)∇uyp(uk) (2.67)

where ypk = yp(uk) are process measurements in the current operating point.
It is worth mentioning that calculating the gradient of the measured variables

of the plant (∇uyp(uk)), as well as in other methods that depend on this infor-
mation, consists of the most significant difficulty of the formulation, not being a
closed problem in the literature (MARCHETTI et al., 2016).

As previously presented, the modifier adaptation methodology does not need
to estimate the model parameters. Additionally, the question of model adequacy
also becomes a more straightforward criterion in this methodology. In the same
way as in the two-step RTO approach, theoretically, this criterion is met if there
are values Λ̄ that lead to the optimum point of the plant u∗p. Since the parameters
are not estimated, Equations 2.6 and 2.7 do not apply. The Equations 2.8 and
2.9 are automatically satisfied as a result of the introduction of modifiers in the
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problem. Indeed:

Gmod(u∗p, α) = G(u∗p, α) + εG +
(

λG
)T

(u∗p − uk) = Gp(u∗p) ≤ 0 (2.68)

because uk = u∗p and, since u∗p being a optimal point of the plant, which is neces-
sarily feasible.

In the same way, for the modified objective function, calculating the derivative
of Equation 2.59 with respect to u, it follows that:

∇uΦmod(uk) = ∇uΦ(uk) + λΦ (2.69)

Thus, calculating∇uΦmod(uk) at up
∗, it follows that:

∇uΦmod(up
∗) = ∇uΦp(up

∗) = 0 (2.70)

Therefore, the model adequacy criteria for the modifier adaptation method
are based on ensuring that the reduced Hessian matrix of the original objective
function (without modifiers) of the model-based problem is positive definite.

Definition 2.2.2 Point-Wise Model Adequacy Criterion for Modifier-Adaptation
Method (MARCHETTI, 2009). Let u∗p be a unique optimum point of the plant and con-
sidered a regular point for the constraints. If the process model is such that the reduced
Hessian matrix of the objective function Φ is positive definite at u∗p
∇2

uφec(u∗p,α) > 0
then, the process model is adequate for use in the modifier-adapation RTO Scheme.

Although this criterion is simpler than in the case of the two-step formulation,
again, the difficulty of using such a criterion lies in limiting the prior knowledge
of u∗p and the active set of constraints (FRANCOIS, 2014). It is important to notice
that, for unconstrained problems with a linear objective function in the u decision
variables, this criterion is impossible to be met, being a limitation of the method.

The modifier-adaptation method appears as an alternative to the other meth-
ods, being presented with the main characteristic of not being necessary to es-
timate model parameters. It reduces the dependence on the identification step
to guarantee the convergence to the real optimum point of the process and also
deals with model mismatch. For this, it is important to emphasize that the mod-
ifier adaptation strategy, when using the first-order terms, depends on the cal-
culation of the gradients of the objective function and constraints of the process,
which necessarily depend on the measurements.

On the other hand, the gradients’ calculation also represents one of the
difficulties of the method, mainly in terms of practical implementations
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(MARCHETTI et al., 2010, 2009). The strategies for calculating the gradients can
be distinguished from those that use steady-state or dynamic information.

When considering steady-state information, at least (nu + 1) operating points
are required to determine all gradients, as the primary method used is finite dif-
ferences. When using dynamic information, the objective is to calculate the gra-
dients using the information obtained during the transient period between the
steady-state points corresponding to the successive iterations of the RTO. For this,
one of the possibilities is applying dynamic identification, such that the gradients
are obtained through a dynamic model obtained during the transient operation
(BAMBERGER and ISERMANN, 1978; GARCIA and MORARI, 1981; ZHANG
and ROBERTS, 1990; ZHANG and FORBES, 2008). The main advantage of this
approach is reducing waiting time compared to stationary disturbances since it
is not necessary to wait to reach a new steady-state. However, additional distur-
bances may be necessary to obtain the excitation degree needed for identification
(MARCHETTI et al., 2010).

MANSOUR and ELLIS (2003) evaluated methods for calculating the gradi-
ents, applied to the ISOPE method, as this strategy also depends on the informa-
tion of the gradients of the output variables, as seen in Equation 2.35. The sim-
pler and intuitive way of gradients calculation is applying the finite-difference
method (MARCHETTI, 2009), written as follows:

∂ypi
∂uj

=
ypi(uk + hej)− ypi(uk)

h
, h > 0, i = 1, ..., ny and j = 1, ..., nu (2.71)

where h is the amplitude of the perturbation and ej is the unit vector in the direc-
tion j.

As already mentioned, one of the disadvantages of estimating the gradients
using the finite-difference method is the need to perform nu perturbations at each
iteration and wait for the process to reach a new steady-state after each of the
performed disturbances.

Another possible approach is through the use of past measurements obtained
during the RTO iterations, as proposed, for example, in the strategies called dual
ISOPE (BRDYŚ and TATJEWSKI, 1994). This methodology reduces the total num-
ber of perturbations to be applied for calculating the gradients and does not re-
quire a fixed spatial arrangement, as occurs in the finite-difference method. In
this approach, a constraint in the search space is added to obtain the new opera-
tional point, taking into account past information.

FRANCOIS and BONVIN (2013) proposed a strategy to obtain gradients of
the objective function and constraints from transient process information. In
this strategy, the gradients are obtained from variational analysis of the objective
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function φ, constraints G and the process model. The authors showed that the
time needed for convergence was of the order of the settling time, which means a
reduced time when compared to the original MA framework. However, the au-
thors also showed that some improvement in gradient estimation is still needed.

MARCHETTI et al. (2010) proposed a new formulation for the modifier adap-
tation called dual modifier adaptation. This methodology has as its main goal the
analysis and control of the accuracy of the calculated gradients since this charac-
teristic is one of the difficulties of the original modifier adaptation method. In
the dual modifier-adaptation, a constraint related to the gradient estimation er-
ror is added to the problem in Equation 2.64, which imposes that the error should
be limited to an upper bound. This procedure is carried out by analyzing the
truncation error and the measurement noise as follows:

σmax

2
||S−1diag(SST)||+ σnoise

lmin
≤ εUB (2.72)

where the first term in the left hand side of the equation represents the truncation
error, σmax is the upper limit on the spectral radius of the Hessian of the process
mapping, and S is the matrix of differences of input variables (previously defined
in Equation 2.55). The second term in the left hand side is the error associated
to measurement noise, lmin is the shortest distance between all possible pairs of
complement affine subspaces1 that can be generated from S and σnoise is the noise
level. The term in the right hand side of the equation, εUB is the desired upper
bound of the gradient error norm.

Equation 2.72 represents a constraint to be added to the optimization prob-
lem, satisfying the quality of the gradients. However, MARCHETTI et al. (2010)
highlights that this constraint is non-convex, being necessary to add a new con-
straint that can guarantee feasible convex regions in the optimization problem.
Indeed, MARCHETTI et al. (2010) propose that the optimization problem should
be solved on each side of the hyperplane generated by the most recent operating
points, (nk)

Tu = bk, where nk is the vector normal to the hyperplane generated
by the nu last. Therefore, the constraint to be added corresponding to the half

1In a vector space of dimension nu, a point in this vector space is also an affine subspace of
dimension 0, a line is an affine subspace of dimension 1, and a plane is an affine subspace of
dimension 2. An affine subspace of dimension nu − 1 is said an hyperplane, defined as nTu = b,
where n is the normal vector and b is a scalar. Given a set of (nu + 1) points in a subspace of
dimension nu, S := {u1, ..., unu+1}, a proper subset SA ⊆ S of nAu ∈ 1, ..., nu points generates
an affine subspace of dimension nAu − 1. The complement subset SC := S \ SA of (nu + 1− nAu )
points generates the complement affine subspace of dimension (nu − nAu ). See MARCHETTI et al.
(2010) for its compute.
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subspace (nk)
Tu ≥ bk is written as follows:

(nk)
Tu ≥ bk + ρk||nk|| (2.73)

where ρk is the minimum distance of a point from the hyperplane.
Analogously, the constraint to be added corresponding to the half subspace

(nk)
Tu ≤ bk is written as follows:

(nk)
Tu ≤ bk + ρk||nk|| (2.74)

According to MARCHETTI et al. (2010), the next operating point uk+1 is cho-
sen in the set

{
upos

k+1, uneg
k+1

}
as the value that minimize the modified objective

function, where upos
k+1 is the solution of the optimization problem solved in the

half subspace (nk)
Tu ≥ bk, and uneg

k+1 is the solution of the optimization problem
solved in the half subspace (nk)

Tu ≤ bk, respectively.
LÓPEZ (2012) proposed an RTO strategy called Nested Optimization. This

methodology is based on the Modifiers-Adaptation strategy, and a new way of
updating the modifiers has been proposed. The proposed methodology adds an
external optimization layer to the optimization problem presented in Equation
2.64. In the external layer, the modifiers are used as decision variables provided
to the internal optimization layer. In the inner layer, the optimization problem
in Equation 2.64 is solved in order to obtain the decision variables u. After the
process reaches a new steady-state, the cost function value is feedback to the ex-
ternal layer, which repeats the process until the values of the modifiers converge.
It is important to notice that this methodology is based on the hypothesis that the
optimum point of the modifiers also corresponds to the optimum of the setpoints.

WENZEL et al. (2015) proposed a modifier adaptation technique based on the
usage of quadratic approximation models for process mapping, such that the gra-
dients at the current point are calculated analytically. A trust-region method is
applied through covariance analyses of the previously obtained regression set to
determine the next setpoint.

GAO et al. (2016) proposed a new methodology based on the original work
of GAO and ENGELL (2005), combining elements introduced in the adapta-
tion method using quadratic approximations proposed in WENZEL et al. (2015),
mainly concerning the calculation of the gradients from previous process mea-
surements.

SINGHAL et al. (2016) proposed an RTO strategy based on approximate prob-
lems arising from the original problem. The resulting optimization problems
were quadratic programming (QP) or quadratic objective function with quadratic
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constraints. The quadratic programming problem is posed as follows:

u∗k+1 = arg min
∆u

∇Tφec,k∆u +
1
2

∆uTQ∆u

s.t. g j(uk) +
nu

∑
i=1

λi,j|∆ui| ≤ 0,

∇Tgj,k∆u ≤ δj∀j ∈ Aε,

umin − uk ≤ ∆u ≤ umax − uk,

uk+1 = uk + ∆u

(2.75)

where ∇φec,k is the gradient of objective function φec at uk, ∇g j,k is the gradient
of contraint gj at uk, Q is positive definite matrix defined as the Hessian upper
bounding matrix, λi,j are Lipschitz constants for j-th constraint and each i-th de-
cision variable, and Aε represents the set of active constraints of the problem,
defined as:

Aε =
{

j ∈ {1, ..., ng} : −εj ≤ gj(uk) ≤ 0
}

(2.76)

where εj is an arbitrary positive scalar.
The upper bounding matrix is obtained through the following mathematical

lemma:

Lemma 2.2.1 Upper bounding matrix
Let f : Rnu → R be twice continuously differentiable over the compact set U ⊂ Rnu

such that:

−Mij <
∂2 f

∂ui∂uj
< Mij, Mij > 0, ∀u ∈ U , i, j = 1, ..., nu (2.77)

Let ∆uk+1 = uk+1 − uk. Then, the change in function f between uk and uk+1 can be
bounded as:

f (uk+1) ≤ f (uk) +∇T f (uk)∆uk+1 +
1
2

∆uT
k+1Q∆uk+1 (2.78)

where Q is a diagonal matrix with diagonal elements given by:

Qii =
nu

∑
j=1

Mij, i = 1, ..., nu (2.79)

Another approach proposed by SINGHAL et al. (2016) which, according to
the authors, promotes faster convergence, is the problem written as a quadratic
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objective function with quadratic constraints. In this case, the problem is posed
as follows:

u∗k+1 = arg min
∆uk+1

∇Tφec,k +
1
2

∆uT
k+1Q∆uk+1

s.t. gj(uk) +∇Tgj,k∆uk+1 +
1
2

∆uT
k+1Qj∆uk+1 ≤ 0,

umin − uk ≤ ∆uk+1 ≤ umax − uk,

uk+1 = uk + ∆uk+1

(2.80)

where Qj is the upper bounding matrix of the constraint gj.
SINGHAL et al. (2016) found that the proposed method guarantees the fea-

sibility of the optimization strategy in real time, in addition to increasing the
speed of convergence when compared to the optimization strategy based on a
QP problem. Additionally, the authors proposed a strategy for updating the up-
per bounding matrix of hessian and constraints, based on a structure of the trust-
region method, allowing for even faster convergence.

FERREIRA et al. (2018) developed a strategy combining the modifier adapta-
tion with Gaussian Processes models2. In this approach, the Gaussian Process
models are applied to recursively estimates the plant-model mismatch using the
process measurements. The main goal of the proposed strategy is to eliminate the
gradient estimation step, which was a drawback of the original strategy proposed
by MARCHETTI (2009). The main idea of the strategy is to replace the zeroth-
and first-order adaptation terms with a term that represents the plant-model mis-
match, being estimated by a Gaussian Process. The problem is described as fol-
lows:

u∗ = arg min
u

Φmod(u, α) = Φ(u, α) + GPk
(Φp−Φ)(u)

s.t. Gmod j(u, α) = Gj(u, α) + GPk
(Gp,j−Gj)(u) ≤ 0,

j = 1, . . . , ng,

umin ≤ u ≤ umax

(2.81)

where GPk
(Φp−Φ)(u) ∈ R is a GP estimated at the k-th iteration in order to

estimate the objective function plant-model mismatch (Φp − Φ). Analogously,
GPk

(Gp,j−Gj)(u) ∈ Rng is the Gaussian Process model estimated at the k-th itera-
tion in order to estimate the mismatch between the plant and model of the j-th
constraint (Gp,j −Gj), ∀j = 1, . . . , ng.

In the problem represented by Equation 2.81, it is implicit the dependence of

2An introduction to Gaussian Processes (GP) models is presented in Section 3.1
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the Gaussian Process on its parameters (also called hyperparameters). Indeed,
this kind of model presents a set of parameters that need to be estimated. In the
strategy proposed by FERREIRA et al. (2018), the GP models are updated at each
RTO iteration, such that the data set for identification are also updated at each
iteration, keeping a limited number of historical records, for instance, the last N
measurements.

DEL RIO CHANONA et al. (2019) proposed a modifier-adaptation scheme
combining GP and trust-region methods, based on the previous work of FER-
REIRA et al. (2018). A first proposed strategy applies a trust region method based
on limiting the the decision variables search region. The trust region radius is
updated based on the accuracy of the Gaussian Process applied to estimate plant-
model mismatches of the objective function and constraints. The following opti-
mization problem represents this approach:

u∗k+1 = arg min
∆u

Φmod(uk + ∆u, α) = Φ(uk + ∆u, α)+

GPk
(Φp−Φ)(uk + ∆u)

s.t. Gmod j(uk + ∆u, α) = Gj(uk + ∆u, α)+

GPk
(Gp,j−Gj)(uk + ∆u), j = 1, . . . , ng,

umin − uk ≤ ∆u ≤ umax − uk,

uk+1 = uk + ∆u,

∆ui ≤ ||∆k||, i = 1, . . . , nu

(2.82)

where ∆u ∈ Rnu is the decision variable of the problem and represents the incre-
ment in the previous control action uk, α ∈ Rnp are the process model parameters
and ||∆k|| ≥ 0 is the radius of the trust-region.

The trust-region radius update criteria is based on:

• The ratio of actual cost reduction to predicted cost reduction from iteration
k to iteration k + 1:

ρk+1 =
Φp(uk)−Φp(uk+1)

Φmod(uk, α)−Φmod(uk+1, α)
(2.83)

• The violation of any inequality constraint:

Gp,j(uk+1) > 0 ∀j = 1, . . . , ng (2.84)

The trust-region radius3 is reduced if the ratio of cost reduction is below a

3Trust-region updating rules are presented in Section 3.2.
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predefined tuning parameter value or a plant constraint is violated after imple-
menting the last calculated action uk+1. Else, the trust-region radius is increased
if there is no violation of constraints and the ratio of cost reduction is above a pre-
defined tuning parameter. Otherwise, the trust-region radius remain unchanged.

A second approach proposed by DEL RIO CHANONA et al. (2019) uses the
variance estimate from the Gaussian Processes to define multiple trust-regions di-
rectly on the cost and constraint predictions. The optimization problem is written
as follows:

u∗ = arg min
u

Φmod(u, α) = Φ(u, α) + GPk
(Φp−Φ)(u)

s.t. Gmod j(u, α) = Gj(u, α) + GPk
(Gp,j−Gj)(u),

σ(GPk
(Φp−Φ))(u) ≤ ||∆k||(Φp−Φ),

σ(GPk
(Gj,p−Gj))(u) ≤ ||∆k||(Gj,p−Gj), ∀j = 1, ..., ng

(2.85)

where σ
(

GPk
(Φp−Φ)

)
is the standard deviation associated with the Gaussian Pro-

cess of the objective function GPk
(Φp−Φ), σ

(
GPk

(Gj,p−Gj)
)

is the standard devia-

tion associated with the Gaussian Process of the j-th constraint GPk
(Gj,p−Gj), and

||∆k||(Φp−Φ) and ||∆k||(Gj,p−Gj) ∀j = 1, . . . , ng are the trust-region radii for the
Gaussian Process predictions of the plant-model mismatches of objective func-
tion and constraints.

The constraints represented by equations

σ(GPk
(Φp−Φ))(u) ≤ ||∆k||(Φp−Φ) (2.86)

σ(GPk
(Gj,p−Gj))(u) ≤ ||∆k||(Gj,p−Gj), ∀j = 1, ..., ng (2.87)

mean that the decision variable u should remain in a region (trust region) where
the model has higher accuracy (less uncertainty, represented by the standard de-
viation of the Gaussian Process). The trust region radius ||∆k||(Φp−Φ) of the cost
prediction is updated following the same criteria given by Equation 2.83. For the
constraints prediction trust-region radii, ||∆k||(Gj,p−Gj), it is updated based on the
constraint violation.

DEL RIO CHANONA et al. (2021) brought concepts of Bayesian Optimization
into RTO based on modifier adaptation with Gaussian Process by considering the
concept of acquisition functions4. The main advantage of the proposed strategy is
considering a metric to obtaining the next point which deals with the exploration
and exploitation trade-off.

4An introduction to acquisition functions is presented in section 3.3
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2.2.4 Optimization by Regulation

The formulation of the RTO problem through regulation consists of transform-
ing the economic optimization problem into a control problem, thus avoiding the
solution of the economic optimization problem itself (CHACHUAT et al., 2009).
One of the motivations of this formulation is justified by the low frequency of
execution of the RTO layer. As this layer employs a steady-state model of the
process, optimization is only carried out if the plant conditions can be considered
at steady-state. Thus, the time between executions of the RTO must be enough
for the process to reach a new steady-state after the application of the last action.
This situation becomes even more complicated when disturbances occur, which
postpones the optimization since the stationarity condition of the process must
be verified, being necessary to wait even longer until a new steady-state point is
reached. According to ENGELL (2007), classic RTO structures may perform well
in situations where disturbances are infrequent. However, for disturbances that
occur at times below the sampling time of the RTO layer, this structure will not
bring all possible economic benefits.

Then, the optimization structures by regulation appear to avoid the issues pre-
viously presented, which is done through a control problem that acts in the pro-
cess with significantly shorter sampling times. The strategies typically employed
are called self-optimizing control (SKOGESTAD, 2000a) and the NCO Tracking
(FRANCOIS et al., 2005).

One of the difficulties of the optimization by regulation approach is related
to obtaining the variables to be controlled, which, when kept constant at their
reference values by adjusting the manipulated variables, take the process to the
optimum point (MORARI et al., 1980; SKOGESTAD, 2000a). Also, this kind of
formulation typically considers that the setactive constraints remain unchanged
when disturbances occur, which may not be true (SUN et al., 2016).

2.2.4.1 Self Optimizing Control

Self-optimizing control (SOC) is defined as a control structure capable of
achieving an acceptable loss in the economic performance index with constant
setpoint values for the controlled variables (SKOGESTAD, 2000a). For the au-
thors, the loss is defined as the difference between the current value of the eco-
nomic objective function and its value at the true process optimum, that is:

Loss = φec(uk, yk)− φec(up
∗, yp

∗) (2.88)

where Loss is the economic loss.
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The formulation of self-optimizing control is not new. This strategy is based
on the original works of MORARI et al. (1980) and FINDEISEN et al. (1980), which
described the idea of using a control structure to keep the operation at an opti-
mum point, taking into account the regions of active constraints and a procedure
for selecting controlled variables (SKOGESTAD, 2000a).

Simply, the method of self-optimizing control consists in defining which vari-
ables would be selected to be controlled (c) such that, when kept at its setpoints
(constants), lead to an acceptable loss. In the works of SKOGESTAD (2000a,b),
seven steps are described for control variable selection, as described below:

1. Analysis of the degrees of freedom: determination of the number of deci-
sion variables for the optimization problem;

2. Formulation of the optimization problem: definition of the objective func-
tion and the constraints of the optimization problem;

3. Identification of disturbances and uncertainties that impact economic per-
formance: definition of errors associated with the model predicted values,
typical disturbances that occur during operation and implementation errors
for controlled variables (associated with measurement errors);

4. Offline optimization: solving the optimization problem at the nominal op-
erating point, considered as the operating points with known disturbances
(d∗) and, if possible, also solving the problem for other disturbances values
(d), in agreement to the previous step;

5. Identify candidates for controlled variables: from the previous step, it is ver-
ified which constraints were active for the values of disturbances (d) tested.
In the case of active constraints, these are applied directly, reducing the de-
grees of freedom. Some desired characteristics of the controlled variables
should also be considered in this step, as follows:

• the controlled variables should be weakly dependent on disturbances;

• the controlled variables should be easy to measure and control (in a
practical way);

• the controlled variables should be affected by the manipulated vari-
ables.

6. Evaluation of loss: the economic loss, defined in Equation 2.88 should be
calculated for the possible set of controlled variables with fixed setpoints.
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7. Further analysis and selection: based on the results obtained in the previous
steps, the controlled variables are selected, typically the ones with lower
acceptable loss.

The procedure described above uses a steady-state model of the process to ob-
tain controlled variables, from which offline optimization is carried out, including
the disturbances and uncertainties to be considered, which must be foreseen in
the formulation of the problem in question. Additionally, the presented approach
can be classified as a method of exhaustive search since the optimization problem
needs to be solved a considerable number of times.

The advantage of the above procedure is the convergence to the optimal set of
controlled variables since all the possibilities are analyzed. However, for the same
reason, the computational evaluation of all these possibilities when the problem
under analysis has many candidate variables becomes unfeasible. Therefore, for
complex industrial units in which a large number of control variables and degrees
of freedom are present, the procedure may require a high computational time and
cost (SCHULTZ, 2015).

In general, the choice of controlled variables, according to JÄSCHKE and
SKOGESTAD (2011), is described as:

c = HSOyp (2.89)

where HSO ∈ Rnu×ny is called the selection matrix. ALSTAD and SKOGESTAD
(2007) proposed a methodology based on the null-space concept for determining
the controlled variables set c, which was called the null-space method. Indeed,
its name is related to the fact that the matrix HSO belongs to the null-space of the
sensitivity of output variables with respect to the disturbances, calculated at the
optimum point of the plant. Mathematically:

HSOF = 0 (2.90)

where F is the sensitivity matrix of the output variables with respect to the dis-
turbances, calculated at the optimum point of the plant, given by:

F = ∇dy∗ (2.91)

Assuming that the mapping of the optimal output variables as a function of
the disturbances exists in the neighborhood of the nominal value of the distur-
bances, it is possible to write the following equation based on Taylor Series:

y∗(d) ≈ y∗(d∗) + F(d− d∗) (2.92)
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Alternatively, in terms of the controlled variables, multiplying both sides, on
the left, by HSO:

c∗(d) ≈ c∗(d∗) + HSOF(d− d∗) (2.93)

However, if HSO belongs to the null-space of F, then, necessarily:

c∗(d) ≈ c∗(d∗) (2.94)

That is, for any disturbance d, the value of the controlled variables will be
equal to the value at the optimum point so that it is not necessary to change the
values of its setpoints.

A disadvantage of the methodology proposed by ALSTAD and SKOGESTAD
(2007) is the assumption that the measured variables do not present measure-
ment noise. In fact, in the situation where noisy measurements are present, the
methodology developed does not result in the best possible solution (JÄSCHKE
and SKOGESTAD, 2011). In subsequent work, ALSTAD et al. (2009) extended the
methodology developed, taking into account the measurement noise.

In practice, the hypothesis of perfect measurements is not valid, and it is nec-
essary to include the measurement errors for the determination of HSO, which
is contemplated in the extended null-space method. However, the methodology
is only valid when the number of measurements is greater than the sum of the
number of inputs and process disturbances. Additionally, the relationship be-
tween the rejection of disturbances and measurement noise is not compromised,
being a disadvantage of the method (JÄSCHKE et al., 2017).

In order to obtain a combination matrix HSO that guarantees the compromise
between the rejection of disturbances and noise, some methodologies, called min-
imum loss methods, were developed (ALSTAD et al., 2009; HELDT, 2010; KARI-
WALA, 2007; KARIWALA et al., 2008), which led to the same results (JÄSCHKE
et al., 2017), providing an expression for the array HSO:

HSO = Gy(ypyp
T)−1 (2.95)

where Gy is the transfer function matrix of the process.
GRACIANO et al. (2015) proposed a complete RTO framework applying SOC

concepts to select the controlled variables of the supervisory control layer. This
layer was in charge of tracking the self-optimizing variables setpoints and keep
the active constraints within a zone. The authors shown that the RTO with SOC
concepts presented a higher profit than the classic RTO in closed loop.

39



2.2.4.2 Necessary Conditions of Optimality Tracking

The strategy of NCO tracking was initially proposed for batch processes, aim-
ing to lead the process dynamically to its optimum condition (FRANCOIS et al.,
2005; SRINIVASAN et al., 2003a,b). Subsequent works extended the concept
of NCO tracking for continuous processes (JÄSCHKE and SKOGESTAD, 2011;
SRINIVASAN and BONVIN, 2007; SRINIVASAN et al., 2008).

In the NCO tracking approach, the optimization problem is rewritten as a
feedback control loop, where the controlled variable is the gradient of the eco-
nomic objective function. In order to satisfy the first-order optimality condition,
the gradient of the objective function should be null at the optimum. Thus, the
setpoint of the controlled variable in the NCO tracking is null (JÄSCHKE and
SKOGESTAD, 2011). Figure 2.2 illustrates the how the NCO tracking strategy
works.

Figure 2.2: NCO tracking structure. Adapted from JÄSCHKE and SKOGESTAD
(2011).

The NCO tracking strategy is primarily motivated by the fact that the major-
ity of chemical process plants are equipped with instrumentation and regulatory
control systems, thus enabling a large set of available data and measurements.
Thus, this approach proposes the use of measurements to perform optimization
in real time, being independent of models for successive iterations of the method.
However, the strategy is not entirely independent of models, as discussed below.

The formulation of the NCO tracking strategy is based on the problem posed
accordingly to Equation 2.96.

u∗ = arg min
u

Φp = φec(u, d)

s.t. Gp = g(u, d) ≤ 0
(2.96)

where u ∈ Rnu are the decision variables, φec : Rnu ×Rnd → R is the economic
objective function and g : Rnu ×Rnd → Rng are the constraints, which also in-
cludes equality constraints, and d ∈ Rnd is the disturbance vector.
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A point worth mentioning about the NCO tracking strategy is about the dis-
turbances (d), which, although they may vary over time, the formulation of the
strategy is based on the assumption of pseudo steady-state. In this case, the dis-
turbances do not influence the set of active constraints, which may not be true.
Indeed, processes in which the set of active constraints are weakly dependent on
the disturbances represent an good possibility of applying this technique.

To determine the set of active constraints at the optimum point, considering
a set of nominal disturbances, the formal optimization problem is solved, using
a model of the process for that. Thus, although the NCO tracking is said to be
model-independent, this statement is not valid.

After determining the set of active constraints at the optimum point, the ac-
tive constraints are directly applied to the plant. Thus, it is only necessary to
determine the value of the inactive u variables so that this problem becomes an
unconstrained optimization problem. Therefore, the problem in Equation 2.96 is
now rewritten according to Equation 2.97, formally eliminating the process vari-
ables from the model’s equality constraints.

u∗inac = arg min
uinac

Φp = φec(uinac, d) (2.97)

where the subscript inac is related to the decision variables which are inactive.
Following the formulation proposed by JÄSCHKE and SKOGESTAD (2011),

for the sake of notation, a change of variables is introduced, considering the nom-
inal optimal point as a reference.

u
′
inac = uinac − u∗inac (2.98)

d
′
= d− d∗ (2.99)

where u∗inac and d∗ are the inactive decision variables and disturbances at the
nominal operating point.

Therefore, the problem in Equation 2.97 is rewritten accordingly to the Equa-
tion 2.100.

u
′∗
inac = arg min

u
′
inac

Φp = φec(u
′
inac, d

′
)

(2.100)

Omitting the explicit functional dependence in d′, the first-order necessary
condition of optimality is imposed:

∇u′inac
φec = 0 (2.101)
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Applying one step of Newton’s method to solve the equivalent problem in
Equation 2.101, it is possible to write the following expression:

u
′
inac,k+1 = u

′
inac,k −

[
∇2

uφ
]−1

k
[∇uφ]k (2.102)

Defining:

u
′
inac,k+1 = u

′
inac,k + ∆u

′
inac,k (2.103)

where u
′
inac,k are the inactive decision variables updated at iteration k.

Therefore:

∆u
′
inac,k = −

[
∇2

uφ
]−1

k
[∇uφ]k (2.104)

Equation 2.104 is a Newton’s method update step, which is exact for a
quadratic approximation of the problem in Equation 2.100, also satisfying the
NCO represented by Equation 2.101 in one iteration.

In real applications, the update of the control action is not applied in full to
avoid instability of the process and sudden control actions. For this, a tuning
parameter is inserted in the control action, written as follows (JÄSCHKE and
SKOGESTAD, 2011):

u
′
inac,k+1 = u

′
inac,k + β∆u

′
inac,k (2.105)

where β ∈ [0, 1] is a tuning parameter of the method.
From Equation 2.104, it is possible to notice that, for the implementation of

the control actions, it is necessary to obtain the gradient vector and the Hessian
matrix of the economic performance index with respect to the unconstrained de-
cision variables (which is equivalent to the gradient vector and Hessian matrix
in reduced space). However, the calculation of these variables represents a chal-
lenge, similar to what occurs for the Modifier-Adaptation method.

In terms of applications of the NCO tracking strategy in literature, SRINI-
VASAN et al. (2003a) applied the strategy to a batch bioreactor and compared it
to other approaches, such as nominal, robust, and explicit optimization, show-
ing performance advantages when applying the NCO tracking. FRANCOIS et al.
(2005) applied the methodology to a batch polymerization reactor. SRINIVASAN
and BONVIN (2007) applied the method to a semi-batch reactor, and a two-layer
optimization strategy was proposed. In the inner layer, an NCO tracking strat-
egy was used. In the outer layer, a process model was updated and used to per-
form the process optimization to monitor the set of active constraints. If this set
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changes, this information is passed to the inner layer, which is updated. SRINI-
VASAN et al. (2008) applied the approach to an isothermal CSTR system, also
aiming to include the information about the set of active constraints to the prob-
lem. The constrained problem was rewritten as an unconstrained problem by
adding penalties in the objective function. In this way, any of the constraints can
be active, and, therefore, it is not necessary to update the active constraints set.

BONVIN and SRINIVASAN (2013) highlight that a strong point of the NCO
tracking approach is the possibility of combining offline and online tasks. For in-
stance, the numerical optimization based on the plant model to determine the set
of active constraints can be carried out offline, while updating the manipulated
variables based on the measurements can be online. This last step can be done
independently of models, similar to what was proposed in the work of SRINI-
VASAN and BONVIN (2007).

SUN et al. (2016) highlight that a practical restriction for the use of the NCO
tracking approach lies in the assumption that the set of active constraints remains
unchanged. In order to address this issue, the authors proposed the use of a mul-
tiparametric solution. That is, sensitivity analyzes are proposed to characterize
the effect of the optimal solution with respect to small variations in the parameter
values (disturbances). Another possibility is the use of parametric programming,
in which the characterization of the solution is analyzed for a wide range of pa-
rameter values. This technique was applied to linear dynamic systems.

2.2.5 Hybrid RTO

The Hybrid RTO (H-RTO) (VALLURU et al., 2015) arises aiming to eliminate
the disadvantage of classic RTO strategies in waiting for the steady-state condi-
tion to estimate parameters and optimize the process. In the H-RTO strategy,
the parameter estimation step is carried out online and integrated into the op-
timization cycle, thus avoiding waiting for the steady-state condition (DELOU
et al., 2021; KRISHNAMOORTHY et al., 2018; MATIAS and LE ROUX, 2018, 2020;
SANTOS et al., 2021; VALLURU et al., 2015).

Essentially, this strategy is based on a dynamic process model which has its
parameters updated through a dynamic observer, such as Extended Kalman Fil-
ter (EKF) (SIMON, 2006). Thus, the transient measurements can be applied to
update the model parameters and state estimation, not depending on steady-
state data. Then, a steady-state model version can be obtained and applied to the
steady-state optimization problem from the updated dynamic model.

In terms of structure, the main difference of the H-RTO is applying a dynamic
state and parameter estimation step instead of a steady-state identification step
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considered in classic RTO approach. Of course, in this case, an implicitly assump-
tion is that a dynamic model is available.

In RTO strategies, when a dynamic model is applied for optimization pur-
poses, it gives rise to the Dynamic RTO (D-RTO), which provides an optimal
input trajectory. In this last approach, the optimization problem, the state estima-
tion and parameter estimation steps are based on the dynamic model. Accord-
ingly to KRISHNAMOORTHY et al. (2018), although the usage of dynamic model
eliminates the steady-state detection, solving a nonlinear dynamic optimization
problem still may be challenging for large-scale systems. Thus, steady-state RTO
is still prevalent for industrial applications.

However, in the H-RTO, the optimization problem is still based on a steady-
state model, which is an intermediate (or hybrid) approach between RTO and
D-RTO. KRISHNAMOORTHY et al. (2018) and MATIAS and LE ROUX (2018) ev-
idenced that the H-RTO strategy presents enhanced economic performance when
compared to classic RTO, with a lower computational cost than D-RTO. Figure 2.3
compares the structures of classic RTO, D-RTO and H-RTO strategies.

Figure 2.3: Comparison of (a) Classic RTO, (b) D-RTO and (c) H-RTO structures.
Adapted from KRISHNAMOORTHY et al. (2018).

The works of MATIAS and LE ROUX (2018) and KRISHNAMOORTHY et al.
(2018) were published almost concurrently and presented a very similar method-
ology, which in practice were equivalent to the first work of VALLURU et al.
(2015). MATIAS and LE ROUX (2018) named the strategy as Real-time Optimiza-
tion with Persistent Parameter Adaptation (ROPA) and KRISHNAMOORTHY
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et al. (2018) named the strategy H-RTO. Here, the name H-RTO is applied since it
is a hybrid approach between RTO and D-RTO.

In the work of MATIAS and LE ROUX (2018), the authors applied the H-RTO
approach to the Willian-Otto Reactor and compared it to the RTO strategy. The
authors showed that H-RTO outperformed the RTO strategy in terms of economic
profit since a continuous adjustment of the optimal setpoints occurs, avoiding
the steady-state detection step and inherently delay on the RTO cycle. They also
highlighted that H-RTO could destabilize the plant depending on the tuning pa-
rameters of the methodology, such as the execution frequency, optimal decision
filtering, and EKF tuning parameters. The authors claim that the tuning phase of
the methodology should not be neglected. Here, it is essential to highlight that
this activity is commonly accomplished through trial and error.

In the work of KRISHNAMOORTHY et al. (2018), the authors applied the H-
RTO approach to an oil and gas production network and compared it to RTO,
and D-RTO approaches. The authors claimed that H-RTO presents a similar per-
formance to D-RTO, based on the case study of their work while enabling lower
computational time. The authors discussed applying dynamic optimization in-
stead of static optimization since, in H-RTO, a dynamic model is at hand, show-
ing a lack of clear understanding of when static is sufficient or in what conditions
dynamic optimization is justified. Of course, processes that are inherently dy-
namic or involve transient operations, such as batch processes, cyclic operations,
and start-up and shut-down conditions, may benefit from dynamic optimization.
The authors also claim that in dynamic optimization problems, the size of the
problem may impact computational time, which may impose limitations on how
often the optimal setpoints can be updated, leading to performance degradation
or closed-loop instabilities.

VALLURU and PATWARDHAN (2019) applied the methodology originally
proposed in VALLURU et al. (2015) to three case studies, namely the Williams-
Otto Reactor, a CSTR with input multiplicity, and an ideal reactive distillation
column. The authors highlighted that the proposed approach is restricted to a
single unit, and a research direction is expanding the methodology to a process
plant consisting of multiple unit operations.

SANTOS et al. (2021) proposed an H-RTO framework such that the objective
function of economic optimization is one of the controlled variables in an adap-
tive linear MPC approach. The controller objective was tracking a setpoint for
the economic objective function, which comes from the H-RTO, which applied an
Unscented Kalman Filter for state and disturbance estimation. The authors also
proposed the usage of soft constraints in the MPC, such that the output variables
were kept within a desirable zone. The proposed approach was applied to the
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Williams-Otto reactor benchmark.
CURVELO et al. (2021) evaluated the H-RTO performance in a wide range

of examples with different transient behaviors. The authors showed that H-RTO
presented similar results to D-RTO regarding economic objectives. However, care
should be taken for systems with long delays, which may destabilize the system
depending on the mismatch between the model and plant dead time. They claim
that a dead-time compensation methodology could be applied to avoid this sce-
nario, but no other results were shown.

MATIAS and LE ROUX (2020) proposed a strategy, namely Asynchronous
ROPA (AsROPA), aiming to plant-wide optimization. Indeed, when dealing with
H-RTO with multiple unit operations, the problem shifts to obtaining a dynamic
model of the entire plant, which can be challenging and time-consuming. In that
sense, the authors proposed to decompose the plant-wide model into submodels
and, depending on their characteristics, their parameters are updated using either
online or steady-state estimators. The authors proposed a systematic approach
based on the analysis of plant historical data. However, this step is crucial and
not straightforward.

As presented, the H-RTO depends on the plant’s dynamic model. However,
in practical RTO implementations, it is common to obtain a rigorous model in the
stationary layer (RTO) firstly and, for the MPC controller, to obtain an approx-
imation from empirical models, typically linear. Following this methodology,
implementing the H-RTO strategy would not be possible since the parameters
of the dynamic layer to be estimated do not match the parameters of the station-
ary layer. To overcome it, DELOU et al. (2021) proposed an H-RTO framework
assuming that only a steady-state model is at hand. A dynamic model is devel-
oped by combining the steady-state model and a linear identified model using a
Hammerstein model structure. In addition, DELOU et al. (2021) also expanded
the concept of the work of GRACIANO et al. (2015) by mean of considering SOC
variables in the MPC and applying the H-RTO concept based on the Hammer-
stein approximate dynamics instead of the classic RTO.

(MATIAS et al., 2022) were the first authors to apply the methodology prac-
tically. The authors applied the H-RTO, RTO, and D-RTO methodologies to an
experimental oil rig, confirming the economic improvement of the H-RTO com-
pared to RTO and a similar result compared to D-RTO.

In summary, H-RTO is a promising direction since it is a simpler approach
than D-RTO in terms of computational implementation (steady-state optimiza-
tion problem versus dynamic optimization problem) and enables the economic
optimization during transient periods, reducing the suboptimal periods that ex-
ist between steady-state optimizations in RTO. However, the challenge is still
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obtaining an accurate dynamic model, especially for a plant-wise optimization
scenario. Also, since H-RTO is a model-based strategy, the technique is subject to
model adequacy criteria, which was not the focus of the previous works.

2.3 Model Predictive Control (MPC)

The Model Predictive Control (MPC) is an advanced control strategy com-
monly applied in the supervisory control layer of the chemical process, as pre-
sented in Figure 1.1. When applied in a hierarchical control structure designed
for economic optimization, the MPC controller aims to lead the process to its op-
timum point and keep the controlled variables at their setpoints, determined by
the RTO layer. The MPC algorithm applies a dynamic model for predicting the
behavior of the controlled variables as a function of the manipulated variables.
Based on that model, an optimization problem is solved to calculate the manipu-
lated variables to be applied to the process, subject to constraints.

It is worth mentioning that this strategy is based on the optimal control theory
and has been successfully applied in industrial applications since the 70’s. Some
important application and development works must be highlighted, such as the
work of RICHALET et al. (1978) that presented the Model Predictive Heuristic
Control algorithm later became known as Model Algorithmic Control (MAC).
Also, the work of CUTLER and RAMAKER (1980) introduced the Dynamic Ma-
trix Control algorithm. Thus, the MPC controller represents a widely accepted
and used strategy by the industry (ELLIS et al., 2014). Indeed, one of the main
reasons for the MPC algorithm’s successful applications in chemical processes is
the controller’s ability to deal with coupled variables in a Multiple Input Multiple
Output (MIMO) system (FORBES et al., 2015).

The MPC formulation is based on an optimization problem, aiming to mini-
mize an objective function (controller cost) over a given time horizon, in general
finite, considering a model to predict the process’s dynamics. The following op-

47



timization problem gives a typical formulation of the MPC:

u∗(t) = arg min
u ∈ ∆(S)

φMPC =
∫ tk+P

tk

[
||y− ySP||

2
Wy

+ ||u− uSP||2Wu
+ ||∆u||2W∆u

]
dt

s.t. ẋ = fMPC(x, u, θ),

y(t) = h(x(t), u(t)),

G(x(t), u(t)) ≤ 0,

umin ≤ u ≤ umax,

ymin ≤ y ≤ ymax,

∆umin ≤ ∆u ≤ ∆umax,

x(tk) = xk

(2.106)

where Wy ∈ Rny×ny is the positive semi definite diagonal matrix of controlled
variables weighting factors, Wu ∈ Rnu×nu is the positive semi definite diagonal
matrix of manipulated variables weighting factors and W∆u ∈ Rnu×nu is the pos-
itive semi definite diagonal matrix of manipulated variables movement suppres-
sion factors. The decision variables of the problem are the manipulated variables
trajectory (u ∈ S(∆)). In addition, S(∆) represents a set of piecewise constant
functions with period ∆, and P is the time horizon. The dynamic trajectories of
state variables x(t) are predicted using a dynamic model represented by fMPC,
with model parameters θ ∈ Rnθ . xk is the state vector measured or estimated at
the current time tk. The equations G are constraints imposed on states and ma-
nipulated variables and h represents the relationship between state and output
variables.

In Equation 2.106, the operator || · ||2M is used to denote a square of a weighted
Euclidean norm of a vector, where M is a positive semidefinite matrix (i.e.,
|| · ||2M = ·T M·. Based on that, it is possible to notice that the objective function of
the MPC controller is quadratic and is generally written considering three main
terms. The first term (||y− ySP||2Wy

) represents deviations of the controlled vari-
ables in relation to its setpoints, represented by ySP. These values are typically
calculated by an RTO layer above the MPC controller.

The second term, ||u− uSP||2Wu
, in an analogous way, represents the deviations

of the manipulated variables from its reference values, uSP, which can also be
calculated by the RTO layer.

The last term, ||∆u||2W∆u
, represents the MPC control action effort, which com-

pares the control action at the current iteration with the previous one.
The problem in Equation 2.106 is a dynamic optimization problem. The so-
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lution of this problem is an optimal dynamic trajectory that leads the system to
its reference values (setpoints). For practical applications, typically, the Receding
Horizon strategy is commonly applied, which also rewrites the problem in Equa-
tion 2.106 in its discrete version, as presented in problem 2.107 (ABRAHAM et al.,
1999; MACIEJOWSKI, 2000; TATJEWSKI, 2007).

u∗ = arg min
∆u

P

∑
i=1

(
yk+i|k − ySP,k+i|k

)T
Wy

(
yk+i|k − ySP,k+i|k

)
+

M

∑
i=1

(
uk+i|k − uSP,k+i|k

)T
Wu

(
uk+i|k − uSP,k+i|k

)
+

M−1

∑
i=0

∆uT
k+i|kW∆u∆uk+i|k

s.t. ∀i = 0, . . . , P− 1,

∆uk+i|k = uk+i|k − uk|k,

xk+i+1|k = fMPC(xk+i|k, uk+i|k, θ),

yk+i+1|k = h(xk+i+1|k, uk+i+1|k) + εk,

G(yk+i|k, uk+i|k) ≤ 0,

umin − uk+i|k ≤ ∆uk+i|k ≤ umax − uk+i|k,

∆umin ≤ ∆uk+i|k ≤ ∆umax,

ymin ≤ yk+i+1|k ≤ ymax,

∆uk+i|k = 0 ∀i ≥ M,

xk|k = xk

(2.107)

where P and M are the prediction and control horizons, respectively. ∆u ∈ RP

is the decision variable which represents the sequence of input increments, and
then, the receding horizon principle implies that only the first increment is ap-
plied, such that uk|k = uk−1|k +∆uk|k. ε ∈ Rny is a disturbance model, included to
deal with unmeasured disturbances in addition to model uncertainties, consid-
ered as an output correction term.

It is possible to notice that the MPC formulation has tuning parameters, which
are the weighting matrices Wy, Wu, and W∆u, and the prediction (P) and control
horizons (M). For the discrete-time formulation, the sampling time is another
parameter that has to be well selected. Additionally, the formulation presented
consider hard constraints in output variables. Several researches have studied
how to introduce an extra degree of freedom, which is done by considering slack
variables in the constraints, yielding soft-constraints (MAYNE et al., 2000), aiming
to the solution feasibility.
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The solution of the problem in Equation 2.107 consists in M control actions for
each manipulated variable. The dynamic model of the MPC is evaluated from
an initial condition corresponding to the last plant measurement until the time
instant corresponding to the prediction horizon P. As the value of P is always
greater than M, the last control action uM is repeated until the prediction horizon
instant, as follows:

u∗ =
[

u1, u2, uM, . . . , uM︸ ︷︷ ︸
P−M

elements equals to uM

]
(2.108)

The state and output variables are calculated at P intervals, as follows:

x = [x1, ..., xP] (2.109)

y = [y1, ..., yP] (2.110)

Although M control actions are calculated in the receding horizon strategy,
only the first action is applied to the plant. After a sampling time, the problem
2.107 is solved again, applying only the first action of the new solution trajectory
(MACIEJOWSKI, 2000). This strategy is applied for rejecting disturbances that
may occur within a sample time. This strategy also allows a closed-loop control
system (feedback control system) and compensates the errors in predicted values
obtained using the MPC dynamic model.

MAYNE et al. (2000) define the MPC as a form of control in which the current
control action is determined by solving, at each sampling instant, a finite horizon
open-loop optimal control problem, using the current state of the plant as the
initial condition, yielding an optimal control sequence and the first control action
in this sequence is applied to the plant, although infinite horizons strategies also
exist (ODLOAK, 2004).

Until now, any assumption has been mentioned about the MPC model. Typ-
ically, a linear dynamic model is used, resulting in a Quadratic Programming
problem (QP problem). Furthermore, if there are no constraints, it is possible
to obtain an analytical solution for the control actions. When the model used is
nonlinear, the controller is now called NMPC. In this case, the resolution of the
system is carried out by nonlinear programming algorithms, such as Sequential
Quadratic Programming (SQP).

Also, the MPC model should always be as simple as possible, aiming at the
slightest computational effort. In literature, several models forms have been ex-
plored, such as step response, transfer functions, or state-space forms. The use
of models based on finite impulse response (FIR), autoregressive moving average
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with exogenous inputs model (ARMAX), and Autoregressive with exogenous in-
put model has also been applied (BARAMOV and HAVLENA, 2005; HEIRUNG
et al., 2015; LIU et al., 2012; XIE et al., 2012). However, as the chemical processes
are typically nonlinear, the linear models are generally identified near a nominal
point of operation, or there is a linearization step of nonlinear models around one
or more points of operation.

Many factors can lead to an accuracy loss, such as a change of an operational
point or other phenomena that happened in the process, like the catalyst deacti-
vation, heat exchangers fouling, or even equipment modifications that occurred
in an industrial unit. The MPC models need to be assessed and updated to ensure
their predictive ability is still at an acceptable level. If the model errors start to
increase, an automatic identification step for model updating would greatly aid
in the proactive sustainment of MPC performance. Another strategy to deal with
the modeling errors is to correct the model predictions using the plant measure-
ments once it becomes available through a bias update scheme (FORBES et al.,
2015).

Applying linear models in MPC may be limited to regions around the refer-
ence point where the model was previously identified due to process’ nonlinear-
ities. There are techniques available to deal with these issues and increase the
prediction accuracy and the ability to represent the process not limited to a sin-
gle operational point. A possible solution is to apply different models depending
on the input variables ranges, similar to the gain scheduling technique. Another
possibility is to apply NMPC controllers, which would improve the accuracy of
the model. However, it would increase the computational cost of executing the
cycles and the complexity of maintenance (ELLIS et al., 2014; FORBES et al., 2015;
LEE, 2011).

The formulation presented in Equations 2.106 and 2.107 are not unique. Some
works includes Infinite Horizon MPC and the usage of soft-constraints, aiming
to control feasibility. A comprehensive review regarding MPC formulations are
presented in GARCÍA et al. (1989), MORARI and H. LEE (1999) and MAYNE
(2014). A survey about industrial applications of MPC is presented in QIN and
BADGWELL (2003).

2.4 Strategies for Integration of RTO and Supervi-

sory Control Layer

The RTO system commonly applied in the industry is based on a hierarchi-
cal control structure. The RTO layer typically uses a rigorous phenomenological
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stationary model to obtain the economic optimum point of the process. The op-
timal solution is passed as setpoints of the controlled variables and the reference
values of the manipulated variables to the supervisory control layer. This layer
uses advanced control strategies, such as the MPC algorithm, which applies, tra-
ditionally, linear models identified from tests in the plant.

However, as the models applied in each layer are different, the predicted val-
ues for the optimal operating point are not compatible between the two layers,
generating suboptimal or infeasible points. It means that the setpoints provided
by the RTO can be inconsistent and unattainable due to the difference between
the models.

Another point worth mentioning is the low frequency of execution of the
RTO, which is associated with the fact that this layer requires the process to reach
steady-state conditions for a new optimization cycle execution. However, tran-
sient conditions occur due to the action of disturbances in the process, hindering
the execution of RTO. Also, the economic information is not considered during
transient periods in the RTO approach, even in situations of transition between
optimal setpoints obtained by subsequent RTO cycles.

The RTO and MPC integration approaches are focused on at least one of the
drawbacks mentioned before, which are the RTO low frequency or the model
mismatch between control and optimization layers. Next, some possible RTO
and MPC integration approaches are discussed.

2.4.1 Two-stage MPC: LP-MPC and QP-MPC

The two-stage MPC, also called LP-MPC and QP-MPC, is a possible approach
to increase the frequency of RTO cycles and take economic aspects into account
during transient periods. This strategy solves a stationary optimization problem
formulated as linear (LP) or quadratic (QP) programming, which updates the set-
points to the MPC controller. This step is an intermediate layer between the RTO
and MPC. It is based on minimizing the deviations between the MPC setpoints
and the optimum point provided by the RTO layer. The model applied in this
step is the same as the dynamic MPC layer, enforcing the steady-state condition.
The intermediate optimization layer executes cycles at the same frequency as the
MPC. This strategy’s stability and convergence properties are analyzed in the
work of YING et al. (1998).

The intermediate optimization problem written as a LP problem is posed as
follows (MORSHEDI et al., 1985; YING et al., 1998; YOUSFI and TOURNIER,
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1991):

ySP−LP, uSP−LP = arg min
y, u

φLP−MPC := cy
T(y− ySP) + cu

T(u− uSP)

s.t. f MPC(y, u, d) = 0,

ymin − ε ≤ y ≤ ymax + ε,

umin ≤ u ≤ umax

(2.111)

where d is the estimated disturbance, ε ∈ Rny is used to enforce feasibility , cy ∈
Rny and cu ∈ Rnu are economic weights related to the economic optimization
objective function, calculated as follows:

cy =
∂φec

∂y

∣∣∣∣
ySP,uSP

(2.112)

cu =
∂φec

∂u

∣∣∣∣
ySP,uSP

(2.113)

The intermediate optimization problem written as a QP problem is posed as
follows (MUSKE and RAWLINGS, 1993):

ySP−QP, uSP−QP = arg min
y, u

φQP−MPC := (y− ySP)
Tcy

Tcy(y− ySP)+

(u− uSP)
Tcu

Tcu(u− uSP)

s.t. f MPC(y, u, d) = 0,

ymin − ε ≤ y ≤ ymax + ε,

umin ≤ u ≤ umax

(2.114)

The LP-MPC or QP-MPC strategies ensure that the setpoints from the RTO
layer to the MPC layer are feasible, which is a positive aspect for controller sta-
bility. However, it is important to notice that the models applied in the rigorous
steady-state and dynamic layers remain different. During the transient period,
depending on the range of the input variables, the linear model used in the LP-
MPC or QP-MPC layer may not accurately represent the process. Thus, the solu-
tions obtained by the LP-MPC or QP-MPC and the RTO layer can still be different,
thus leading to a suboptimal point (YING et al., 1998). Additionally, during the
transient period, the optimal point cannot be updated by the RTO layer, which
means that a suboptimal period still exists.

In the LP-MPC strategy, as it is a linear programming problem, the solution
would be located at a vertex of the polyhedron of constraints. Thus, if the process
in question suffers frequent disturbances and presents a model prediction error,
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the polyhedron defined by the constraints is also altered and, consequently, does
the optimal solution of the LP-MPC problem, leading to poor performance of the
controller (QIN and BADGWELL, 2003). At this point, the problem posed as QP-
MPC may have an advantage since the optimal solution may not necessarily be
on a vertex of the polyhedron constraints.

2.4.2 Economic Model Predictive Control (EMPC) and the One-

layer Approach

Another strategy proposed to deal with the infrequency of the RTO layer and
the lack of compatibility due to the different models employed in each layer con-
sists of solving the economic optimization and the control problem simultane-
ously, incorporating economic aspects in the formulation of the MPC.

There are still differences between the terms Economic Model Predictive Con-
trol (EMPC) and one-layer approach in literature. In ELLIS et al. (2017, 2014), the
strategy Model-Based Economic Predictive Control (EMPC) replaces the classi-
cal MPC objective function with an economic performance index. According to
ELLIS et al. (2014), the MPC quadratic deviation term does not adequately rep-
resent an process’s economic performance of the process, since it is impossible
to distinguish between a profit or cost term, given that the deviations are always
positive and, therefore, misinterpreted as an increase in profit. Therefore, using
an economic performance index was proposed to replace the objective function
of MPC (AMRIT et al., 2011; ENGELL, 2007).

The strategy of inserting economic aspects in the MPC formulation had al-
ready been elaborated previously, as explained in YOUSFI and TOURNIER
(1991), DE GOUVÊA and ODLOAK (1996, 1998), and ZANIN et al. (2000, 2002).
This strategy is typically called a one-layer approach, which receives its name
since the steady-state and dynamic layers are solved simultaneously.

Despite the differences in nomenclature presented above, it is possible to per-
ceive that both strategies try to address the disadvantages of the classic RTO for-
mulation in two layers, aiming to deal with disturbances faster than the classic
two-layer approach, also considering economic aspects during the transient pe-
riod, and to ensure compatibility between the RTO and MPC layers.

According to ELLIS et al. (2014), the one-layer approach considers an eco-
nomic term related to the final states of the system (terminal cost), which is de-
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scribed as follows:

u∗(t) = arg min
u ∈ S(∆), us

φOL = w1φMPC + w2φec(y(tN), us)

s.t. ẋ(t) = f OL(x(t), u(t), θ),

G(y(t), u(t)) ≤ 0,

f OL(x(tN), us, θ) = 0,

y(t) = h(x(t), u(t)),

umin ≤ u(t) ≤ umax,

ymin ≤ y(t) ≤ ymax,

x(tk) = xk

(2.115)

where the decision variables of the problem are the manipulated variables trajec-
tory (u ∈ S(∆)) and the manipulated variables at the steady-state condition (us).
Also, the MPC objective function (φMPC) was presented in Equation 2.106. In ad-
dition, w1 and w2 are weighting factors related to the MPC objective function and
the economic objective function, respectively. It is important to notice that the
subscript OL is related to the one-layer approach.

On the other hand, the EMPC objective function considers an economic per-
formance index evaluated throughout the system’s trajectory, as follows:

u∗(t) = arg min
u ∈ S(∆)

φEMPC = w1φMPC + w2

∫ tk+P

tk

φ̂ec(y(t), u(t)) dt

s.t. ẋ(t) = f EMPC(x(t), u(t), θ)

y(t) = h(x(t), u(t)),

G(y(t), u(t)) ≤ 0,

umin ≤ u(t) ≤ umax,

ymin ≤ y(t) ≤ ymax,

x(tk) = xk

(2.116)

where the subscript EMPC refers to the Economic Model Predictive Control strat-
egy, and φ̂ec is an economic objective function evaluated throughout the system’s
trajectory.

The formulation of the EMPC problem and the one-layer approach can be
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written as follows, without loss of generality:

u∗(t) = arg min
u ∈ S(∆), us

φEMPC = w1φMPC + w2φec(y(tN), us)

s.t. ẋ(t) = f (x(t), u(t), θ),

G(y(t), u(t)) ≤ 0,

f (y(tN), us, θ) = 0,

umin ≤ u(t) ≤ umax,

ymin ≤ y(t) ≤ ymax,

x(tk) = xk

(2.117)

where f is used to represent the dynamic model in the one-layer or EMPC ap-
proaches.

Comparing the general formulation in Equation 2.117 to the EMPC and one-
layer approach formulations (Equations 2.116 and 2.115, respectively), it is pos-
sible to notice that the main difference among then are related to a equality con-
straint f (y(tN), us) = 0, which represents a terminal constraint. This constraint
imposes that the process should be in a feasible steady-state at the end of the
control cycle (tN). In the one-layer approach, the objective function considers the
economic performance index at the end of the control cycle (tN), which means
that the steady-state is the one with the best economic performance at tN. In the
EMPC formulation, the economic performance is evaluated during the process
trajectory, guaranteeing the minimization along the trajectories of the control ac-
tions imposed on the process.

Although the formulations presented in Equations 2.115 and 2.116 are concep-
tually distinct, referring to the classic functional costs presented in dynamic op-
timization problems, it is possible to represent them in the Bolza, Lagrange, and
Mayer forms. The Lagrange problem represents the term of the integral objective
function, while the Mayer problem represents only the terminal cost term. The
Bolza problem combines these two problems: the sum of Mayer and Lagrange
terms. However, the problem representation in Mayer or Lagrange forms is as
general as the Bolza form, and the problems can even be rewritten and become
equivalent (ALMEIDA NETO, 2011). Thus, it is not a limitation to represent the
economic term as a cost in the final time instead of the integral term.

Some initial approaches included the economic term in the MPC by adding
a linear term into the objective function of the MPC controller (YOUSFI and
TOURNIER, 1991) or a linearized term of the economic objective function
(DE GOUVÊA and ODLOAK, 1996). Despite the simple formulation, this strat-
egy may not represent the economic problem of the real process, since this op-

56



timization problem may be nonlinear. In addition, according to DE GOUVÊA
and ODLOAK (1998), these formulations can lead the closed-loop controller to
instability.

Aiming to deal with nonlinear processes, DE GOUVÊA and ODLOAK (1998)
included a nonlinear term associated with the economic objective function in the
MPC objective function. Although the economic term was nonlinear, the con-
troller is still based on a linear identified model.

ENGELL (2007) presented a formulation more adherent to EMPC strategy,
applied to a simulated moving bed (SMB) separation system, which consisted of
four manipulated variables. In that work, the author concluded that the strategy
was promising. However, with some issues to be considered, such as its stability.

DE SOUZA et al. (2010) proposed to include the gradient of the economic ob-
jective function to the MPC original cost function. In this way, if a small pertur-
bation ∆u is added to the control action u, the first-order approximation of the
economic objective function gradient is written as follows:

ζu+∆u = ∇uφec(u + ∆u) = ∇uφec(u) +∇2
uφec(u)∆u (2.118)

where ζu+∆u represents the first-order approximation of the economic objective
function gradient at u + ∆u and ∆u are the manipulated variables. It should be
noticed that the objective function φec is calculated based on a steady-state model
of the process, typically non-linear and rigorous.

Knowing that the economic optimal point is the operational point that satisfies
the condition of the null gradient vector, the vector ζ can be considered as a vector
of deviations from a reference point, so this vector must be lead to the null value
by the control strategy. Therefore, the strategy proposed by DE SOUZA et al.
(2010) consists of including the term ζ as a penalty in the objective function of the
MPC, written as follows:

φOL = φMPC + ζT
u+∆uPζu+∆u (2.119)

where P is a positive semi definite matrix (matrix of weights).
One of the advantages of the strategy proposed by DE SOUZA et al. (2010) is

that the resulting problem when applying linear models for process prediction
is a QP problem. PORFÍRIO and ODLOAK (2011) succeeded in applying the
strategy proposed by DE SOUZA et al. (2010) in a Petrobras’ xylene distillation
unit.

On the other hand, as a disadvantage of the strategy, the penalty term associ-
ated with economic performance requires that the objective function be convex.
Otherwise, if the problem presents saddle points, the penalty term is null since
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the gradient is null. However, it is not an optimal operating point.
According to ALVAREZ and ODLOAK (2012), another disadvantage of the

strategy of DE SOUZA et al. (2010) is the lack of stability of the one-layer ap-
proach. The additional term in the objective function, represented by Equation
2.119, is updated at each iteration, which can act as a disturbance and lead to
controller instability.

In order to address the two disadvantages mentioned before, ALVAREZ and
ODLOAK (2012) proposed an integration strategy between the RTO and MPC
layers, adding the gradient term to the MPC objective function. However, instead
of using the objective economic function to calculate the gradients, a convex func-
tion is built, which consists of the difference between the control variable and the
optimal setpoints provided by the RTO. This function is written as:

F(u) =
nu

∑
i=1

Ki(ui − uSPi)
2 (2.120)

Thus, the above function is convex, and the gradient is null when the control
actions are equal to the values provided by the RTO layer. Thus, the strategy
translates into a penalty for deviations from the setpoints provided by the RTO,
so that the controller’s aim to make them null. Also, the authors considered a
zone control strategy for the output variables (GONZÁLEZ and ODLOAK, 2009),
such that its setpoints are decision variables of the MPC problem. It is important
to highlight that the strategy proposed by ALVAREZ and ODLOAK (2012) is in-
teresting if the decision variables optimal values are kept constant or known a
priori. However, in practice, the economic optimization problem might need to
be solved due to disturbances.

ALAMO et al. (2014) studied the strategy proposed by DE SOUZA et al. (2010),
focusing on an approximation for gradient calculation, aiming to reduce compu-
tational cost. The proposed methodology was applied to an FCC unit case study,
presenting an execution time three times lower than the original strategy.

RIBEIRO and SECCHI (2019) proposed a methodology for obtaining dynamic
models to be applied in NMPC and D-RTO based on Hammerstein models, such
that a combination of an identified steady-state model of the process based on
polynomial functions and analytical expressions corresponding to the solution
of invariant linear dynamic systems were applied. The proposed methodology
yields analytical expressions of the dynamic model, which have the main ben-
efit of computational time reduction. The authors also claim the possibility of
application in EMPC approach.

A comprehensive review on the subject is presented in ELLIS et al. (2014). The
possible RTO and MPC integration formulations are presented, as well as aspects
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of stability, the use of nonlinear models, and their performance. More recently,
ELLIS et al. (2017) published a book with theoretical and practical aspects of the
EMPC, including aspects of closed-loop stability, associated computational cost,
and state estimation.

A fundamental assumption related to designing and applying an EMPC ap-
proach is that a dynamic model is available. Some recent research has been done
regarding data-driven approaches applied to EMPC formulation. ALANQAR
et al. (2015) proposed using a Lyapunov-based EMPC scheme formulated with
multiple empirical models, where linear time-invariant state-space models were
applied. WU et al. (2019a,b) presented the theoretical foundation and compu-
tational implementation of a Lyapunov-based MPC using recurrent neural net-
works (RNN). It was shown that the RNN-based MPC computation time was
lower than the sampling time, which implies that it could be applied in real time.
ELLIS and CHINDE (2020) used a long short-term memory networks (LSTM)
model for an EMPC design applied to heating, ventilation, and air conditioning
(HVAC) systems. CHANDRASEKAR et al. (2022) applied a state-space dynamic
model to predict state trajectories combined with a partial-least-squares model to
predict quality variables, which are used as constraints.

Some approaches also focused on dealing with the plant-model mismatch in
EMPC. VACCARI and PANNOCCHIA (2017) proposed an offset-free EMPC by
combining output modifier-adaptation and EMPC, such that affine corrections
terms are added to the model output variables. The proposed approach de-
pends on the plant output variables gradient, which is considered to be known.
PANNOCCHIA (2018) and VACCARI and PANNOCCHIA (2018) expanded the
previous approach by considering dynamic estimate techniques to obtain the
gradients. FAULWASSER and PANNOCCHIA (2019) proposed the combina-
tion of modifier-adaptation and an EMPC without terminal constraints, which
avoids solving the steady-state optimization problem to obtain the terminal state.
The authors showed that gradient estimation is crucial for the proposed ap-
proach. HERNÁNDEZ and ENGELL (2019) also considered an output modifier-
adaptation scheme, such that the dynamic model corrected instead of the input-
output map. VACCARI et al. (2020) applied steady-state perturbations and a
Broyden’s approximation to obtain the gradients. VACCARI et al. (2021) extended
the previous work by comparing gradient estimation techniques, namely Broy-
den’s approximation and linear regression. The authors compared the results
to two benchmarking problems, concluding that linear regression is superior in
handling measurement noise. OLIVEIRA-SILVA et al. (2021) proposed a new ap-
proach for directly estimating the MA modifiers with transient measurements
instead of trying to estimate the process gradients, so-called Dynamic Modifier
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Estimation (DME).
In summary, the main strategies for integrating RTO and supervisory control

layers aim to minimize the model differences between each layer. Although a
simple strategy, the two-stage MPC method may lead to suboptimal operation
since the models in each layer remain different. Also, during the transient pe-
riod of the RTO, the optimal setpoint is updated once a steady-state condition is
reached. The usage of one-layer and EMPC strategies presents the advantage of
adding somehow an economic aspect into the controller formulation, and it is an
interesting approach since both economic optimization and control are merged
in a single layer, avoiding the need for an SSD step and then presenting compat-
ibility between RTO and supervisory control layer. A critical requirement of the
strategy is that a reliable dynamic model of the process is available. Despite not
being an EMPC requirement, when applying nonlinear models in its formulation,
computational complexities, the requirement for online identification techniques
for nonlinear processes, the necessity of the optimization problem to be solved in
real time, the robustness of the solution, and the stability for nonlinear systems
are important issues for the practical implementation of the nonlinear EMPC for
large-scale problems (ELLIS et al., 2014; WÜRTH et al., 2011). Thus, modeling
techniques that enable the EMPC application in real time and enable the ability
to represent the process accurately are crucial for EMPC viability, especially in
large-scale systems. In this sense, surrogate models are an interesting direction
and will be discussed in the following sections.
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Chapter 3

Surrogate Model-Based Optimization

In general, modeling techniques are applied to represent a given object of in-
terest. Models start to be meaningful and important when they can adequately
represent the behavior of the object of interest (MELO JR and PINTO, 2008). The
use of models has innumerable advantages, highlighting here the fast responses
to different scenarios without the need to perform real experiments, which, in
general, is costly and time consuming.

In this sense, modeling is an essential tool for optimization purposes. How-
ever, depending on the model complexity, the computational effort, the execution
time, and simulation convergence, these can be issues. These difficulties become
obstacles for applications that require responses in a short period. In this context,
it is also worth mentioning the real-time optimization systems based on models
in steady-state, which require answers about the optimum operating point of the
process in study.

In cases where the computational cost and the response time become criti-
cal variables for executing a simulation or optimization, a way to minimize this
problem is through the so-called surrogate models. The basic idea of the surro-
gate models is to apply mathematical approximations instead of rigorous models
(FORRESTER et al., 2008). Furthermore, using surrogate models becomes a help-
ful tool in applications where computational cost, execution time, and reliability
are essential, such as in the scope of process optimization and control (GOMES,
2007).

Regarding the application of surrogate models in Chemical Engineering,
BURNHAM et al. (1996) and JAECKLE and MACGREGOR (1998) applied sur-
rogate models to identify relationships between process variables that affect
given product characteristics from historical plant data. MICHALOPOULOS
et al. (2001) used surrogate models to represent a steady-state process on an in-
dustrial scale. HOSKINS et al. (1991) and TERRY and HIMMELBLAU (1993)
applied mathematical approximations for noise-removal from process measure-
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ments data and to fault-identification. In the work of HERNANDEZ and ARKUN
(1993), BAKSHI and STEPHANOPOULOS (1994), and BANERJEE et al. (1997),
approximations were applied to describe the dynamic behavior of processes.
THOMPSON and KRAMER (1994) applied a hybrid strategy combining first
principles and approximate models to represent the dynamics of processes. The
work of BIEGLER et al. (1985), PALMER and REALFF (2002a), PALMER and RE-
ALFF (2002b), NASCIMENTO et al. (2000), and GOMES (2007) applied surrogate
models for optimization purposes.

BIEGLER et al. (1985) analyzed and compared the performance of optimiza-
tion problems using rigorous and approximated models. Despite being a promis-
ing strategy in terms of computational effort and time, the convergence of the
optimization problem to the optimal point when applying surrogate models de-
pends on the accuracy of prediction of the objective function and the constraints
of the optimization problem. In other words, the problem based on the surro-
gate models must preserve characteristics related to the NCOs. In that work, the
necessary conditions of the model were presented to guarantee optimality.

NASCIMENTO et al. (2000) applied neural network models to optimize an
industrial polymerization process. The polymerization was optimized using the
simulation of a phenomenological model developed by GIUDICI et al. (1998) as a
virtual plant, increasing the polymer production up to 30%.

PALMER and REALFF (2002a) presented strategies for chemical processes op-
timization using surrogate models based on obtained data from rigorous models.
Aspects of computational experiments were evaluated, such as the dispersion of
points in the domain and the contribution to metamodel prediction bias when
using the Minimum Bias Latin Hypercube Design (MBLHD).

In the work of WELCH and SACKS (1991), a general methodology for ob-
taining and using surrogate models is presented, taking into account multiple
simulation response variables and multiobjective optimization problems. The
proposed steps are presented below:

1. Postulate a model for each response variable yj (∀j = 1, . . . , ny) as a function
of the input variables u;

2. Perform a design of experiments of a set of N vectors u to generate an initial
set of responses;

3. Use the obtained data to estimate the parameters of the proposed models.
Before proceeding to the next step, it is necessary to check the models’ ac-
curacy and, if necessary, propose a new model structure and estimate its
parameters; Generate response surfaces using the model predictions. This
step aims to visualize the input and output variables’ relationship, trends,
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and possible optimal points. Even if there are some model errors, this anal-
ysis allows to determine a subspace where the new experiments should be
prioritized;

4. Perform an optimization step;

5. If necessary, constrain the region of u. If Step 3 indicates that the models
obtained are not accurate yet, the region of u can also be constrained to a
promising region, based on the analysis carried out in Step 4 and the tenta-
tive optimization of Step 5. It may be necessary to return to Step 2 to collect
new responses from a new set of u. Otherwise, proceed to the next step;

6. Perform a real experiment to confirm the optimum point obtained in Step
5. If the predicted optimum is unsatisfactory, return to step 2 for reducing
the region of u and collect more data.

In step 2 of the procedure described by WELCH and SACKS (1991), it is im-
portant to notice that the number of experiments (N) was not defined. Thus, it is
important to highlight that not all approximation models can obtain predictions
with the desired accuracy when the number of experiments is insufficient. Typi-
cally, polynomial and Gaussian Process models are models that can be generated
with a small data set. Spline models, in general, use a larger data set, however
smaller than the size required for the neural network model. Even with an ade-
quately sized data set, it is still possible to obtain unsatisfactory approximations.
This fact is related to the differences between the characteristics of the actual data
set and the type of surface generated by the approximations (PALMER and RE-
ALFF, 2002b).

There are several classes of models that can be employed as surrogate mod-
els, such as polynomial basis functions, radial basis functions, neural networks,
Support Vector Regression (SVR) and Gaussian Process (CARPIO et al., 2018a).

Some researches compared classes of surrogate models for chemical processes
optimization purposes. GOMES (2007) compared neural networks and Gaus-
sian Process (Kriging model) to model an optimization test function and a crude
oil atmospheric distillation. Regarding prediction errors, GOMES (2007) showed
a similar performance when comparing Gaussian Process and neural networks.
CARPIO (2019) compared polynomial, neural networks and Gaussian Process
models applied to optimization test functions (Six-hump camel-back, Griewank,
Bird, and Rosembrock functions) and a biorefinery plant example. CARPIO
(2019) showed that the Gaussian Process presented lower prediction error when
compared to the other models in all test functions considered.
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Based on the aforementioned works, GP seems to be a powerful class of mod-
els to be applied as surrogate models. Also, it has been applied for RTO pur-
poses, combining techniques of Sequential Approximation Optimization (SAO)
(DEL RIO CHANONA et al., 2019; FERREIRA et al., 2018; GOMES, 2007; GOMES
et al., 2006, 2008) and Bayesian Optimization (DEL RIO CHANONA et al., 2021).

3.1 Gaussian Process Models

Definition 3.1.1 Gaussian process model (RASMUSSEN, 2006). A Gaussian process
is a collection of random variables, any finite number of which have a joint Gaussian
distribution.

As a Gaussian distribution is specified by means of its mean and covariance,
the same applies to GP models. Let µ(u) and k(u, u′) be the mean and covariance
functions of a real process f (u) , respectively. Here, u is the independent (input)
variable and u′ represents another different vector.

It is typical for more realistic situations to have access to the real process mea-
surements, which means that the data may be noisy. Then y = f (u)+ ε, where ε is
an additive independent identically distributed Gaussian noise with zero-mean
and variance σ2

n.
The mean and covariance are defined as follows:

µ(u) = E[ f (u)] (3.1)

k(u, u′) = E[( f (u)− µ(u))( f (u′)− µ(u′))] (3.2)

The GP model can be stated as follows:

f (u) ≈ GP(µ(u), k(u, u′)) (3.3)

It is also important to define the training and test data sets, which are used
to GP model training and testing, respectively. Let the training set be defined as
U ∈ Rn×m, such that each column represents a sample point and the lines are
the coordinates of each vector ui, which means that U = [u1, . . . , um]. The inde-
pendent variables (responses) are obtained and represented by Y ∈ Rny×m, such
that ny is the number of output variables. Analogously, U∗ ∈ Rn×m∗ , such that
U∗ = [u∗1 , . . . , u∗m∗ ], and Y∗ ∈ Rny×m∗ are the predictors and output variables test
data set. Thus, the training and test sets have m and m∗ experiments, respectively.

If there are m training points and m∗ test points then K(U, U∗) ∈ Rm×m∗

denotes the covariance matrix evaluated at all pairs of training and test points.
Analogously, K(U, U) ∈ Rm×m represents the covariance matrix evaluated at all
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pairs of training points, K(U∗, U∗) ∈ Rm∗×m∗ represents the covariance matrix
evaluated at all pairs of test points, and K(U∗, U) ∈ Rm∗×m represents the co-
variance matrix evaluated at all pairs of test and training points, respectively.

In practice, the mean function is expressed conveniently in terms of a linear
combination of basis functions, such that its parameters β are inferred from train-
ing data. Let F be a regression function, typically considered as a polynomial
function with parameters β ∈ Rnβ in which nβ is the number of parameters.
Thus:

F(u) = h(u)Tβ (3.4)

where h(u) are basis functions.
Therefore, the GP’s posterior mean function (i.e., after training) applied to the

test set can be written as follows:

M f (U∗) = F(U∗) + K(U∗, U)Ky
−1(Y −F(U)) (3.5)

where M f ∈ Rm∗ , such that M f (U∗) =
[
µ f (u∗1), . . . , µ f (u∗m∗)

]T, µ f rep-
resents the GP’s posterior mean function applied to the test set, F(U) =

[F(U1), . . . ,F(Um)]
T and F(U∗) = [F(U∗1), . . . ,F(U∗m∗)]

T are the regression func-
tion applied to observations of the training and test sets, and Ky = K(U, U) +

σ2
n Im×m.

Additionally, the GP’s posterior covariance function applied to the test set can
be written as follows:

S f (U∗) = S f ,zm(U∗) + RT(B−1 +F(U)K−1
y FT(U))−1R (3.6)

where S f and S f ,zm are vectors of the posterior covariance functions in the
case of a non zero mean regression function and a zero mean regression func-
tion, respectively. These functions applied to the test set give S f (U∗) =[

σ2
f (u
∗
1), . . . , σ2

f (u
∗
m∗)
]T

, S f ,zm =
[
σ2

f ,zm(u
∗
1), . . . , σ2

f ,zm(u
∗
m∗)
]T

, such that, σ2
f and

σ2
f ,zm are the GP’s posterior covariance functions in the case of a non zero mean re-

gression function and a zero mean regression function, respectively. S f ,zm(U∗) =
K(U∗, U∗)−K(U∗, U)Ky

−1K(U, U∗) represents the GP’s posterior covariance for
the specific case the zero mean function, B is considered the prior covariance
matrix of the regression parameters β assumed to be normally distributed, i.e.,
β = N (b, B), and R is a matrix calculated by R = F(U∗)−F(U)K−1

y K(U∗, U∗).
The posterior regression coefficients are calculated as follows:

β̄ =
(

B−1 +F(U)K−1
y FT(U)

) (
F(U)K−1

y Y + B−1b
)

(3.7)
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A particular case of the posterior mean and variance equations can be ob-
tained for the situation when the mean function is considered to be zero. The
posterior equations are written as follows:

µ f ,zm(U∗) = K(U∗, U)Ky
−1Y (3.8)

σ2
f ,zm(U

∗) = K(U∗, U∗)− K(U∗, U)Ky
−1K(U, U∗) (3.9)

In the situation where the prior on β becomes vague, which means that B−1 →
0, the posterior equations are written as follows:

µ f (U∗) = µ f ,zm(U∗) + RT β̄ (3.10)

σ2
f (U

∗) = σ2
f ,zm(U

∗) + RT(F(U)K−1
y FT(U))−1R (3.11)

where β̄ =
(
F(U)K−1

y FT(U)
)−1

F(U)K−1
y Y .

3.1.1 Covariance Functions

One important topic related to the GP models is the covariance functions, as
it encodes the assumptions about an unknown function f . A simpler covariance
function is the constant covariance function, written as follows:

kconst(u, u′) = σ2
0 (3.12)

The linear covariance function is written as follows:

klinear(u, u′) =
nu

∑
j

σ2
j uju′ j (3.13)

The polynomial covariance function is written as follows:

kP(u, u′) = σ2
s (u− u′)TΛ(u− u′ + c)a (3.14)

in which σ2
s ∈ R, Λ = diag(λ1, . . . , λn), a, and c are the parameters of the covari-

ance function model.
An example of a covariance function is the Squared Exponential (SE), written

as follows:

kSE(u, u′) = σ2
s exp

(
1
2
(u− u′)TΛ(u− u′)

)
(3.15)
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in which σ2
s ∈ R and Λ = diag(λ1, . . . , λn) are the parameters of the covariance

function model.
The Matérn covariance function, also known as the modified Bessel covari-

ance function, is written as follows:

kM(u, u′) =
σ2

s
Γ(ν)2ν−1

(
2
√

ν(u− u′)TΛ(u− u′)
)ν (

2
√

ν(u− u′)TΛ(u− u′)
)

(3.16)

3.2 Sequential Approximation Optimization Meth-

ods (SAO)

Sequential Approximation Optimization Methods are typically applied when
the original optimization problem is computationally expensive, taking too much
time to obtain a solution. It can be related to the complexity and dimension of
the model behind the optimization problem, commonly written as an equality
constraint.

In order to speed up the optimization step or, at least, achieve a reasonably
fast one, the rigorous model is approximated by an inexpensive function, limited
to a subregion, also called the trust-region. The trust-region is used to succes-
sively define a limited search domain in which a subproblem is solved, based on
approximation functions (JACOBS et al., 2004).

Given an optimization problem based on a rigorous model as presented in
Equation 2.1, a Sequential Approximation Optimization strategy applied to this
problem can be written as follows:

uopt,k = arg min
u

φ̂ec(u)

s.t. ĝ(u) ≤ 0,

umin ≤ uLB,k ≤ u ≤ uUB,k ≤ umax,

uLB,k = uc,k − ∆k,

uUB,k = uc,k + ∆k

(3.17)

where φ̂ec is an approximation of original objective function φec, ĝ is an approxi-
mation of the original problem constraints g, u are decision variables of the prob-
lem, umin and umax are the original problem domain, uLB,k and uLB,k are the lower
and upper bounds at iteration k defined by the trust-region, uc,k is the trust-region
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center and ∆k is the trust-region radius at iteration k. In the problem represented
by Equation 3.17, it assumed that the equality constraints related to the model
equations were already substituted into the equations. Also, without loss of gen-
erality, it can represent surrogate models obtained to represent the functions φec

and g or the output variables y directly. In the latter, as φec = φec(u, y(u)) and if
the mapping function can be represented in the explicit form by y = f (u) then
φ̂ec = φ̂ec(u), where the dependence on the model parameters was omitted for
the sake of notation.

Similar to the model adequacy criteria presented in Section 2.2.1.1, the NCO
of the optimization problem based on a surrogate model should be equivalent to
the original problem. According to GIUNTA and ELDRED (2000), the consistency
conditions between the surrogate and original functions must hold at uc,k, such
that:

L(uc,k) = L̂(uc,k) (3.18)

∇L(uc,k) = ∇L̂(uc,k) (3.19)

where L and L̂ are the Lagrangian function of the original and surrogate model-
based optimization problems, respectively.

According to GIUNTA and ELDRED (2000), the gradient of the Lagrangian
function of the original problem (∇L) calculation may also be computationally
expensive. Also, additional issues may occur if the gradient presents non-smooth
trends in the objective function and constraints values. For this reason, the au-
thors proposed a strategy of trust-region updating without gradient calculation,
applying a metric of surrogate functions accuracy at the optimum point achieved
at the k-th iteration, based on the previous work of RODRÍGUEZ et al. (1998),
written as follows:

ρk = min (ρφobj,k , ρg,k) (3.20)

ρφ,k =
φec(uc,k)− φec(uopt,k)

φ̂ec(uc,k)− φ̂ec(uopt,k)
(3.21)

ρgi,k =
gi(uc,k)− gi(uopt,k)

ĝi(uc,k)− ĝi(uopt,k)
i = 1, ..., ng (3.22)

where ρφ,k and ρg,k are measures of the actual versus predicted change in objective
function and constraints at the optimum point obtained at iteration k.

The trust-region updating rules can be summarized as follows:

1. ρk < 0: the surrogate models are inaccurate. Thus, the optimum solution at
iteration k is rejected, so that uc,k+1 = uc,k. Also, shrink the trust-region by a
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factor of γred to improve model accuracy (which is supposed to be achieved
by applying a limited region).

2. 0 ≤ ρk < η1: the surrogate models are marginally accurate. Thus, the
optimum solution at the k-th iteration is not rejected, so that uc,k+1 = uopt,k.
As the surrogate models need to be improved, also shrink the trust-region
by a factor of γred.

3. η1 ≤ ρk < η2: the surrogate models are moderately accurate. Thus, the
optimum solution at the k-th iteration is not rejected, so that uc,k+1 = uopt,k

and the trust-region radius is kept the same value of the previous iteration.

4. ρk ≥ η2 and ||uopt,k − uc,k|| < ∆k: the surrogate models are accurate and the
optimum solution at the k-th iteration lies inside the trust-region bounds.
Thus, keep the last solution uc,k+1 = uopt,k and maintain the previous trust-
region radius.

5. ρk ≥ η2 and ||uopt,k − uc,k|| = ∆k: the surrogate models are accurate and the
optimum solution at the k-th iteration lies on the trust-region bounds. Thus,
keep the last solution uc,k+1 = uopt,k and increase the trust-region radius by
a factor of γinc.

where γinc and γred are the trust-region radius increase and reduction factors,
respectively, such that 0 < γred < γinc. Also, η1 and η2 are threshold values for
the ρ metrics, such that 0 < η1 < η2 < 1.

GOMES (2007) applied the SAO strategy, considering the rules for updating
the trust-region proposed by GIUNTA and ELDRED (2000). The author con-
cluded that these criteria were insufficient, especially when the trust-region is
too narrow, so the values of the original and surrogate functions are too close.
In this situation, the value of ρk can present large positive or negative values, as
the difference of the functions is close to zero, which may lead to unnecessary
trust-region shrinking. Thus, GOMES (2007) proposed a strategy for updating
the trust-region based on the previous work of GIUNTA and ELDRED (2000),
adding criteria regarding the maximum error of surrogate models predictions.

3.3 Bayesian Optimization

The Bayesian Optimization was originated in the work of KUSHNER (1964),
ZHILINSKAS (1975), and MOČKUS (1975), and was popularized in the work of
JONES et al. (1998). This approach aims to solve an optimization problem based
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on global statistical model of an unknown objective function. Typically, this strat-
egy is applied when the objective function is expensive to evaluate (GELBART
et al., 2014). Regarding the statistical model applied in Bayesian Optimization,
Gaussian Process is common employed (FRAZIER, 2018).

The Bayesian Optimization starts with an initial design of experiments, which
will be applied to obtain a first training data set for model building. Let denote
the initial set of experiments in terms of the input variables as U (0) ∈ Rm×nu ,
where m is the number of design points and nu the dimension of the prob-
lem (number of decision variables). The unknown function is evaluated at each
u ∈ U (0), yielding measured variables Θ(0) ∈ Rm×nΘ , which may encompass
the objective function, the constraints functions and the output variables. Thus,
nΘ = ny + ng + 1.

With the input and output data set {U (0), Θ(0)}, it is possible to fit the surro-
gate models. Based on it, an optimization step is carried out to obtain a candidate
point. The unknown function is evaluated at this point and the training set is
updated by adding the last information. Then, the surrogate model can be also
updated. Therefore, each new experiment point refines the surrogate model, aim-
ing to increase its accuracy, also increasing the probability of finding the optimal
of the true problem by using surrogate models (COUCKUYT et al., 2014). This
process is repeated until a predetermined stop criterion is achieved (UENO et al.,
2016).

In the new candidate point selection step, also called inner optimization prob-
lem (GELBART et al., 2014), a metric function is applied as objective function,
which is called acquisition function, here denoted as AF : Rnu → R. This func-
tion is used to map beliefs about the unknown function as a way to measure the
gain for unknown values of the function that will be evaluated at a new input
variable locations. Common acquisition functions applied in Bayesian Optimiza-
tion are the probability of improvement, expected improvement, and lower (up-
per) confidence bound (WANG et al., 2017). A new candidate solution ucand ∈ Rnu

is chosen by maximizing the acquisition function, which can be described as fol-
lows:

ucand = arg max
u

AF (u)

s.t. umin ≤ u ≤ umax

(3.23)

where AF : Rn
u → R is the acquisition function.

After obtaining ucand, the unknown function is evaluated and this data
is added to the previous training data set, yielding an updated training set
{U (k+1), Θ(k+1)} which is applied to update the surrogate model and the algo-
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rithm go to a new iteration while a given stop criteria is not fulfilled.
The expected improvement acquisition function is described as follows. Let

φmin be the minimum value of the objective function φec found at iteration k, here
considering the optimization problem aims to minimize a function. A next sam-
pling point can be chosen so that it is possible to obtain a decrease in the objective
function value. Applying a surrogate model to obtain predictions of the objective
function, denoted by φ̂ec, the improvement at a next candidate point ucand is de-
fined as I = max(φmin − φ̂ec(ucand), 0)). As the objective function in Bayesian
Optimization is approximated by a Gaussian Process, the expression for I is a
random variable. Therefore, to obtain the expected improvement, the expected
value operator is applied to the improvement I :

AFEI(u) = E[I(u)] = E[max(φmin − φ̂ec(u), 0))] (3.24)

where AFEI : Rnu → R is the expected improvement acquisition function and
E[·] is the expected value function.

By applying the expected value definition, it is possible to obtain the following
expression for the expected improvement:

AFEI(u) = (φmin − µ f (u))PZ

(
φmin − µ f (u)

σf (u)

)
+ σf (u)pZ

(
φmin − µ f (u)

σf (u)

)
(3.25)

where µ f (u) and σf (u) are the posterior mean and standard-deviation values of
the Gaussian process applied to approximate φec, and PZ and pZ are the cumula-
tive distribution function and normal probability density function of the standard
normal random variable, respectively.

The probability of improvement (PI) acquisition function is an alternative
function to AFEI . Intuitively, it represents the probability of the objective func-
tion at a new sampling point being lower than φmin. That is:

AF PI(u) = Pr(φec(u) < φmin) = PZ

(
φmin − µ f (u)

σf (u)

)
(3.26)

The lower confidence bound (LCB) acquisition function, also called Gaussian
process lower confidence bound (GP-LCB) in minimization problems, or Gaus-
sian process upper confidence bound (GP-UCB) in maximization problems, is
defined as follows:

AFGP−LCB(u) = −(µ f (u)−
√

βσf (u)) (3.27)
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where β is a tuning parameter. The intuition behind AFGP−LCB is that at each
iteration, the new sampling point is the one which maximizes AFGP−LCB, which
means that µ f (u)−

√
βσf (u) is minimized. This term can be interpreted as the

lower confidence value of the mean.
The acquisition functions are typically applied in Bayesian optimization to de-

cide what sampling point to try next to the trade-off between exploration and ex-
ploitation. An acquisition function can emphasize more on the modeling uncer-
tainties rather than the predictions (represented by the Gaussian process poste-
rior mean µ f ). Therefore, this acquisition function tends to present an exploratory
behavior. Consequently, more points are evaluated until they reach the optimum
point. The advantage of exploratory behavior is a high probability of the algo-
rithm obtaining a global solution instead of a local solution. On the other hand, it
is also possible to design acquisition functions that emphasize the prediction val-
ues instead of the uncertainties, which is called an exploitation behavior (WANG
et al., 2017).

Figure 3.1 presents a few iterations of the Bayesian optimization applied to
a one-dimension problem. The objective function is φec(u) = − sin (3u)− u2 −
0.7u, which has a maximum at u∗ = −0.3593.

The acquisition functions presented before are all designed for unconstrained
Bayesian optimization problems. In order to deal with constrained optimization
problems, SCHONLAU (2015) proposed an extension of the original Expected
Improvement, named Expected Improvement with Constraints (EIC), which is
defined as follows:

AFEIC(u) = AFEI(u)
ng

∏
j=1

Pr(gj(u ≤ 0)) (3.28)

where the term Pr(gj(u ≤ 0)) represents the probability of the j-th constraint
to be satisfied. Also, it is interesting to notice that it is possible to separate the
probabilities of satisfying the constraints from the expected improvement of the
objective function due to assumed independence (GELBART, 2015). The term

∏
ng
j=1 Pr(gj(u ≤ 0)) is also called probability of feasibility of the problem.

HAWE and SYKULSKI (2008) proposed an acquisition function based on the
probability of improvement in constrained multi-objective optimization prob-
lems. The proposed acquisition is written as a product of the original probability
of improvement and a term that represents the probability of feasibility, written
as follows:

AF PIC(u) = AF PI(u)
ng

∏
j=1
PZ

(
0− µgj(u)

σgj(u)

)
(3.29)
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Figure 3.1: First five iterations of Bayesian Optimization applied to the function
φec = − sin (3u)− u2 − 0.7u inside the domain −1 ≤ u ≤ 2. The function maxi-
mum occurs at u∗ = −0.3593 and φec(u∗) = 0.50.
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where µgj and σgj are the mean and standard-deviation of the Gaussian-process
applied to approximate the j-th constraint, respectively.

CARPIO et al. (2018b) presented an surrogate model based optimization
framework based on the Probability of Improvement acquisition function. In the
proposed formulation, GP were applied to model the objective function and con-
straints, such that a constrained PI acquisition function was considered, and the
probability of fulfilling each constraint was also considered as the optimization
problem constraint.

3.4 Data Generation for Surrogate Models Building

Regarding obtaining data for surrogate model building, some precautions
must be taken when obtaining the data since some choices may not be appro-
priate. Similar to the experimental design used in real experiments (i.e., non-
computational), experiments techniques can be employed to reduce the number
of experiments and create a set of statistically representative dependent and inde-
pendent variables for parameter estimation. The task of running simulations for
different input variables and obtaining the output or response variables is called
a computational experiment (SACKS et al., 1989).

According to PALMER and REALFF (2002a), a suitable data set must have
different values for a given variable in each experiment. This characteristic is
obtained through random sampling. On the other hand, this technique has the
disadvantage of forming very close data sets, the so-called clusters. The impact of
sampling with this pattern is the possibility of increasing the model’s prediction
error in regions where sampling was not done. An adequate sampling would be
the situation of points well distributed throughout the sampling space and not
grouped.

A technique that presents a better distribution of the sampled points is the
Latin Hypercube Design (LHD) or Latin Hypercube Sampling (LHS), proposed
by MCKAY et al. (1979), which is typically used when GP models are used (FOR-
RESTER et al., 2008; GOMES, 2007). This sampling technique also uses random
sampling. However, its sampling strategy better represents the portions of the
vector space. For this, consider the case in which it is desired to sample m points
in the vector space D ∈ Rn. The LHS strategy is described as follows:

1. Divide the interval for each dimension into m non-overlapping intervals
of equal probability (for example, using a uniform probability distribution,
such that the intervals must be the same size);

2. Randomly sample, from a uniform probability distribution, a point in each
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interval in each dimension.

3. Put together the points of each dimension randomly.

When reduced to the two-dimensional case, that is, the vector space D ∈ R2,
this particular case is called Latin Square Sampling because the vector space rep-
resents a plane, that is, a square when normalizing the x and y axes between 0 and
1. Taking the example where m = 4 and n = 2, each dimension is divided into
4 intervals, obtaining a square with 42 = 16 intervals. In this case, a simple way
to perform the sampling via the LHS technique is to fill the square with permu-
tations of positive integer numbers up to m, that is, 1, 2, 3, 4. Also, the numbers
are distributed so that each number appears only once in each column and row.
Subsequently, one of the numbers (1, 2, 3, 4) is selected, representing the intervals
that will be sampled (FORRESTER et al., 2008). This procedure is illustrated in
Figure 3.2.

.

Figure 3.2: Latin Hypercube Sampling applied to the two-dimensional domain
(n = 2) with m = 4 sampling points.

In Figure 3.2, the number 1 was considered to illustrate the intervals that
would be selected for sampling. However, any other number could also be se-
lected.

For the case of dimension n > 2, that is, building a hypercube, the procedure
is done like that exemplified for the two-dimensional case. Let x be the m ×
n dimension matrix, that is, the sampling of m points with n dimension. The
sampling is done with random permutations of the possible non-zero integers
1, 2, 3, ..., m and later normalized in the interval [0, 1] (FORRESTER et al., 2008).
An example with m = 10 and n = 3 is shown in Figure 3.3.

One of the metrics commonly applied to verify if a sampling technique has a
space-filling characteristic is the maximin metrics, introduced by JOHNSON et al.
(1990). Indeed, this metric is based on the distance of the points. The following
properties of the distance metrics should also verify (WU, 2017).

Definition 3.4.1 Distance Metrics Let ψ(u, v) be a distance metric such that (u, v) ∈
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.

Figure 3.3: Latin Hypercube Sampling Technique applied to a three-dimension
(n = 3) with m = 10 sampling points.

Rn. Thus, the following equations should be satisfied:

ψ(u, v) = ψ(v, u) (3.30)

ψ(u, v) ≥ 0 (3.31)

ψ(u, v) = 0⇔ u = v (3.32)

ψ(u, v) ≤ ψ(u, w) + ψ(w, v) (3.33)

For instance, the function below represents a possible distance metric to be applied:

ψ(u, v) =

[
n

∑
j=1
|uj − vj|k

]1/k

(3.34)

Indeed, if k = 1, the function would be the absolute-value norm, also called `1-norm.
When k = 2, the distance will be calculated by the Euclidian norm, also called `2-norm.

Based on the definition above, it is also possible to define the minimax metrics.

Definition 3.4.2 minimax metrics (WU, 2017)
Let D be a set of sampling points, so that

ψ(x, D) = min
xi∈D

ψ(x, xi) (3.35)
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Let X = [0, 1]n, so that n is the problem dimension. Thus:

ψmax = max
x∈X

ψ(x, D) (3.36)

be the maximum distance in X.
The distance ψmax is the fill distance, which means the largest gap among the exper-

iment points or the radius of the largest ball that can be placed in X, which does not
contain any point in D.

Therefore, it is possible to find an experiment with a set of sampling points D, which
minimizes the distance ψmax. That is:

min
D

ψmax = min
D

max
x∈X

ψ(x, D) (3.37)

Equation 3.37 is the criterion for generating a sampling points set by the minimax
distance design.

Definition 3.4.3 Maximin metrics (WU, 2017)
Let D be a set of sampling points. The minimum distance between any two points

x1, x2 in D is

r =
minx1,x2∈D ψ(x1, x2)

2
(3.38)

where r is the separation distance or packing radius, which is the radius of the largest ball
that can be placed around every design point such that there is no overlapping between
two balls.

In this way, it is possible to obtain an experiment that maximize the distance r. Thus:

max
D

r =
maxD minx1,x2∈D ψ(x1, x2)

2
(3.39)

Equation 3.39 is the criterion for generating a sampling points set by the maximin
distance design.

By applying the maximin metrics, it is possible to design an LHS design with
space-filling characteristics, which is called maximin LHS, defined as follows:

Definition 3.4.4 maximin Latin Hypercube Sampling
A sampling point set D said to be maximin LHS can be generated by solving the

following optimization problem:

max
D

min
x1,x2∈D

ψ(x1, x2) (3.40)
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where D is the maximin LHS (MmLHS).

According to JOSEPH et al. (2015), the MmLHS design guarantees the space-
filling characteristic in all the n dimensions and uniform projection in a single
dimension. However, projections properties in the other dimensions may not be
good.

In order to deal with uniform projection in all dimensions, techniques called
the Maximum Projection Design were proposed. When a design is projected onto
a subspace, the distance between the points is calculated with respect to the fac-
tors that define the subspace. This technique uses a weighted Euclidian distance,
where the weights for the factor defining the subspace are equal to one and the
weights are zero for the remaining factors (JOSEPH et al., 2015), written as fol-
lows:

ψ(xi, xj, v) =

[
n

∑
k=1

v(xi,k − xj,k)
2

]1/2

(3.41)

where v ∈ Rn represents the weights vector.
In this approach, the sampling points D is obtained as follows (JOSEPH et al.,

2015):

min
D

n−1

∑
i=1

n

∑
j=i+1

1
ψ(xi, xj, v)

(3.42)

SANTNER et al. (2003) present other strategies that use different criteria from
those previously presented. These strategies are based on statistical criteria, such
as the Maximum Entropy and several variations based on the Mean Square Error
of Prediction. The authors state that, in general, the Design of Experiments based
on these methods tend to be robust and require great computational effort. Other
strategies are also a combination of space-filling techniques and the maximum
entropy criteria named sequential strategies.

Sequential strategies are techniques that allow the selection of new sampling
points as the optimization iterations progress. For example, the previously pre-
sented procedure proposed by WELCH and SACKS (1991) can be considered a
sequential strategy, as it suggests obtaining new sampling points to ensure model
accuracy and convergence of optimization. BERNARDO et al. (1992) proposed a
sequential strategy for the optimization of integrated electrical circuits. The pro-
posed method refines the region as a possible candidate for the optimum point.
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Chapter 4

A Comparison of Strategies based on
Gaussian Process for RTO purposes

4.1 Introduction

A central question regarding RTO strategy is the model development, since
it enables the model-based optimization problem. This model is a steady-state
model of the process and is typically described by a first principles, rigorous and
nonlinear model (ELLIS et al., 2014). Due to the inherent dynamic characteristic
of process plants, such that disturbances, measurements uncertainties, and noise,
it is necessary a way of updating the RTO model, based on the information avail-
able through process measurements.

The two-step approach (CHEN and JOSEPH, 1987; HAIMES and WISMER,
1972; SHI-SHANG et al., 1987) is the most intuitive RTO strategy, which is based
on using process measurements to update the model. To achieve it, an identifi-
cation step is carried out, aiming to minimize the difference of model prediction
and plant measurements. Once the model is updated, an optimization step is
then executed (MARCHETTI et al., 2016).

Despite of the simplicity of the concept behind the two-step approach, this
strategy may have limitations from the point of view of optimality (MARCHETTI
et al., 2009). Indeed, this strategy will converge to the model optimum, which
will only match the plant optimum if the model-adequacy criteria are verified
(FORBES and MARLIN, 1996).

In order to deal with this limitation, some methodologies have been pro-
posed (BRDYŚ et al., 1986; BRDYŚ and TATJEWSKI, 1994; GAO and ENGELL,
2005; LIN et al., 1988; MARCHETTI et al., 2010, 2009; ROBERTS, 1979; TATJEW-
SKI et al., 2001; ZHANG and ROBERTS, 1991), which are based on a modification
of the original optimization problem, by including input-affine corrections terms
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in objective and constraints. This approach requires an estimate of plant gradient
(first-order correction term), which is calculated through process measurements.

However, it is exactly in the calculation of the gradients that one of the difficul-
ties of the method also lies in terms of practical implementations. In more recent
works, the gradients are obtained from fitted surfaces. For example, GAO et al.
(2016) proposed the usage of local quadratic approximations of objective func-
tions and constraints. FERREIRA et al. (2018) developed a strategy combining
the modifier adaptation with Gaussian Process models (MA-GP), which can be
interpreted as higher-order correction terms. DEL RIO CHANONA et al. (2019)
extended the previous work by applying trust-region concepts to the optimiza-
tion problem, taking advantage of the Gaussian process model uncertainty esti-
mate at a given point. DEL RIO CHANONA et al. (2021) proposed the usage of
acquisition functions as a strategy for selecting points for Gaussian Process fitting
and optimization. DELOU et al. (2022) considered modified-adaptation based on
GP models applied to the output measured variables (MAy-GP) instead of the
objective and constraints functions, typically considered in previous works.

In Chemical Engineering field, GP models were employed to represent a
surrogate-model of complex and costly simulations in an optimization environ-
ment. This complex models are typically represented by first-principles models,
which are present in process simulators (CABALLERO and GROSSMANN, 2008;
CARPIO, 2019; CARPIO et al., 2018a; DAVIS and IERAPETRITOU, 2007, 2010;
EASON and BIEGLER, 2016; GOMES, 2007; GOMES et al., 2006, 2008; HELM-
DACH et al., 2017; PALMER and REALFF, 2002a). For selected applications and
examples, the reader is referred to MCBRIDE and SUNDMACHER (2019) and
references therein.

A simple approach based on surrogate models consists of training a surro-
gate model and applying it to optimization purposes. A data set is generated
through design and analysis of computer experiments (DACE) techniques, such
as Latin Hypercube Design (LHS) (MCKAY et al., 1979). Based on this initial
data set, a surrogate model is trained and the model can be applied for optimiza-
tion purposes (CHANG et al., 2014; CHI et al., 2012; FORRESTER and KEANE,
2009; GOMES et al., 2008; REGIS, 2016). Some research considers solving the op-
timization problem limited to a sub-region, which is also called the trust region
GIUNTA and ELDRED (2000). The trust region is used to successively define
a limited search domain in which a sub-problem is solved, based on approxi-
mation functions (GIUNTA and ELDRED, 2000; JACOBS et al., 2004). The main
advantage of this technique is to keep the model accurate locally, bounded by the
trust-region.

Another optimization strategy based on surrogate models is the Bayesian Op-
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timization approach. It is generally applied to problems that are expensive to
evaluate. The key elements of the Bayesian Optimization strategy is (i) the sur-
rogate model of the objective function and constraints, typically described as
a Gaussian Process regression, and (ii) an acquisition function (WILSON et al.,
2018). One important step of the Bayesian Optimization is the inner-optimization
step, which yields the new experiment to be applied to the real problem. It
is based on an objective function, named acquisition function, which balances
the trade off between exploration and exploitation (WANG et al., 2017) in the
Bayesian Optimization approach. Some common aquisition functions are the
probability of improvement (PI), the expected improvement (EI) and the lower
confidence bound (LCB) (WILSON et al., 2018).

CARPIO (2019) proposed a complete framework for optimization of rigorous
simulations, considering the probability of improvement as acquisition function.
Also, when solving a constrained optimization problem, the author considered
the constrained probability of improvement function, which considers the prob-
ability of feasibility.

DEL RIO CHANONA et al. (2021) combined concepts of Bayesian Optimiza-
tion and modifier adaptation based on Gaussian process originally proposed by
FERREIRA et al. (2018) by considering acquisition functions for Real-Time Opti-
mization purposes. In the proposed strategy, a first-principles model is applied
in order to optimize the real process. However, due to plant-model mismatch,
MA-GP is also considered. The real process is optimized iteratively using the ac-
quisition functions to select the next sampling point, bounded by a trust region.
The sampling points are used to update the GP model. The results showed that
the proposed strategy led the plant to its optimum point.

One important assumption of the previous works aiming to RTO applications
(DEL RIO CHANONA et al., 2021; DEL RIO CHANONA et al., 2019; FERREIRA
et al., 2018; GOMES, 2007; GOMES et al., 2006, 2008) is that a first-principles model
is available. However, this assumption may not holds and a data-driven opti-
mization may be required.

In this work, it is proposed a framework based on Bayesian optimization to
update the GP model iteratively, which is applied to describe the plant, without
the need of any previous rigorous model. A comparison between Bayesian Op-
timization MA-GP (DEL RIO CHANONA et al., 2021) and the proposed strategy
is carried out. Also, a third comparison is considered, which is related to the ap-
plication of GP models to describe the measured output variables or the objective
and constraints functions. Lastly, three acquisition functions are applied in the
strategies, namely the Probability of Improvement, the Expected Improvement
and the Lower Confidence Bound. The strategies are applied to two case studies,
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an Exothermic CSTR System and the Willians-Otto Reactor.

4.2 Gaussian Processes Model Structure

In the present work, a Gaussian Process (GP) model structure was considered
as the steady-state nonlinear function. Mathematically, a GP is described as fol-
lows:

yGP
j (u) = GP(µ f ,j(u), σ2

f ,j(u)) (4.1)

where yGP
j is the GP model output of the j-th system output yj, u is the input vari-

ables vector, µ f ,j is the posterior mean function and σf ,j
2 is the posterior variance

function, calculated as follow:

µ f ,j(u) = rT
j (u, U) K j(U)−1 Υj + Fj(u, βj) (4.2)

σ2
f ,j(u) = σn

2
j − rT

j (u, U) K j(U)−1 r j(u, U) (4.3)

where U ∈ Rnu×N and Υj ∈ RN are N-sized input-output data set considered
for GP training, K j ∈ RN×N is a matrix whose elements are calculated as Kjl,m =

k j(ul, um) + σv
2
j δl,m, ∀(l, m) ∈ [1, . . . , N], δl,m is the Kronecker’s delta function, σv

2
j

is a parameter, Fj is a regression function, typically considered as a polynomial
function with parameters βj ∈ R

nβj in which nβ j is the number of parameters,
r j(u, U) = [k j(u, u1), · · · , k j(u, uN)]

T, where k j(·, ·) is a kernel function, described
in the present work as the squared-exponential kernel function:

k j(u, ul) = σn
2
j exp

(
−1

2
(u− ul)

TΛj(u− ul)

)
(4.4)

where σn
2
j is a variance, which is also a model identifiable parameter and Λj =

diag(λj1, · · · , λjnu
) is a scaling matrix. Therefore, the GP’s hyperparameters are

defined as:

Ψj = [βj, σnj, σvj, λj1, · · · , λjnu
]T (4.5)

The GP hyperparameters are identified through a maximum likelihood ap-
proach, such that the log-likelihood objective function is considered. A com-
plete description of GP and its hyperparameters estimation can be found in RAS-
MUSSEN (2006).

In GP models, the specification of the prior mean and covariance functions,
here described as the Fj regression function and the kernel function k j is essential
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since it encodes the assumptions about the function to be learned from. Although
the squared-exponential kernel function is the default kernel function in GP mod-
els, many other covariance functions can be applied. For instance, some examples
of these functions are the constant, the linear, the polynomial, the Matérn, the
γ-exponential, and the Rational Quadratic covariance functions. Each of these
functions has its characteristics and can be tested to give a better fit to a regression
problem (RASMUSSEN, 2006). Additionally, the GP models are non-parametric,
which is an important characteristic of this class of models. It means that the
nature and number of parameters are not predefined, such that it is learned from
data (DEL RIO CHANONA et al., 2021). Therefore, due to non-parametric charac-
teristics, the GP models are useful in situations with little prior knowledge about
the data.

RASMUSSEN (2006) highlight that the application of GP models requires the
inversion of large matrices, which are typically not sparse, since GP uses all sam-
ples in training data set to perform a prediction. Indeed, accordingly to GRA-
MACY (2020), the problem scales in O(m3), while the storage of matrices that
are applied in predictions are in O(m2). Therefore, depending on the scale of the
problem, the computational time of GP models might be an issue.

In addition, RASMUSSEN (2006)

4.3 Modifier Adaptation based on GP models and

Bayesian Optimization

The first to propose the use of GP in the context of Modifier Adaptation (MA)
was FERREIRA et al. (2018), here called MA-GP. Later, DEL RIO CHANONA
et al. (2019) expanded the framework by introducing the trust region approach
and how to include GP uncertainty directly into the optimization problem. DEL
RIO CHANONA et al. (2021) expanded the methodology in theoretical terms,
including the concept of Acquisition Functions to promote exploration character-
istics to the framework. They also showed the global convergence properties of
unconstrained MA-GP.

The main idea behind MA-GP is to use GP to model the mismatch between
the cost and constraint functions separately, such that:

Φp −Φ ≈ GP
(

µ
(Φp−Φ)

k (u),
(

σ
(Φp−Φ)

k

)2
(u)
)

(4.6)

Gpl −Gl ≈ GP
(

µ
(Gpl−Gl)

k (u),
(

σ
(Gpl−Gl)

k

)2
(u)
)
∀l ∈

[
1, . . . , ng

]
(4.7)
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where µ
(Φp−Φ)

k (u) and
(

σ
(Φp−Φ)

k

)2
(u) represent the posterior mean function and

the posterior variance of the GP approximation of the objective function plant-

model mismatch Φp − Φ. Analogously, µ
(Gpl−Gl)

k (u) and
(

σ
(Gpl−Gl)

k

)2
(u) repre-

sent the posterior mean function and the posterior variance of the GP approxima-
tion of the l-th constraint plant-model mismatch Gpl − Gl. Here, the subscript k
represents that the posterior mean and variance functions were updated consid-
ering data obtained until iteration k.

The trust-region MA-GP problem can be described as follows:

∆uk+1 = arg min
∆u

Φmod := Φ(uk + ∆u, y) + µ
(Φp−Φ)

k (uk + ∆u)

s.t. Gl(uk + ∆u, y) + µ
(Gpl−Gl)

k (uk + ∆u) ≤ 0,

l = 1, ..., ng,

f ss(y, uk + ∆u, α) = 0,

umin − uk ≤ ∆u ≤ umax − uk,

‖∆u‖≤ ∆k

(4.8)

where ∆k is the trust-region radius in the k-th RTO iteration and the procedures
for updating the trust-region are described in DEL RIO CHANONA et al. (2021).
Additionally, if Acquisition Functions are considered in the optimization problem
represented by Equation 4.8, the objective function is then replaced by a given
AF function, which uses GP posterior mean and posterior variance functions.

Alternatively, instead of applying the modifiers into objective function and
constraints, DELOU et al. (2022) proposed to model the output variables (y) plant-
model mismatch and then use this information in optimization, here denoted as
MAy-GP, such that:

yp j − yj ≈ GP

(
µ
(yp j−yj)

k (u),
(

σ
(yp j−yj)

k

)2

(u)

)
∀j ∈

[
1, . . . , ny

]
(4.9)

where µ
(yp j−yj)

k (u) and
(

σ
(yp j−yj)

k

)2

(u) represent the posterior mean function

and the posterior variance of the GP approximation of the j-th output variable
plant-model mismatch yp j − yj.

Thus, the corrected (or modified) model prediction can be calculated as fol-
lows:

ymodj = yj + µ
(yp j−yj)

k ∀j ∈
[
1, . . . , ny

]
(4.10)
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Then, the alternative formulation of the trust-region MAy-GP can be described
as follows:

∆uk+1 = arg min
∆u

Φ(uk + ∆u, ymod)

s.t. Gl(uk + ∆u, ymod) ≤ 0 l = 1, ..., ng,

f ss(y, uk + ∆u, α) = 0,

ymod = y + µ
(yp−y)
k (uk + ∆u),

umin − uk ≤ ∆u ≤ umax − uk,

‖∆u‖≤ ∆k

(4.11)

where µ
(yp−y)
k =

[
µ
(yp1−y1)

k , . . . , µ
(ypny

−yny )

k

]T

. In DELOU et al. (2022), the use of

Acquisition Functions was not reported and it will be also explored in the present
work.

4.4 Proposed Methodology

The main idea behind the proposed methodology is develop a data-driven
solution, where the GP model can be iteratively trained based on acquired data
from plant and use it to solve the optimization problem. The main advantage
of the proposed methodology is that it does not depend on any first-principles
model.

In the present work, the GP models are applied to either describe the objective
and constraints functions or measured output variables, such that the objective
function and constraints can be calculated and applied for optimization purposes.
By considering the model development in terms of the output variables, it enables
flexibility since these models can be applied to any model-based techniques, such
as controllers and observers.

The plant output variables are approximated by GP models as follows:

ypj ≈ GP

(
µ
(yp j)

k ,
(

σ
(yp j)

k

)2
)
∀j ∈

[
1, . . . , ny

]
(4.12)

where µ
(yp j)

k and
(

σ
(yp j)

k

)2

represent the posterior mean function and the poste-

rior variance of the GP approximation of the j-th plant output variable ypj.
Then, objective function and constraints can be approximated using the GP
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posterior mean for its calculation.

Φp ≈ φec

(
µ
(yp j)

k , u
)

(4.13)

Gp ≈ G
(

µ
(yp j)

k , u
)

(4.14)

where µ
(yp)

k =

[
µ
(yp1)

k , . . . , µ
(ypny

)

k

]T

In order to apply Acquisition Functions, the mean and variance of calculated
objective function and constraints functions based on output variables GP models
are needed. The mean value can be calculated straightforward, following Equa-
tions 4.13 and 4.14. In order to calculate the variance, the output variables vari-
ance need to be propagated. Supposing the objective function and constraints
functions are linear combinations of the output variables, it follows that:

(
σφ
)2

k = cφT
Σ

y
kcφ (4.15)(

σGl
)2

k
= cGl

T
Σ

y
kcGl l ∈

[
1, . . . , ng

]
(4.16)

where cφ ∈ Rny and cGl ∈ Rny are coefficients for calculating associated to
each output variable in objective function and the l-th constraint function and

Σ
y
k ∈ Rny×ny , such that Σ

y
k = diag

((
σ
(yp1)

k

)2
, . . . ,

(
σ
(ypny

)

k

)2
)

. If the objective

function and constraints functions are not calculated based on linear combination
of the output variables, Equations 4.15 and 4.16 still hold, however, the vectors cφ

and cGl are replaced by a the vector of partial derivatives of each function with
respect to each output variable (TELLINGHUISEN, 2001), such that:

cφ =
∂φec

∂y
(4.17)

cGl =
∂Gl
∂y

, ∀l ∈
[
1, . . . , ng

]
(4.18)

To give clarity about the variance propagation equations presented, an simple
example is present in Example 4.4.1.

Example 4.4.1 Error Propagation. Consider an objective function defined by

φec(u) = ayp1 + byp2 + cu (4.19)

where a, b, c ∈ R and yp =
[
yp1, yp2

]
.
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Thus, it follows that:

cφ = [a b]T (4.20)

The variance of the function φec, based on the variance of the variables yp, is calculated
as follows:

(
σφ
)2

= cφT
Σycφ (4.21)

= [a b]


(

σ(yp1)
)2

0

0
(

σ
(yp2)

k

)2

 [a b]T (4.22)

= a2
(

σ(yp1)
)2

+ b2
(

σ
(yp2)

k

)2
(4.23)

A simple version of expression 4.15, considering that Σy is a diagonal matrix, can be
written as follows:

(
σφ
)2

=
ny

∑
j=1

(
∂φec

∂yp j

)2 (
σ
(yp j)

k

)2

(4.24)

Equation 4.24 can be written based on the following property of variance function
(TELLINGHUISEN, 2001):

σ2(ax1 + bx2) = a2σ2(x1) + b2σ2(x2) + 2abCov(x1, x2) (4.25)

where Cov is the covariance function.
Here, since it is considered that the variables yp are independent, it follows that the

covariance term is null.

lThus, based on the output variable GP models and definitions above, the
mean and variance of objective function and constraints can be calculated, such
that Acquisition Functions can be applied in the optimization problem, which is
written as follows:

∆uk+1 = arg max
∆u

AF (uk + ∆u)

s.t. Gl(uk + ∆u, ymod) ≤ 0 l = 1, ..., ng,

ymod = µ
(yp)

k (uk + ∆u),

umin − uk ≤ ∆u ≤ umax − uk,

‖∆u‖≤ ∆k

(4.26)

Alternatively, if it is considered that the objective function and the constraints
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functions can be measured directly from the plant, as proposed in the MA-GP
approach, each function can be approximated directly by a GP model, such that:

Φp ≈ GP
(

µ
(Φp)

k (u),
(

σ
(Φp)

k

)2
(u)
)
= φ̂ec(u) (4.27)

Gpl ≈ GP
(

µ
(Gpl)

k (u),
(

σ
(Gpl)

k

)2
(u)
)
= ĝ(u) ∀l ∈

[
1, . . . , ng

]
(4.28)

Thus, the optimization problem formulation is straightforward and described
as follows:

∆uk+1 = arg max
∆u

AF (uk + ∆u)

s.t. µ
(Gpl)

k (uk + ∆u) ≤ 0 l = 1, ..., ng,

umin − uk ≤ ∆u ≤ umax − uk,

‖∆u‖≤ ∆k

(4.29)

where it was considered that the objective function model was already substi-
tuted in the Acquisition Function expression.

Additionally, an extension of the work of DELOU et al. (2022) is considered,
applying acquisition functions to solve the optimization problem based on the
MAy-GP strategy, which is described as follows:

∆uk+1 = arg max
∆u

AF (uk + ∆u)

s.t. Gl(uk + ∆u, ymod) ≤ 0 l = 1, ..., ng,

f ss(y, u + ∆u, α) = 0,

ymod = y(uk + ∆u, α) + µ
(yp−y)
k (uk + ∆u),

umin − uk ≤ ∆u ≤ umax − uk,

‖∆u‖≤ ∆k

(4.30)

Last but not least, in this work, the Probability of Improvement for con-
strained problems was used as Acquisition Function and compared to Expected
Improvement and Lower-Confidence Bound. The main advantage of this strat-
egy is that the probability of feasibility acts like a penalty in the objective function,
aiming to keep the problem feasibility.

Figure 4.1 presents a summary of the modeling strategies applied in the
present work and the comparisons that was considered regarding the methods
described before.
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Figure 4.1: Summary of Modeling strategies and comparison to be studied in this
work.

In Figure 4.1, Strategy 1 considers that the optimization problem objective
function and constraints functions are identified by GP models, as described in
Equations 4.27 and 4.28. The equivalent optimization problem is described by
Equation 4.29. Strategy 2 considers that the measured variables (y) are identified
by GP models, as described in Equation 4.12. Thus, the optimization problem is
written as described by Equation 4.26. The Strategy 3 considers that the plant-
model mismatch of the objective function and constraints function are modeled
by a GP model. This strategy is similar to the MA-GP. Finally, the Strategy 4 is the
MAy-GP approach and considers that the plant-model mismatch of the measured
variables are modeled by a GP model, as described in Equation 4.10. The equiv-
alent optimization problem is described by Equation 4.30. Different acquisition
functions were also compared in each strategy, such that the constrained Proba-
bility of Improvement (PI), the constrained Expected Improvement (EI) and the
constrained Lower Confidence Bound (LCB) were considered.

The acquisition functions may present multiple local minima, which require
global optimization algorithms to find the global optimum point. CARPIO
(2019) considered a combination of a stochastic optimization algorithm to find
an initial guess of the optimal solution and a deterministic to refine it. DEL
RIO CHANONA et al. (2021) applied a multi-start heuristic in order to avoid local
minima solutions. Here, a multi-start heuristic was also considered, such that 20
initial guess points were randomly sampled within the trust region.

The trust region was updated at each iteration, following the criteria also con-
sidered in the work of DEL RIO CHANONA et al. (2021), originally proposed by
RODRÍGUEZ et al. (1998). A metric based on the ratio of actual cost reduction to
predicted cost reduction is considered.

In the case where the GP models are applied to approximate the objective
function φec, the metrics are calculated as follows:

ρk+1 =
φec(ypk, uk)− φec(ypk+1, uk + ∆uk+1)

φ̂ec(uk)− φ̂ec(uk + ∆uk+1)
(4.31)
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However, if the GP models are applied to approximate the measured output
variables (y), the metrics is calculated as follows:

ρk+1 =
φec(ypk, uk)− φec(ypk+1, uk + ∆uk+1)

φec(ymodk, uk)− φec(ymodk+1, uk + ∆uk+1)
(4.32)

The trust region is updated by the following criteria:

If ρk+1 > η2 or ||∆uk+1|| = ∆k :

∆k+1 = γinc∆k

uk+1 = uk + ∆uk+1

Else If ρk+1 < η1 :

∆k+1 = γred∆k

uk+1 = uk

Else :

∆k+1 = ∆k

uk+1 = uk + ∆uk+1

(4.33)

where γinc and γred are the trust-region radius increase and reduction factors,
respectively, such that 0 < γred < γinc. Also, η1 and η2 are threshold values for
the ρ metrics, such that 0 < η1 < η2 < 1. In this work, γinc = 1.2, γred = 0.8,
η1 = 0.2 and η2 = 0.7.

The RTO strategies described above are applied to case studies which are pre-
sented in Section 4.5. A number of RTO iterations (niter) is considered in each case
study as well a number of noise realizations (nr). Thus, it is possible to compare
the distribution of the noise realization of each iteration in terms of the objective
function value and the input variable values.

The following metric based on the work of QUELHAS et al. (2013) is applied
to compared the performance of the strategies:

∆Φsol,k(%) =
100
φ∗ec

(Φsol,k − diag(φ∗ec Inr)) (4.34)

where Φsol,k ∈ Rnr is the vector of the k-th iteration objective function value ob-
tained in each noise realization, φ∗ec ∈ R is the objective function value at the
plant optimum, and ∆Φsol,k ∈ Rnr is the relative deviation of the the k-th RTO
iteration objective function value obtained in each noise realization from the ob-
jective function value at the plant optimum.

An overall metric is obtained as the average of the values obtained in each
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noise realization, which is written as follows:

∆Φ̄sol,k(%) =
1
nr

nr

∑
j=1

∆Φsol,k (4.35)

where ∆Φ̄sol,k ∈ R represents the average of the deviations values from the plant
optimum obtained in the noise realizations at the k-th RTO iteration.

Analogously, the relative distance of the decision variables from the optimum
point achieved in the last RTO iteration in each noise realization was evaluate,
which is described as follows:

∆U j(%) = 100

∣∣∣∣∣
∣∣∣∣∣
[

u∗i,j − u∗i,opt

u∗i,opt
, . . . ,

u∗nu,j − u∗nu,opt

u∗nu,opt

]∣∣∣∣∣
∣∣∣∣∣ (4.36)

where ∆U ∈ Rnr is the relative distance of the decision variables form the opti-
mum point u∗opt ∈ Rnu achieved in the last iteration, u∗j is the vector of decision
variables achieved in the last RTO iteration obtained in the j-th noise realization.

Additionally, the surrogate model prediction error was evaluated considering
the model obtained in the last iteration model (last update). It was evaluated at
the average of the input variables obtained at each RTO iterations in each noise
realization, i.e., U sol = [mean(U 1), mean(U 2), . . . , mean(U niter)], where U k, k =

1, . . . , niter is the k-th iteration solution considering the nr noise realizations. Thus,
in the case where the GP models are applied to approximate the objective function
φec, the Root Mean Squared Error (RMSE) was calculated as follows:

RMSE(U sol) =

√
∑niter

k=1

(
φ̂ec(U sol,k)− φec(yp(U sol,k),U sol,k)

)2

niter
(4.37)

If the GP models are applied to approximate the measured output variables
(y), the metrics is calculated as follows:

RMSE(U sol) =

√
∑niter

k=1

(
φec(ymod(U sol,k),U sol,k))− φec(yp(U sol,k),U sol,k)

)2

niter
(4.38)

4.5 Case Studies

This section present the different case studies considered in order to apply the
methodology described in Section 4.4.
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4.5.1 Case Study: Exothermic CSTR Reactor

The first example considers a continuous stirred tank reactor (CSTR) equipped
with an external jacket. In this reactor, a reversible exothermic reaction A ↔ B
takes place (ECONOMOU et al., 1986). The dynamic model is achieved to de-
scribe the process:

dCA

dt
=

1
τ
(CA,in − CA)− kA exp

−EA

RT
CA + kB exp

−EB

RT
CB (4.39)

dCB

dt
= −1

τ
CB + kA exp

−EA

RT
CA − kB exp

−EB

RT
CB (4.40)

dT
dt

=
−∆H
ρCp

(
−kA exp

−EA

RT
CA + kB exp

−EB

RT
CB

)
+

1
τ
(Tin − T) +

Q
ρCpV

(4.41)

where CA, CB and T are the state variables and represent A species concentration,
B species concentration and reactor temperature, respectively. The feed tempera-
ture and A concentration are represented by Tin and CA,in, respectively. kA and kB

are the pre-exponential factor for the forward and reverse reactions, respectively,
and EA and EB are the corresponding activation energies. τ is the residence time
in the reactor, ∆H is the heat of reaction, Cp is the specific heat capacity of the
mixture, ρ is the mixture specific weight, V is the reactor volume, R is the gas
constant. Q is the input variable, which represents the heat rate provided to the
reactor by a jacket. The parameters values of the CSTR reactor is presented in
Table 4.1.

Table 4.1: Exothermic CSTR model parameters.

Exothermic CSTR model parameters

Tin = 400 K τ = 60 s
kA = 5000 s−1 kB = 106 s−1

EA = 104 cal/mol EB = 1.5× 104 cal/mol
R = 1.987 cal/(mol K) ∆H = −5000 cal/mol
ρ = 1 kg/L Cp = 1000 cal/(kg K)
CA,in = 1 mol/L V = 100 L

The economic optimization problem attempts to find the balance between the
reactant conversion and heat cost. The optimization problem is described as fol-
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lows (ZHANG et al., 2019):

Q∗ = arg min
Q

φec =
CA

CA,in
+ 7× 10−7Q

s.t. f ss(CA, CB, T, Q) = 0,

0 ≤ CA ≤ 1 (mol/L),

0 ≤ CB ≤ 1 (mol/L),

400 ≤ T ≤ 500 (K),

0 ≤ Q ≤ 105 (cal/s)

(4.42)

In order to apply modifier-adaptation strategies (MA-GP and MAy-GP), a
model with structural plant-model mismatch is considered, such that the model
parameters were modified as follows:

kAmodel = 0.9kA (4.43)

kBmodel = 0.5kB (4.44)

In the Exothermic CSTR case study, it was considered that an initial GP model
was available, which was trained considering three points inside the optimization
domain. These points correspond to the steady-state condition for the values of
heat input listed in Table 4.2.

Table 4.2: CSTR Exothermic Reactor initial training points

Point Q (cal/s)
1 8.5× 104

2 9.0× 104

3 9.5× 104

4.5.2 Case Study: The Willians-Otto Reactor

Willians-Otto Reactor (WILLIAMS and OTTO, 1960) was chosen as the case
study due to its nonlinear behavior and relevance in real-time optimization prob-
lems, previously studied in FORBES et al. (1994); FORBES and MARLIN (1996);
MARCHETTI et al. (2010); MARCHETTI (2009); MARCHETTI et al. (2009).

It is important to say that the system studied in the present work is a simplifi-
cation of the original benchmarking presented by WILLIAMS and OTTO (1960),
considering only the reactor section, presented in Figure 4.2.

The reactor is a continuous stirred tank (CSTR) with a thermal jacket in order
to control the reaction temperature TR. The reactor has two input streams, related
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Figure 4.2: Willians-Otto Reactor.

to A and B species, and one output stream, which contains unreacted A and B
species, an intermediary species C, products P and E and a byproduct G. It is
assumed that the reactor has no overall accumulation, which implies that the
total mass flow of output and input streams are equal. The mass balance and the
reaction equations are described below.

Reaction System Equations:

A + B→ C r1 = k1wAwB (4.45)

B + C → P + E r2 = k2wBwC (4.46)

C + P→ G r3 = k3wCwP (4.47)

Mass Balance Equations:

W
dwA

dt
= FA − (FA + FB)wA −Wr1 (4.48)

W
dwB

dt
= FB − (FA + FB)wB −

MB

MA
Wr1 −Wr2 (4.49)

W
dwC

dt
= −(FA + FB)wC +

MC

MA
Wr1 −

MC

MB
Wr2 −Wr3 (4.50)

W
dwE

dt
= −(FA + FB)wE +

ME

MB
Wr2 (4.51)

W
dwP

dt
= −(FA + FB)wP +

MP

MB
Wr2 −

MP

MC
Wr3 (4.52)

W
dwG

dt
= −(FA + FB)wG +

MG

MC
Wr3 (4.53)

where wi (i = A, B, C, E, P, G) is the mass fraction of the i-th species, FA and FB

are the mass flowrate of A and B, respectively, Mi is the molar mass of the i-th
species, W is the mass inside the reactor and rj (j = 1, 2, 3) is the reaction rate of
j-th reaction, expressed in mass basis.
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The specific reaction rate is given as follows:

k j = k j,0 exp
[ −Ea,j

R(TR + 273.15)

]
(4.54)

The parameters related to the Willians-Otto equations are presented in Table
4.3.

Table 4.3: Willians-Otto Reactor Parameters (MARCHETTI, 2009).

Parameter Description Parameter Value Unit

k1,0 Specific Reaction Rate of Reaction 1 1.6599× 106 s−1

k2,0 Specific Reaction Rate of Reaction 2 7.2117× 108 s−1

k3,0 Specific Reaction Rate of Reaction 3 2.6745× 1012 s−1

Ea,1/R Energy Activation of Reaction 1 6666.7 K
Ea,2/R Energy Activation of Reaction 2 8333.3 K
Ea,3/R Energy Activation of Reaction 3 11111 K

MA Molar Mass of Species A 100 −
MB Molar Mass of Species B 100 −
MC Molar Mass of Species C 200 −
ME Molar Mass of Species E 200 −
MP Molar Mass of Species P 300 −
MG Molar Mass of Species G 100 −
W Total weight inside reactor 2105 kg

Regarding the economic optimization problem, a constrained economic opti-
mization problem of the Willians-Otto reactor is considered, based on the work
of DEL RIO CHANONA et al. (2021), which is described as follows:

F∗B , T∗R = arg min
FB, TR

φec = −(1043.38 wP F + 20.92 wE F+

− 79.23 FA − 118.34 FB)

s.t. f (w, FB, TR) = 0,

wA − 0.12 ≤ 0,

wG − 0.08 ≤ 0,

4 ≤ FB ≤ 7 (kg/s),

70 ≤ TR ≤ 100 (◦C)

(4.55)

where φec is the profit (in $/s), f (w, FB, TR) is the steady-state equation system,
and F is the reactor outlet flow rate, considered as F = FA + FB (global mass
balance). The constants in the objective function are the products selling prices
and the reagent costs in $/kg.

In order to apply modifier-adaptation strategies (MA-GP and MAy-GP), a
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model with structural plant-model mismatch is considered, such that the model
reaction system does not include the intermediate component C nor its composi-
tion is measured. The two reactions of the model are:

A + 2B→ P + E r1,model = k1,modelwAw2
B (4.56)

A + B + P→ G r2,model = k2,modelwAwBwP (4.57)

The model equations are written as follow:

W
dwA

dt
= FA − (FA + FB)wA −Wr1,model − r2,model (4.58)

W
dwB

dt
= FB − (FA + FB)wB −

MB

MA
Wr1,model −Wr2,model (4.59)

W
dwE

dt
= −(FA + FB)wE +

ME

MB
Wr2,model (4.60)

W
dwP

dt
= −(FA + FB)wP +

MP

MB
Wr1,model −

MP

MB
Wr2,model (4.61)

W
dwG

dt
= −(FA + FB)wG +

MP

MB
Wr2,model (4.62)

(4.63)

where wi (i = A, B, E, P, G) is the mass fraction of the i-th species, FA and FB

are the mass flowrate of A and B, respectively, Mi is the molar mass of the i-th
species, W is the mass inside the reactor and rj (j = 1, 2) is the reaction rate of j-th
reaction, expressed in mass basis.

In the Williams-Otto Reactor case study, it was considered that an initial GP
model was available, which was trained considering five points inside the opti-
mization domain. These points correspond to the steady-state condition for the
values of input variables presented in Table 4.4. It is also important to mention
that these points are the same considered in the works of DEL RIO CHANONA
et al. (2021) and DELOU et al. (2022), aiming to enable comparison of the strate-
gies.

Table 4.4: Williams-Otto Reactor initial points.

Point FB (kg/s) TR (◦C)
1 5.7 74
2 6.35 74.9
3 6.6 75
4 6.75 79
5 6.9 83

96



4.5.3 Optimization Solver

The optimization problems were solved considering the function "fmincon"
from MATLAB ©, considering the interior-point method, with termination tol-
erance on decision variables of 10−10 and termination tolerance on the objective
function value of 10−6. The tolerance in terms of the constraints was also consid-
ered to be 10−6.

4.6 Results and Discussion

In this section, the results of the optimization strategies based on the proposed
methodology applied to each case study are presented.

4.6.1 Exothermic CSTR

In the Exothermic CSTR case study, it was considered 20 RTO iterations with
20 noise realizations in each iteration. Figure 4.3 presents the objective function
(φec) value achieved at the last RTO iteration for 20 noise realizations in each RTO
strategy. The results are shown for the constrained function PI (Probability of Im-
provement), EI (Expected Improvement), and LCB (Lower Confidence Bound).

From Figure 4.3, it is possible to notice that the optimum value (green trian-
gle) is within the objective function value distributions in all strategies and all
acquisition functions. In practice, it means that these strategies are able to drive
the plant to its optimum point. Additionally, the objective function values distri-
bution achieved a narrow distribution in all strategies evaluated.

Regarding average performance, the relative deviation from the plant opti-
mum in terms of the objective function was calculated using Equation 4.34. It
was calculated for each strategy and each acquisition function, considering the
20 noise realizations at the last RTO iteration. The distribution of the relative
average deviation from the plant optimum in terms of the objective function is
presented in Figure 4.4.

From Figure 4.4, it is possible to notice that the relative deviation from the op-
timum presents the order of magnitude of 10−3%. Strategy 1 presents the high-
est relative average deviation among the strategies for all acquisition functions
tested. On average, it is possible to notice that the lowest relative average devia-
tion was obtained using Strategy 4 and the LCB acquisition function. Indeed, the
relative average deviations obtained when using LCB were lower than the other
acquisition functions.
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Figure 4.3: Economic objective function at RTO last iteration for 20 noise real-
ization and for each acquisition function (PI, EI and LCB) using: (a) Strategy 1
(objective function and contraints modeling via GP), (b) Strategy 2 (measured
variables (y) modeling via GP), (c) Strategy 3 (MA-GP), and (d) Strategy 4 (MAy-
GP). Black diamonds represent the average of 20 realizations. Green triangle rep-
resents the plant optimum.

The relative distance from the optimum in terms of the decision variable was
also evaluated considering the last iteration and the noise realizations. Figure
4.5 presents the relative deviation in terms of the optimization problem decision
variables.

From Figure 4.5, it is possible to notice that the deviation from the optimum
point is, on average limited to 1.2%, which is the average deviation value ob-
tained in Strategy 1 using the PI acquisition function. Indeed, the deviation val-
ues obtained in Strategy 1 are higher than those obtained in other strategies. Since
the optimization problem is unconstrained, a higher deviation in terms of devi-
ation variables from the optimum point may be related to the surrogate model
accuracy. In order to evaluate the model accuracy, the RMSE was calculated fol-
lowing Equation 4.38. The average results in the noise realizations are presented
in Table 4.5.

From Table 4.5, it is possible to notice that the higher RMSE is obtained in
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Figure 4.4: Relative average deviation from the plant optimum of the economic
objective function values at RTO last iteration for 20 noise realization and for each
acquisition function (PI, EI and LCB) using: (a) Strategy 1 (objective function and
contraints modeling via GP), (b) Strategy 2 (measured variables (y) modeling
via GP), (c) Strategy 3 (MA-GP), and (d) Strategy 4 (MAy-GP). Black diamonds
represent the average of 20 realizations.

Table 4.5: RMSE of the objective function predictions in the strategies evaluated.

Strategy/
Acquisiton Function PI EI LCB

RMSE(×106) - Strategy 1 8.31 8.54 8.42
RMSE(×106) - Strategy 2 0.58 0.44 0.58
RMSE(×106) - Strategy 3 2.01 2.06 2.06
RMSE(×106) - Strategy 4 2.01 2.06 2.01

Strategy 1, which agrees with the higher deviations obtained in decision variables
and objective function obtained before. In Strategy 1, it is also verified that the
RMSE values are independent of the acquisition functions applied. Also, Strat-
egy 2 presented the lowest RMSE value compared to other strategies. However,
the deviation from the optimum point in decision variables was comparable to
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Figure 4.5: Relative average deviation from the plant optimum of the decision
variables at RTO last iteration for 20 noise realization and for each acquisition
function (PI, EI and LCB) using: (a) Strategy 1 (objective function and contraints
modeling via GP), (b) Strategy 2 (measured variables (y) modeling via GP), (c)
Strategy 3 (MA-GP), and (d) Strategy 4 (MAy-GP). Black diamonds represent the
average of 20 realizations.

Strategies 3 and 4.
Figures 4.6, 4.7, 4.8 and 4.9 present the objective function and the input vari-

able values at each RTO iteration for 20 noise realizations obtained in Strategies
1, 2, 3 and 4, respectively.

In Figures 4.6, 4.7, 4.8 and 4.9, it is possible to notice a similar behavior of the
RTO iterations in the three acquisition functions. In all strategies, it is noticed that
the last iteration (green triangles) values are uniform and also close to the opti-
mum point (pink star). This result agrees with the deviations from the optimum
point verified in Figures 4.4 and 4.5. It is also possible to notice that in all strate-
gies, the PI acquisition function presented an exploration behavior compared to
the other acquisition functions, which can be seen in the trajectories.

Regarding computational time, Figure 4.5 presents the average iteration time
of each strategy.

From Figure 4.10, it is possible to notice that strategies 1 and 2 present a lower
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Figure 4.6: RTO iterations using Strategy 1 (objective function and contraints
modeling via GP) and comparing different acquisition functions: (a) PI, (b) EI
and (c) LCB. (d) The cost evolution for acquisition functions PI, EI, LCB dur-
ing the 20 iterations. Red dots represent the initial GP training points. Green
triangles represent the last iterate of each RTO run. The blue continuous line rep-
resents the objective function and input variable relationship and the pink star
represents plant optimum.

average computational time than strategies 3 and 4. Indeed, strategies 3 and 4
apply a rigorous model in the optimization step, while in strategies 1 and 2, only
identified Gaussian Process models are applied. It is also possible to notice that
the average iteration time obtained when applying the Probability of Improve-
ment acquisition function is higher than the average iteration time for the other
acquisition function tested for all strategies considered. This last result is in agree-
ment with the exploratory behavior showed in Figures 4.6 to 4.9.
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Figure 4.7: RTO iterations using the GP models for Strategy 2 (measured variables
(y) modeling via GP and comparing different acquisition functions: (a) PI, (b) EI
and (c) LCB. (d) The cost evolution for acquisition functions PI, EI, LCB during
the 20 iterations. Red dots represent the initial GP training points. Green triangles
represent the last iterate of each RTO run. The blue continuous line represents the
objective function and input variable relationship and the pink star represents
plant optimum.
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Figure 4.8: RTO iterations using the GP models for Strategy 3 (MA-GP) and com-
paring different acquisition functions: (a) PI, (b) EI and (c) LCB. (d) The cost
evolution for acquisition functions PI, EI, LCB during the 20 iterations. Red dots
represent the initial GP training points. Green triangles represent the last iterate
of each RTO run. The blue continuous line represents the objective function and
input variable relationship and the pink star represents plant optimum.
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Figure 4.9: RTO iterations using Strategy 4 (MAy-GP) and comparing different
acquisition functions: (a) PI, (b) EI and (c) LCB. (d) The cost evolution for
acquisition functions PI, EI, LCB during the 20 iterations. Red dots represent the
initial GP training points. Green triangles represent the last iterate of each RTO
run. The blue continuous line represents the objective function and input variable
relationship and the pink star represents plant optimum.
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Figure 4.10: Average Iteration Time for each acquisition function (PI, EI and LCB)
using: (a) Strategy 1 (objective function and contraints modeling via GP), (b)
Strategy 2 (measured variables (y) modeling via GP), (c) Strategy 3 (MA-GP),
and (d) Strategy 4 (MAy-GP). Black diamonds represent the average of the 20
RTO iterations considering 20 realizations.
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The average iteration time of each strategy is also presented in Table 4.6.

Table 4.6: Average iteration time obtained in each strategy.

Strategy/
Acquisition Function PI EI LCB

Strategy 1 7.15 1.20 1.96
Strategy 2 9.45 1.23 1.97
Strategy 3 24.88 3.54 6.08
Strategy 4 24.20 3.27 6.04

Ratio between strategies 1 and 3 0.29 0.34 0.32
Ratio between strategies 2 and 4 0.39 0.37 0.33

From Table 4.6, it is possible to notice that the ratio between the average itera-
tion time of strategies 1 and 3 is 0.29, 0.34 and 0.32, when considering acquisition
functions PI, EI, and LCB, respectively. When comparing strategies 2 and 4, the
ratio between the average iteration time of strategies 2 and 4 is 0.39, 0.37 and
0.33, when considering acquisition functions PI, EI, and LCB, respectively. As
mentioned before, the reduction in the average iteration time of strategies 1 and
2 is related to not considering a first-principles model, since only GP models are
applied.

In this first case study, the strategies were able to drive the plant to a neigh-
borhood of the plant optimum. The relative deviation from the plant optimum in
terms of the objective function is in order of magnitude of 10−3%, which means
that the strategies presented a small deviation from the plant optimum. This re-
sult was also verified regarding the relative deviation from the plant optimum
of the decision variable. Among the strategies, Strategy 1 presented the highest
deviation from the plant optimum, which agrees with the higher RMSE of the
objective function predictions. Regarding the acquisition functions tested, the re-
sults were comparable in each strategy. The PI acquisition function presented an
exploration behavior compared to EI and LCB acquisition functions. It was also
showed that the strategies 1 and 2 presented a reduction in the average iteration
time when compared to strategies 3 and 4, respectively, since strategies 1 and 2
do not apply a first-principles model for optimization purposes.

4.6.2 Williams-Otto Reactor

In the Williams-Otto Reactor case study, it was also considered 20 RTO itera-
tions with 20 noise realizations in each iteration. Figure 4.11 presents the objective
function (φec) value achieved at the last RTO iteration for 20 noise realization in
each RTO strategy for each acquisition function.
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Figure 4.11: Economic objective function at RTO last iteration for 20 noise realiza-
tion and for each acquisition function (PI, EI, LCB) using: (a) Strategy 1 (objective
function and contraints modeling via GP), (b) Strategy 2 (measured variables (y)
modeling via GP), (c) Strategy 3 (MA-GP), and (d) Strategy 4 (MAy-GP). Black
diamonds represent the average of 20 realizations. Green triangle represents the
plant optimum.

From Figure 4.11, it is possible to notice that all strategies could drive the plant
close to its optimum point, as the upper-whisker of the boxplots of the objective
function values are close to the optimum value (green triangle). This result was
also verified by DEL RIO CHANONA et al. (2021), which related it to the low cost
sensitivity along one of the active constraints compared to the noise level. Here,
it is also important to highlight that an interior-point method was considered
to solve the optimization problem. Thus, since the plant’s optimum point is at
the intersection of the constraints (active constraints), the interior-point method
would not achieve the constraints, as it is a barrier method.

Regarding average performance, the relative deviation from the plant opti-
mum in terms of the objective function was calculated using Equation 4.34. It
was calculated for each strategy and each acquisition function, considering the
20 noise realizations at the last RTO iteration. The distribution of the relative
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average deviation from the plant optimum in terms of the objective function is
presented in Figure 4.12.
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Figure 4.12: Relative average deviation from the plant optimum of the economic
objective function values at RTO last iteration for 20 noise realization and for each
acquisition function (PI, EI and LCB) using: (a) Strategy 1 (objective function and
contraints modeling via GP), (b) Strategy 2 (measured variables (y) modeling
via GP), (c) Strategy 3 (MA-GP), and (d) Strategy 4 (MAy-GP). Black diamonds
represent the average of 20 realizations.

From Figure 4.12, it is possible to notice that the relative deviation from the
optimum is limited to −1.5%, represented by the lower- whisker in the boxplot
charts. Regarding average performance, the order of magnitude of the deviations
obtained in all strategies is similar. Regarding the acquisition functions tested, it
is possible to notice that the distribution of the relative deviation is dependent
on the acquisition function, which may be related to the exploration-exploitation
characteristic of each acquisition function.

The relative distance from the optimum in terms of the decision variable was
also evaluated, considering the last iteration and the noise realizations. Figure
4.13 presents the relative deviation in terms of the optimization problem decision
variables.
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Figure 4.13: Relative average deviation from the plant optimum of the decision
variables at RTO last iteration for 20 noise realization and for each acquisition
function (PI, EI and LCB) using: (a) Strategy 1 (objective function and contraints
modeling via GP), (b) Strategy 2 (measured variables (y) modeling via GP), (c)
Strategy 3 (MA-GP), and (d) Strategy 4 (MAy-GP). Black diamonds represent the
average of 20 realizations.

From Figure 4.13, it is possible to notice that the deviation from the optimum
point is, on average limited to 2%, achieving a maximum deviation of 6% ob-
tained during the noise realization in Strategy 2 using EI acquisition function.
Regarding the model accuracy, the RMSE was calculated following Equation 4.38.
Table 4.7 presents the average results in the noise realizations.

Table 4.7: RMSE of the objective function predictions in the strategies evaluated.

Strategy/
Acquisiton Function PI EI LCB

RMSE(×103) - Strategy 1 3.60 4.70 2.90
RMSE(×103) - Strategy 2 4.10 3.80 4.10
RMSE(×103) - Strategy 3 0.90 1.30 0.70
RMSE(×103) - Strategy 4 1.30 1.20 1.30
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From Table 4.7, it is possible to notice that the RMSE values present the same
order of magnitude. It is interesting to notice that the RMSE values obtained in
Strategies 3 and 4 are comparable and lower than those obtained in Strategies 1
and 2. This result may be related to the fact that Strategies 3 and 4 apply a first-
principle model with a correction of plant-model mismatch based on GP models,
while Strategies 1 and 2 are based only on GP models. Thus, it suggests that
the first-principle model may contribute to higher accuracy, although the RMSE
values are in the same order of magnitude.

Figures 4.14, 4.15, 4.16 and 4.17 present the objective function and the input
variable values at each RTO iteration for 20 noise realizations obtained in Strate-
gies 1, 2, 3 and 4, respectively.

Figure 4.14: RTO iterations using Strategy 1 (objective function and contraints
modeling via GP) and comparing different acquisition functions: (a) PI, (b) EI
and (c) LCB. (d) The cost evolution for acquisition functions PI, EI, LCB during
the 20 iterations. Red dots represent the initial GP training points. Green triangles
represent the last iterate of each RTO run. Black continuous lines represents the
constraint limits and the pink star represents plant optimum.

In Figures 4.6, 4.7, 4.8 and 4.9, it is possible to notice that the behavior of the
RTO iterations in all strategies is similar and shown the ability to drive the plant
to a neighborhood of the plant optimum. Also, the results obtained in this work
are compatible with the results obtained in DEL RIO CHANONA et al. (2021). In
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Figure 4.15: RTO iterations using Strategy 2 (measured variables (y) modeling
via GP) and comparing different acquisition functions: (a) PI, (b) EI and (c)
LCB. (d) The cost evolution for acquisition functions PI, EI, LCB during the
20 iterations. Red dots represent the initial GP training points. Green triangles
represent the last iterate of each RTO run. Black continuous lines represent the
constraint limits and the pink star represents plant optimum.

this previous work, the last RTO iteration point (green triangle) is spread follow-
ing an active constraint. Thus, the results obtained in the present work showed
a more uniform distribution than those obtained in the previous work. Regard-
ing the acquisition functions applied in each RTO strategy, the performance is
comparable, and all the acquisition functions led to a neighborhood of the plant
optimum after the 10-th iteration. It is also interesting to notice that Strategy 1
presented an initial oscillation compared to others, as shown in Figure 4.6, which
is observable to all acquisition functions applied. This fact may be related to the
GP inaccuracy at the initial point, which led to exploratory behavior.

Regarding computational time, Figure 4.13 presents the average iteration time
of each strategy.

From Figure 4.18, it is possible to notice that strategies 1 and 2 present a lower
average computational time than strategies 3 and 4. Indeed, strategies 3 and 4
apply a rigorous model in the optimization step, while in strategies 1 and 2, only
identified Gaussian Process models are applied. It is also possible to notice that
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Figure 4.16: RTO iterations using Strategy 3 (MA-GP) and comparing different
acquisition functions: (a) PI, (b) EI and (c) LCB. (d) The cost evolution for
acquisition functions PI, EI, LCB during the 20 iterations. Red dots represent
the initial GP training points. Green triangles represent the last iterate of each
RTO run. Black continuous lines represent the constraint limits and the pink star
represents plant optimum.

the distribution of iteration time is similar in each strategy, being independent of
the acquisition function applied. This result is in agreement to the comparisons
regarding the relative average deviation from plant optimum of the economic
objective function and decision variables, since the results are comparable in each
strategy, not depending on the acquisition function applied.
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Figure 4.17: RTO iterations using Strategy 4 (MAy-GP) and comparing different
acquisition functions: (a) PI, (b) EI and (c) LCB. (d) The cost evolution for
acquisition functions PI, EI, LCB during the 20 iterations. Red dots represent
the initial GP training points. Green triangles represent the last iterate of each
RTO run. Black continuous lines represent the constraint limits and the pink star
represents plant optimum.
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Figure 4.18: Average Iteration Time for each acquisition function (PI, EI and LCB)
using: (a) Strategy 1 (objective function and contraints modeling via GP), (b)
Strategy 2 (measured variables (y) modeling via GP), (c) Strategy 3 (MA-GP),
and (d) Strategy 4 (MAy-GP). Black diamonds represent the average of the 20
RTO iterations considering 20 realizations.
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The average iteration time of each strategy is also presented in Table 4.8.

Table 4.8: Average iteration time obtained in each strategy.

Strategy/
Acquisition Function PI EI LCB

Strategy 1 2.56 2.45 2.37
Strategy 2 2.72 2.51 2.55
Strategy 3 5.60 5.59 5.77
Strategy 4 5.59 5.94 5.74

Ratio between strategies 1 and 3 0.46 0.44 0.41
Ratio between strategies 2 and 4 0.49 0.42 0.44

From Table 4.8, it is possible to notice that the ratio between the average itera-
tion time of strategies 1 and 3 is 0.46, and 0.44 and 0.41, when considering acqui-
sition functions PI, EI, and LCB, respectively. When comparing strategies 2 and
4, the ratio between the average iteration time of strategies 2 and 4 is 0.49, 0.42,
and 0.44, when considering acquisition functions PI, EI, and LCB, respectively.
As mentioned before, the reduction in the average iteration time of strategies 1
and 2 is related to not considering a first-principles model since only GP models
are applied.

In this case study, all strategies could drive the plant to a neighborhood of
the optimum. It was noticed that the optimum solution obtained in all strategies
presented a deviation from the plant optimum, which may be related to the char-
acteristic of the optimization method applied (interior point) since it is a barrier
method and the optimum point is at active constraints. It was also noticed that all
strategies presented similar behavior regarding the deviation from the plant op-
timum. Regarding model accuracy, the RMSE obtained in Strategies 3 and 4 were
lower than the error observed in Strategies 1 and 2, which may be related to the
contribution of the first-principle model to the overall accuracy since Strategies 1
and 2 are only based on an identified model. Additionally, using only identified
models enabled a reduction in the average iteration time of strategies 1 and 2.

4.7 Partial Conclusions

In this chapter, several strategies of RTO based on the Gaussian Process and
acquisition functions were compared. A framework based on the direct model-
ing of the output variables is proposed and compared to the approach present
in literature based on modeling the plant-model mismatch, known as GP based
modifier adaptation approaches. The main advantage of the proposed strategy is
that it can be applied in the absence of any steady-state model of the plant, which
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enables a data-driven RTO approach. The proposed methodology was applied to
the exothermic CSTR reactor and the Williams-Otto reactor benchmark problem.
The results obtained in both case studies, considering the proposed methodology
and the modifier adaptation, were able to drive the plant to a neighborhood of
the optimum point. Regarding the relative average deviation obtained in each
strategy, the values obtained showed that the absolute data-driven strategy pre-
sented a similar performance when compared to the plant-model mismatch ap-
proach. Regarding the evaluated constrained acquisition functions, namely the
Probability of Improvement, the Expected Improvement, and the Lower Confi-
dence Bound, the results showed no clear advantage in selecting one acquisi-
tion function over the others. The relative average deviation value obtained in
the Williams-Otto reactor was higher than the values obtained in the Exothermic
CSTR, which was related to the characteristic of the optimization method applied
since it was considered a barrier method and the plant optimum point is at an in-
tersection of constraints (active constraints). Regarding average iteration time, in
the two case studies, it was verified that using only identified models enabled a
reduction in the average iteration time, achieving at least half of the average iter-
ation time obtained when considering the usage of the rigorous model. Finally,
similar results were obtained when considering the approximations for output
variables instead of the objective function and constraints. This approach is in-
teresting since it enables the utilization of the model for other purposes, such as
control. Thus, the next steps of the research are related to obtaining dynamic
models considering a steady-state model based on GP, aiming to process control
purposes.
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Chapter 5

Tracking Necessary Condition of
Optimality by a Data-driven solution
combining Steady-State and
Transient data

A version of this chapter was published in the Journal of Process Control,
Volume 118, October 2022, pages 37-54 (DEMUNER et al., 2022).

5.1 Introduction

In chemical process plants, real-time optimization and control structures are
typically designed as a multilayer hierarchical control structure, where each
level has a specific function and working frequency (KRISHNAMOORTHY et al.,
2018).

The RTO layer aims at maximizing some performance index oriented to op-
erational profit while satisfying constraints related to process physical ranges,
product specifications, and environmental limits (ENGELL, 2007). The optimiza-
tion problem solution is sent to a lower layer named supervisory control, where
advanced control algorithms are applied, such as the model-based predictive con-
trol strategy (MPC).

In the RTO layer, a steady-state process model is usually applied, typically
described by a first-principles, rigorous, and nonlinear model (ELLIS et al., 2014).
Due to disturbances, measurement uncertainties, and noise, updating the RTO
model or structure is necessary, based on the information available through pro-
cess measurements.

An important drawback of the RTO strategies is the dependence on a steady-
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state model, which implies that a steady-state detection step should be consid-
ered before a new optimization step (ENGELL, 2007). Therefore, in the presence
of disturbances, the plant operates suboptimally until it reaches a new steady-
state, allowing its detection and the computation of the new optimal operating
point (GRACIANO et al., 2015).

To overcome the need of the steady-state detection step, some researches have
explored the usage of dynamic models in the optimization step, then resulting in
the dynamic RTO (D-RTO) (ELLIS et al., 2014). According to GRACIANO et al.
(2015), D-RTO requires accurate dynamic models, which could be a limitation.
Also, according to KRISHNAMOORTHY et al. (2018), there are still open numer-
ical issues associated with D-RTO to be addressed before industrial implementa-
tions.

Alternatively, an intermediate approach between RTO and D-RTO, repre-
sented here by Hybrid Real-Time Optimization (H-RTO), has been proposed
(VALLURU et al., 2015). This approach uses a dynamic model in the identifica-
tion step, which is based on simultaneous parameter and state estimation. Since
the parameters are updated dynamically, the steady-state version of the model
is also updated iteratively. Then, it can be applied in the optimization step, re-
moving the need for the steady-state estimation. This strategy was later studied
by KRISHNAMOORTHY et al. (2018) and MATIAS and LE ROUX (2018), which
showed that H-RTO presents better economic performance than the classical RTO
approach. MATIAS and LE ROUX (2020) expanded the methodology for plant-
wide optimization considering a strategy for local models identification. SAN-
TOS et al. (2021) considered an H-RTO formulation where the economic objective
function is a controlled variable in a linear MPC.

In the H-RTO strategies, one assumption is that a dynamic first-principles
model is available, which could be a limitation. In DELOU et al. (2021), an H-
RTO framework is proposed assuming that only a steady-state model is at hand.
A dynamic model is developed by combining the steady-state model and a lin-
ear identified model using a Hammerstein model structure. Also, the MPC con-
trolled variables are obtained through the self-optimizing variables, based on the
work of GRACIANO et al. (2015).

Another issue related to the classical RTO approach relies on the different
models applied in each layer of the hierarchical control structure. While, typi-
cally, the models of the RTO layer are rigorous and based on first-principles, the
models used in the MPC control layer are usually linear and obtained from iden-
tification strategies around an operating point. Thus, it is not expected that the
steady-state point of each model matches, which may generate unachievable op-
erating points from the RTO layer to the control layer (ELLIS et al., 2014).
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Some strategies have been proposed to mitigate such divergences, such as us-
ing an intermediate optimization layer between the RTO and supervisory control,
known as LP-MPC or QP-MPC. This strategy aims to adjust the RTO setpoints,
using a steady-state version of the MPC linear model to satisfy the controller
constraints. By doing so, one guarantees that all setpoints sent to the MPC are
achievable (MORSHEDI et al., 1985; ROTAVA and ZANIN, 2005; YING et al., 1998;
YOUSFI and TOURNIER, 1991). However, it is important to notice that the mod-
els applied in the rigorous stationary and dynamic layers remain different. Thus,
during the transient period, a suboptimal trajectory may be followed (YING et al.,
1998).

Another strategy consists of simultaneously solving the economic optimiza-
tion and the control problems, incorporating economic aspects in the formula-
tion of the MPC: the one-layer optimization, later called Economic Model Pre-
dictive Control (EMPC). YOUSFI and TOURNIER (1991) and DE GOUVÊA and
ODLOAK (1996) reported including a linear economic term in the Dynamic Ma-
trix Controller (DMC). DE GOUVÊA and ODLOAK (1996) included a linearized
version of the actual economic objective function in the MPC objective function.
Despite the simple formulation, such strategies may not represent the economic
problem of the real process since this optimization problem may be nonlinear.
Aiming to deal with this issue, DE GOUVÊA and ODLOAK (1998) included in
the MPC objective function a nonlinear term associated with the economic objec-
tive function. Although the economic term was nonlinear, the controller is still
based on a linear identified model. DE SOUZA et al. (2010) proposed the in-
clusion of the gradient of the economic objective function in the MPC objective
function. The gradient is calculated by a first-order approximation at a reference
point considered as the previous operating point, which means that the first and
second derivatives of the rigorous steady-state model are needed. Those val-
ues are held constant during the current control cycle. ALVAREZ and ODLOAK
(2012) also proposed the inclusion of the gradient of a modified economic objec-
tive function, which is replaced by a weighted sum of the squared differences
of the control action from the RTO optimal solution, aiming to deal with non-
convexities. ALAMO et al. (2014) studied the strategy previously proposed by
DE SOUZA et al. (2010), focusing on an approximation for gradient calculation,
aiming to reduce computational cost. In an FCC unit case study, described in
detail in LAUTENSCHLAGER MORO and ODLOAK (1995), the execution time
compared to the original strategy was three times lower.

The aforementioned works somehow add an economic term to the controller’s
objective function. However, the controller formulation is still based on a linear
dynamic model, while the steady-state terms are based on a rigorous model. An-
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other integration approach was presented by ENGELL (2007), applying a Non-
linear Model Predictive Control (NMPC) to a simulated moving bed (SMB) sep-
aration system. The NMPC objective function was replaced by an economic ob-
jective function. The author also highlighted important issues of the proposed
strategy, such as its stability and the importance of the state estimation step to
avoid plant-model mismatch. Indeed, the plant-model mismatch may limit the
EMPC convergence towards the plant optimum point. In this sense, some works
proposed using the Modifier-Adaptation technique (MARCHETTI et al., 2009) in
the EMPC formulation to deal with this issue and then meeting the first-order
necessary conditions of optimality (NCO) of the plant (FAULWASSER and PAN-
NOCCHIA, 2019; OLIVEIRA-SILVA et al., 2021; VACCARI and PANNOCCHIA,
2017; VACCARI et al., 2021).

Additionally, computational complexities, the requirement for online identifi-
cation techniques for nonlinear processes, the robustness of the solution, and the
stability for nonlinear systems are important issues for the practical implementa-
tion of the nonlinear EMPC for large-scale problems (ELLIS et al., 2014).

Some recent researches have incorporated identified nonlinear models into
the formulation of NMPC and EMPC. WU et al. (2019a,b) presented the theoret-
ical foundation and computational implementation of a Lyapunov-based MPC
using recurrent neural networks (RNN). It was shown that the RNN-based MPC
computation time was lower than the sampling time, which implies that it could
be applied in real time. ELLIS and CHINDE (2020) used a long short-term mem-
ory networks (LSTM) model for an EMPC design applied to heating, ventilation,
and air conditioning (HVAC) systems. Some works developed the Koopman-
based model identification technique to represent nonlinear systems by finite-
dimensional linear approximation (KORDA and MEZIĆ, 2018). As the main ad-
vantage, a linear MPC can be applied. However, a model mismatch is expected
due to the approximation, such that a disturbance estimation may be applied to
obtain offset-free control (NARASINGAM et al., 2022; SON et al., 2020).

Another class of models that has been widely applied in nonlinear model-
ing and control is the Hammerstein and Wiener models. These models were
applied for modeling and control of nonlinear processes such as neutralization
(FRUZZETTI et al., 1997), fluid catalytic cracking process (HARNISCHMACHER
and MARQUARDT, 2007b), gas-lift based oil production (MIYOSHI et al., 2018),
processes with the presence of valve stiction (BACCI DI CAPACI et al., 2018,
2019; FÜRST et al., 2020), and a nonlinear electric oven (QUACHIO and GAR-
CIA, 2019). This structure combining static and dynamic blocks is useful in terms
of RTO and NMPC, mainly if the static term represents the steady-state behavior
of an output variable. If so, the steady-state model could also be applied in the
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RTO layer (DELOU et al., 2021; RIBEIRO and SECCHI, 2019) or even in an EMPC
framework.

The static block of a Hammerstein model structure is typically represented by
a polynomial basis function, mainly related to its simplicity and the existence of
well-known algorithms for its identification, such as the Narendra-Gallman algo-
rithm (NGA) (NARENDRA and GALLMAN, 1966). However, any other function
could be applied, for instance, Neural Networks (WANG and CHEN, 2008), Sup-
port Vector Machines (TÖTTERMAN and TOIVONEN, 2009), and first-principles
model (DELOU et al., 2021). If a process steady-state model is unavailable, it
could also be identified through an input/output relationship based on measured
data. For this, a characteristic that might be required is that the models can be
constructed with a limited amount of data (CARPIO et al., 2018a). In this sense,
Gaussian Processes are often well fitted from relatively small data sets compared
to other meta-modeling forms (FORRESTER and KEANE, 2009; PALMER and
REALFF, 2002a).

In this work, a new framework for RTO and NMPC integration is proposed,
based on a one-layer approach. This strategy is centered on a Hammerstein
model structure, such that its static nonlinear function is represented by an iden-
tified process steady-state model. Indeed, an important assumption here is that
none of the steady-state and dynamic models are available, such that those mod-
els are identified using plant data. This assumption differs from the related pre-
vious works where a dynamic phenomenological model (KRISHNAMOORTHY
et al., 2018; MATIAS and LE ROUX, 2018, 2020; SANTOS et al., 2021) or a steady-
state model (DELOU et al., 2021) were available. The steady-state model structure
considered here is based on a Gaussian Process, due to its characteristic of being
able to represent complex nonlinear models with accuracy and through the use
of a few parameters (CARPIO et al., 2018a; DEL RIO CHANONA et al., 2019;
FERREIRA et al., 2018; FORRESTER et al., 2008; PALMER and REALFF, 2002b).
A great advantage of the proposed strategy based on the Hammerstein model
is that the identification of steady-state and dynamic functions can be done in-
dependently, considering that steady-state mapping can be identified based on
previous knowledge of the plant behavior.

The proposed one-layer framework presents full compatibility between the
steady-state and dynamic models, as the control and optimization problems are
solved simultaneously. To achieve it, the NMPC objective function is replaced
by the objective function gradient of the economic optimization problem. Thus,
the NMPC objective is to keep the gradient norm close to zero, satisfying the
first-order optimality condition of the steady-state optimization problem. The
proposed approach differs from ALVAREZ and ODLOAK (2012); DE SOUZA
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et al. (2010) as only a nonlinear model is considered for both optimization and
control. Additionally, in order to deal with disturbances, an adaptative charac-
teristic of the controller is also considered. Based on a H-RTO strategy, a dynamic
parameter estimation based on Extended Kalman Filter is applied to estimate dis-
turbances and update the model.

Lastly, a Hammerstein model structure is also proposed, based on the interac-
tion of the system’s state variables, which can deal with input variables coupling
and directionality.

This chapter is organized as follows. Section 5.2 presents concepts regarding
Hammerstein and Gaussian Process models structures. Section 5.3 presents the
proposed approach to obtain the nonlinear model, the one-layer proposed frame-
work and the model identification technique. In Section 5.4, the Willians-Otto
reactor is presented as the present work case study. In Section 5.5, the results of
the proposed approach applied to the Willians-Otto Reactor benchmark are pre-
sented and compared to H-RTO and Classical RTO approaches. Finally, Section
5.6 presents the conclusions of this chapter.

5.2 Model Structures

In this work, a modeling approach is proposed based on a dynamic model
represented by a Hammerstein model structure. The nonlinear static element of
the Hammerstein model is based on a steady-state model of the process, which
is based on an identified Gaussian Process. These model structures are presented
below.

5.2.1 Gaussian Processes Model Structure

Here, the Gaussian Process are described in the same way as presented in
Section 4.2. Therefore, the equations are not presented, for the sake of simplicity.

5.2.2 Hammerstein Model Structure

Hammerstein models have been used in nonlinear system identification since
the 60’s when NARENDRA and GALLMAN (1966) proposed the Narendra-
Gallman algorithm (NGA) for model identification and updating, allowing its
application. Mathematically, it can be described by the Hammerstein integral
operator written for time-invariant systems as follows:

H[u(t)] =
∫

Ω
L(τ)NL(u(t− τ))dτ (5.1)
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where Ω is the input variables domain, L(t) is the impulse response of a linear
system, which has as input the nonlinear static function NL(·).

NARENDRA and GALLMAN (1966) introduced the block-diagram notation
for Hammerstein Model, as presented in Figure 5.1.

Figure 5.1: Schematic representation of the Hammerstein model. The input u(t)
is transformed by the nonlinear function NL(·), which has as output the variable
v(t). This variable is applied as input for the linear dynamic operator L(·), yield-
ing the output variable y(t).

In Figure 5.1, the model structure consists of a nonlinear static element (func-
tion NL) followed by a linear dynamic element (function L). If the sequence of
blocks is reversed, the structure represents a Wiener model, as presented in Fig-
ure 5.2.

Figure 5.2: Schematic representation of the Wiener model. The input u(t) is trans-
formed by a linear operator L(·), yielding an intermediate response v(t). This
variable is then transformed by a nonlinear transformation NL1(·), yielding the
model output response y(t).

The class of models called Hammerstein-Wiener represents the combination
of Hammerstein and Wiener models. Thus, there is a nonlinear transformation
preceding the linear block and another nonlinear transformation after the linear
block. This structure is represented in Figure 5.3

Figure 5.3: Schematic representation of the Hammerstein-Wiener model. The in-
put u(t) is transformed by a nonlinear function NL1(·), yielding as output the
variable v(t). This signal is then transformed by a linear operator L(·), yielding a
new intermediate response w(t). This signal is finally transformed by a nonlinear
function NL2(·), which yield the model output y(t).

The Hammerstein models can also represent a Multiple-Input-Single-Output
(MISO) system, which is straightforward by taking into account multiple inputs.
Of course, MIMO representation is also possible by combining ny MISO models,
where ny is the number of output variables (or system responses).

Several structures have been proposed in the literature for the MISO case
of Hammerstein models (HARNISCHMACHER and MARQUARDT, 2007a).
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BILLINGS (1980) proposed a intuitive extension of the MISO case by consider-
ing a single nonlinear transformation applied to a vector of input variables u, as
shown in Figure 5.4.

Figure 5.4: Schematic representation of the MISO Hammerstein model strucutre
proposed by BILLINGS (1980).

In the structure presented in Figure 5.4, the nonlinear function NL : Rnu → R

is a nonlinear transformation of the vector uT = [u1, ..., unu ], yielding an interme-
diate response, v(t), which will be transformed by a linear operator, yielding the
output response y(t).

Accordingly to HARNISCHMACHER and MARQUARDT (2007a), the struc-
ture with only one nonlinear transformation is not able to represent the input
directionality of the input vectors. For example, systems that present distinct
static gains depending on the signal of the input variable.

KORTMANN and UNBEHAUEN (1987) proposed a structure based in multi-
ple nonlinear operators, as presented in Figure 5.5.

Figure 5.5: Schematic representation of the Hammerstein model proposed by KO-
RTMANN and UNBEHAUEN (1987).

In the structure proposed by KORTMANN and UNBEHAUEN (1987), the i-th
nonlinear function NLi(ui) : R → R is applied to the i-th position of the input
variable vector u, yielding an intermediate output variable vi(t). Thus, the output
variable is obtained by the equation y(t) = ∑ vi(t).

Although the structure proposed by KORTMANN and UNBEHAUEN (1987)
is able to deal with input directionality, according to HARNISCHMACHER and
MARQUARDT (2007a), this structure fails to take into account nonlinear cou-
plings between the input variables, an essential characteristic for process control.
On the other hand, this structure of representation has advantages from the point
of view of parameter estimation, being possible to use the parameter estimation
techniques for the SISO case.
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ESKINAT et al. (1991) proposed a structure for the MISO case in order to con-
sider the nonlinear couplings between the input variables, as presented in Figure
5.6.

Figure 5.6: Schematic representation of Hammerstein model proposed by ESKI-
NAT et al. (1991).

HARNISCHMACHER and MARQUARDT (2007a) developed a new structure
for Hammerstein models, which is able to model the dynamic and nonlinear char-
acteristics of the system independently, in addition to having developed a strat-
egy for identifying parameters for this structure. According to the authors, the
proposed structure can deal with the nonlinear coupling among the input vari-
ables with a smaller number of parameters when compared to other existing for-
mulations. The proposed structure was applied to an FCC unit with an accuracy
50% superior to other studied structures.

In this chapter, the classic MISO Hammerstein proposed by BILLINGS (1980)
and an extension of the structure proposed by ESKINAT et al. (1991) will be con-
sidered and compared.

5.3 Proposed Methodology

5.3.1 RTO and MPC integration framework

The proposed framework is based on the assumption that none of the steady-
state and dynamic models are available, such that both models need to be identi-
fied from plant data.

The steady-state model structure considered here is based on a Gaussian Pro-
cess. The dynamic model is represented by a Hammerstein model structure, such
that the previously identified steady-state model is also applied as its nonlinear
static element.

The dynamic model is applied to an NMPC algorithm. The model structure
is discussed in detail in Section 5.3.1.1. A great advantage of the proposed strat-
egy based on the Hammerstein model is that the identification of steady-state
and dynamic functions can be done independently, considering that the steady-
state mapping can be identified based on previous knowledge of the plant behav-
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ior. This characteristic of independent identification can be achieved because the
steady-state and dynamic functions in the Hammerstein structure are in series.
The steady-state model is considered a GP model and can be identified using se-
lected steady-state data obtained from plant historical data. After obtaining this
mapping, the dynamic model can be identified through a new data set consid-
ering dynamic data from the plant. Even though the parameters are different in
each model, it is not a limitation, as two parameter estimation problems can be
solved independently.

As discussed before, the proposed framework is a data-driven approach. Al-
though it is an interesting feature, the models are susceptible to lose accuracy
when working at an operating point outside the training data bounds. How-
ever, it is not a limitation, and some strategies can be considered to deal with
plant-model mismatch. Especially when dealing with GP models, DEL RIO
CHANONA et al. (2019) showed that trust-regions strategies can be applied to
keep the model accurate. Moreover, GP models present an interesting charac-
teristic which is the model uncertainty estimation. Therefore, one possibility is
tracking the posterior variance value and using it in the trust-region approach.
Another possible approach is updating the GP model iteratively such that the
model learns from the process during optimization and control cycles. In the
EMPC formulation, a possible strategy is using the modifier adaptation, as pre-
sented in VACCARI and PANNOCCHIA (2017), FAULWASSER and PANNOC-
CHIA (2019), OLIVEIRA-SILVA et al. (2021), and VACCARI et al. (2021). These
described strategies are not considered in this work but can be added to the pro-
posed framework without loss of generality.

Another important assumption is that relevant disturbances that impact the
plant are measured, at least, for steady-state model identification purposes. It
means that for a given period, the disturbances were measured, and their influ-
ence was considered for steady-state model identification. During the plant op-
eration, the disturbances do not need to be measured since the proposed frame-
work considers a dynamic parameter estimation step by means of an Extended
Kalman Filter (EKF) (SIMON, 2006), such that the unmeasured disturbances can
be estimated, here denoted as d̂. Additionally, in this framework, the EKF is
based on the linearization of the Hammerstein model. It is important to highlight
that other model parameters, such as the ones of the dynamic model, could also
be adapted using the EKF strategy.

The proposed framework also aims to guarantee the compatibility of the
steady-state and dynamic models. This characteristic is achieved by solving the
steady-state problem simultaneously in the NMPC layer, following the one-layer
strategy, which implies that a steady-state optimization step is unnecessary.
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In this work, the gradient of the objective function is calculated using the
steady-state model and the NMPC aims to keep the gradient norm close to zero,
satisfying the first-order NCO of the steady-state optimization problem. The pro-
posed framework is described in Figure 5.7a.

(a) One-layer RTO framework based on Ham-
merstein model for tracking NCO of the RTO
in the NMPC layer.

(b) Proposed RTO framework based on Ham-
merstein model for Hybrid Real-Time Opti-
mization

Figure 5.7: Comparative of the proposed frameworks.

The first-order NCO, also known as the first-order Karush-Kuhn-Tucker
(KKT) condition, implies that if u∗ ∈ Rnu is a local optimum of an optimiza-
tion problem, then the first partial derivatives of the Lagrangian function with
respect to u∗ and to the Lagrange multipliers of the optimization problem must
be zero, besides satisfying all complementary conditions (BIEGLER, 2010).

Another possible approach within this framework is to replace the NMPC ob-
jective function by the economic objective function. It is important to mention
that, as the objective function is based on an input-output model, less computa-
tional effort than for a rigorous model is expected.

In addition, the elements considered in the presented framework also enable
the development of a hybrid RTO (H-RTO) strategy without significant changes.
The major change is adding an optimization layer to solve the steady-state op-
timization problem. The optimal setpoints are then sent to the NMPC. In this
framework, the steady-state model is also identified as described before. Again,
this strategy also allows compatibility between steady-state and dynamic layers,
since the steady-state model is also present in the dynamic model, due to the
Hammerstein structure. This framework is presented in Figure 5.7b. The main
differences between the proposed frameworks are highlighted in Figures 5.7a and
5.7b.

An additional contribution of the present work is the development of an H-
RTO strategy considering the same structure presented in Figure 5.7b and adding
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a terminal cost based on the economic objective function to the NMPC objective
function. It is also important to highlight that the proposed methodology is based
on identified models, such that any first-principles model can be considered.

5.3.1.1 Dynamic and Steady-State Models Relationship

As discussed before, Hammerstein models have a typical structure of a non-
linear static function followed by a linear dynamic function. In this work, this
characteristic is explored, combining a nonlinear steady-state model of the pro-
cess based on a Gaussian Process and a linear dynamic model of the process.
Thus, the mismatch is avoided if this nonlinear steady-state model is applied in
both RTO and control layers.

In the present work, two Hammerstein structures were compared. The first
structure, here denominated as Structure 1, is based on a typical Hammerstein
model, as presented in Figure 5.1. This system can be represented as follows:

xj,k = Lj(vj,k, αdyn j) (5.2)

yi,k = xj,k (5.3)

where k is the discrete time instant, yi represents the model prediction for the i-th
output variable (i = 1, . . . , ny) and xj is an intermediate variable which in this
structure is equal to the model output, such that j = i. Additionally, vj ∈ R is the
nonlinear function output, Lj : R×Rnα,dyn → R is the dynamic linear operator,
and αdyn j ∈ Rnα,dyn its parameters.

Without loss of generality, the nonlinear operator that represents the process
steady-state model is given by:

vj,k = NLj(uk, d,αj) (5.4)

where u ∈ Rnu are the manipulated variables, d ∈ Rnd are process disturbances,
NLj : Rnu × Rnd × Rnα → R is the nonlinear operator and αj its parameters.
Here, it is worthwhile to mention that the input variables were divided into the
manipulated variables (u) and disturbances (d) for control aspects.

Another structure based on the works of ESKINAT et al. (1991) and HAR-
NISCHMACHER and MARQUARDT (2007a) was considered, aiming to deal
with the inherent multivariate characteristics and also the input directionality
limitation. This structure will be referred to as Structure 2. In this one, the model
variable output yi (i = 1, ..., ny) is a linear combination of MISO Hammerstein
models (parallel structure), as presented in Figure 5.8.
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Figure 5.8: Proposed structure of Hammerstein nonlinear model (Structure 2).

Mathematically, Structure 2 can be described as follows:

x(i)j,k = Lj(vj,k, α
(i)
dyn j

), j = 1, . . . , ny (5.5)

yi,k = cT x(i)k (5.6)

where yi represents the MISO model prediction for the i-th output variable and
x(i)j is an intermediate variable which represents each MISO Hammerstein model
output, such that j = 1, . . . , ny, vj is represented by Equation 5.4. It is worth
mentioning that it was included a dependence of the dynamic model parameters
on the i-th variable, since these are identified for each output variable yi. In the
present work, the vector c ∈ Rny has its elements equal to one. Thus,

yi,k =
ny

∑
j=1

x(i)j,k (a
(i)
j ) (5.7)

where a dependence to model parameters was added to the variable x(i)j , such

that a(i)j ∈ Rnα+nα,dyn encompasses both nonlinear and linear models’ parameters
associated to each i-th output variable and j-th intermediate variable.

It is important to highlight that, for Structures 1 and 2, there is no limita-
tion regarding the nonlinear operator structure. It means that, for instance, a
first-principles model could be applied or also identified models based on input-
output data measured from the plant.

In the present work, a steady-state model was identified based on input-
output data from the plant. This approach is also related to an important premise
that a reliable first-principle model is not available, also aiming to develop a data-
driven solution. A GP model was considered for the input-output model relation-
ship, which is often well fitted from relatively small data sets compared to other
meta-modeling forms (FORRESTER and KEANE, 2009; PALMER and REALFF,
2002a).
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Therefore, the relationship given by Equation 5.4 can be rewritten as follows:

vj,k = NLj(uk, dk, αj) (5.8)

= yss
j,k (5.9)

= GP(µ f ,j(uk, dk), σf ,j(uk, dk)) (5.10)

where yss
j is the j-th output variable steady-state value, GP represents the Gaus-

sian process with posterior mean and variance functions µ f ,j and σf ,j, respec-
tively. The steady-state model parameters αj are equivalent to GP hyperparame-
ters, as presented in Equation 4.5.

Regarding the dynamic operator, the dynamic linear structure was considered
as discrete transfer functions, described as follow:

L(i)
j (z) =

b1
(i)
j z−1 + b2

(i)
j z−2 + · · ·+ bnz

(i)
j z−nz

1 + a1
(i)
j z−1 + a2

(i)
j z−2 + · · ·+ anp

(i)
j z−np

(5.11)

where np is the number of poles and nz is the number of zeros of the transfer func-
tions. Therefore, the dynamic model parameters vector is described as follows:

α
(i)
dyn j

=
[
b1

(i)
j , · · · , bnz

(i)
j , a1

(i)
j , · · · , anp

(i)
j

]T
(5.12)

For now on, for the sake of notation simplicity, when representing the non-
linear dynamic model (Hammerstein model), the following description will be
considered in further developments:

yk = f dyn(yk−1, uk−1, dk−1, ā) (5.13)

where f dyn ∈ Rny is a vector of Hammerstein model functions that represents

the system output variables and ā ∈ Rny(nα+nα,dyn) is an extended vector of
parameters that encompasses all Hammerstein models parameters. Therefore,

ā =
[
āT

ss āT
dyn

]T
, where āss ∈ Rny(nα) is an extended vector of parameters that en-

compasses all GP hyperparameters for all output variable and ādyn ∈ Rny(nα,dyn)

is an extended vector of all linear dynamic models parameters.
Analogously, the steady-state model will be described as follows:

yss
k = f ss(uk, dk, āss) (5.14)

where f ss ∈ Rny is a vector of steady-state model functions that represents the
system output variables, here represented as the GP described in Equation 5.10.
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5.3.1.2 Dynamic Parameter and State Estimation

In this work, the dynamic parameter estimation step is considered for esti-
mating unmeasured disturbances, while the GP hyperparameters and dynamic
model parameters were not updated.

An Extended Kalman Filter (EKF) (SIMON, 2006) is considered for this pur-
pose, which will be based on the linearized version of the Hammerstein model.

An augmented state variable is created ẑ−k =
[
ŷ−k d̂

−
k

]T
, such that the distur-

bances are considered as additional states. Thus, the a priori prediction equations
are:

ẑ−k =

[
f dyn(y

+
k−1, uk−1, d̂

+
k−1, ā))

d̂
+
k−1

]
+

[
ωy,k

ωd,k

]
(5.15)

P−k = FkP+
k−1FT

k + Q (5.16)

where ωy,k and ωd,k are artificial zero-mean noise, such that ωd,k ∼ N (0, Qy) and
ωd,k ∼ N (0, Qd), where N represents the normal distribution, with zero mean
and covariance parameters Qy and Qd. In terms of notation, the hat operator
denotes that a variable is an estimated value. Additionally, superscripts − and
+ represent a priori and a posteriori estimations, respectively. P is the augmented
state covariance matrix, Q = diag(Qy, Qd) is the augmented noise covariance
matrix and F is the augmented state transition matrix, defined as follows:

Fk =
∂ fdyn

∂ẑ

∣∣∣∣
ẑ−k

(5.17)

=

 ∂ fdyn

∂y
∂ fdyn

∂d
0nd×ny Ind×nd

∣∣∣∣∣∣
ẑ−(k)

(5.18)

The a posteriori correction equations are defined as follow:

Kk = P−k C
T
(
CP−k C

T + R
)−1

(5.19)

ẑ+k = ẑ−k + Kk(yk − ŷp
−
k ) (5.20)

P+
k =

(
I − KkCP−k

)
(5.21)

y+
k = Cẑ+k (5.22)

where K is the Kalman Filter gain matrix, R is the measured variables covariance
matrix and C =

[
Iny×ny 0ny×nd

]
.
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5.3.1.3 Steady-State Optimization Strategy

The steady-state economic optimization is based on Equation 2.3, described
as follows:

u∗ = arg min
u

φec(yss, u)

s.t. yss = f ss(u, d+
k , āss),

g(yss, u) ≤ 0

(5.23)

It is important to emphasize that in the optimization problem represented by
Equation 5.23, the steady-state model is based on an identified GP model, as de-
scribed in Section 5.3.1.1. Additionally, in the one-layer approach framework, the
optimization problem is not solved but the gradient norm is considered as the
NMPC objective function.

The gradient vector of the objective function is calculated as follows:

∇uφec =

(
∂yss

∂u

)T ∂φec

∂yss
+

∂φec

∂u
(5.24)

In Equation 5.24, it is assumed that the steady-state model gives only the out-
put variables. However, another possible approach, not considered in this work,
is considering the objective function as another output variable. In that case, the
gradient calculation would be straightforward, as the objective function would be
a function of the decision variable only. However, this approach may be limited
for scenarios of constant market changes, such as raw material costs and product
prices.

It is also important to mention that for a constrained problem like the one
presented in Equation 5.23, the first-order NCO imply that the gradient of the
Lagrangian function with respect to decision variables must be zero. The null
condition of the objective function gradient itself is a first-order NCO for an un-
constrained optimization problem. Thus, for a constrained optimization problem,
additional constraints should also be added to the NMPC optimization problem
in order to keep the solution feasibility.

Moreover, if one intends to implement an H-RTO framework, the optimiza-
tion problem represented by Equation 5.23 should be solved and its solution will
provide setpoints for the NMPC controller, as presented in Figure 5.7b.

5.3.1.4 Nonlinear Model Predictive Control

The Nonlinear Model Predictive Control works in a receding horizon strategy
and it is described in the discretized formulation by Equation 5.25 (ABRAHAM
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et al., 1999; MACIEJOWSKI, 2000; TATJEWSKI, 2007).

∆u∗ = arg min
∆u

φc(y, u)

s.t. ∀i = 0, . . . , P− 1,

∆uk+i|k = uk+i+1|k − uk+i|k,

yk+i+1|k = fdyn(yk+i|k, uk+i|k, d+
k , ā) + εk,

GNMPC(yk+i|k, uk+i|k) ≤ 0,

umin − uk+i|k ≤ ∆uk+i|k ≤ umax − uk+i|k,

∆umin ≤ ∆uk+i|k ≤ ∆umax,

ymin ≤ yk+i+1|k ≤ ymax,

∆uk+i|k = 0 ∀i ≥ M,

yk|k = y+
k

(5.25)

where φc is the controller objective function, P and M are the prediction and con-
trol horizons, respectively. ∆u ∈ RP is the decision variable which represents
the sequence of input increments, and then, the receding horizon principle im-
plies that only the first increment is applied, such that uk+1|k = uk|k + ∆uk|k.
The NMPC algorithm is also based on a nonlinear dynamic model fdyn as de-
fined in Equation 5.13. Additionally, y ∈ Rny P is the vector of output vari-
ables, ε ∈ Rny is a disturbance model, included to deal with unmeasured dis-
turbances in addition to model uncertainties, considered as an output correction
term, GNMPC : Rny × Rnu → Rngc is a vector of inequality constraints of the
controller optimization problem.

The classical NMPC objective function is described as follows:

φNMPC =
P

∑
i=1

(
yk+i|k − ySP,k+i|k

)T
Wy

(
yk+i|k − ySP,k+i|k

)
+

M−1

∑
i=0

(
uk+i|k − uSP,k+i|k

)T
Wu

(
uk+i|k − uSP,k+i|k

)
+

M−1

∑
i=0

∆uT
k+i|kW∆u∆uT

k+i|k

(5.26)

where Wy ∈ Rny×ny is the positive semi-definite diagonal matrix of controlled
variables weighting factors, Wu ∈ Rnu×nu is the positive semi-definite diago-
nal matrix of manipulated variables weighting factors and W∆u ∈ Rnu×nu is the
positive semi-definite diagonal matrix of manipulated variables movement sup-
pression factors.
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Additionally, if an economic term is considered on the NMPC formulation
aiming to develop an one-layer strategy, the controller’s objective function may
become, without loss of generality:

φc = WφNMPC φNMPC + Wφec φec + W∇φec‖∇uφec‖2 + W
φ
(P)
ec

φ
(P)
ec (5.27)

where WφNMPC ∈ R, Wφec ∈ R , W∇φec ∈ R, and W
φ
(P)
ec
∈ R are weighting factors

related to the classical NMPC objective function, the objective function of the eco-
nomic optimization problem, the norm of the gradient of this economic objective
function, and the final value of this objective function, at the end of prediction
horizon (P). In the latter case, it means that φ

(P)
ec = φec(yk+P|k, uk+P|k).

Regarding the EMPC problem represented by Equation 5.25 with objective
function generically represented by Equation 5.27, the stability of this controller
can not be guaranteed, especially when no terminal constraint is added (ELLIS
et al., 2014). FAULWASSER et al. (2018) showed that for EMPC controllers with-
out terminal constraints, the closed-loop system converges asymptotically into
any arbitrarily small neighborhood of the optimal steady-state, by increasing the
prediction horizon. it is important to highlight that this stabilizing strategy may
lead to an increase in computational cost. Thus, there other possible stabilizing
strategies in literature that could be applied, such as adding a terminal constraint
to the controller formulation which is not covered in this work. An overview of
the EMPC stability topic is presented in the work of RAWLINGS et al. (2012).

In this work, the stability proof of the proposed frameworks is not addressed.
In order to have a stable closed-loop solution, a sufficient long prediction horizon
is considered.

5.3.2 Classic RTO Framework - RTO + QP-MPC

In this section, a framework based on a Classic RTO approach with an inter-
mediate QP-MPC and a Linear MPC is presented. The framework is described
by Figure 5.9. This framework represents the RTO framework in Section 5.5.3.

The steady-state optimization layer only updates its outputs when the plant
data is considered to be at steady-state condition, which is verified by a steady-
state detection step (SSD). If the system is at steady-state, the model parameters
are updated. The optimum outputs are then sent to an intermediate optimization
layer (QP-MPC).

The QP-MPC aims to adjust the RTO setpoints, using a steady-state version of
the MPC linear model in order to satisfy the controller constraints. The execution
of this intermediate layer occurs at the same frequency of the MPC (YING et al.,
1998).
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Figure 5.9: Classic RTO framework in two layers considering an intermediate QP-
MPC.

The QP-MPC optimization problem is described as follows YING et al. (1998):

ySP−QP, uSP−QP = arg min
y, u

φQP−MPC = (y− ySP)
Tcy

Tcy(y− ySP)+

(u− uSP)
Tcu

Tcu(u− uSP)

s.t. y = yre f + KLMPC(u− ure f ),

umin ≤ u ≤ umax,

ymin ≤ y ≤ ymax

(5.28)

where KLMPC ∈ Rny×nu is the LMPC model static gain, ure f and yre f are the
input and output reference values in which the linear model was identified, cy ∈
Rny and cu ∈ Rnu are economic weights related to the economic optimization
objective function, calculated as follows:

cy =
∂φec

∂y

∣∣∣∣
ySP,uSP

(5.29)

cu =
∂φec

∂u

∣∣∣∣
ySP,uSP

(5.30)

A linear MPC (LMPC) is considered in the present work in order to compare
the performance of the proposed EMPC framework to a classic RTO in two-layers
approach.

The LMPC is based on a Quadratic Dynamic Matrix Control (QDMC), which
considers manipulated and controlled variables constraints, based on a Quadratic
Programming (QP) Optimization Problem (GARCIA and MORSHEDI, 1986). The
controlled variables predictions are described as a step response model as fol-
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lows:

y = S∆u + yk + F (5.31)

Expanding the expression gives:



yk+1

yk+2

yk+3
...

yk+P−1

yk+P


=



S1 0ny×nu 0ny×nu . . . 0ny×nu

S2 S1 0ny×nu . . . 0ny×nu

S3 S2 S1 . . . 0ny×nu
...

...
...

...
...

...
SP−1 SP−2 SP−3 . . . SP−M+1 SP−M

SP SP−1 SP−2 . . . SP−M+2 SP−M+1





∆uk

∆uk+1

∆uk+2
...

∆uk+M−2

∆uk+M−1


+



yk

yk

yk
...

yk

yk


+



F1

F2

F3
...

FP−1

FP


(5.32)

where P is the prediction horizon, M is the control horizon, 0ny×nu ∈ Rny×nu is
a matrix of zeros, Sk ∈ Rny×nu is known as the dynamic matrix, which defines
the response of each control variable related to each input variable. The dynamic
matrix is defined as follows:

Sk =
k

∑
j=1

H j (5.33)

where:

H j =


h1,1,j h1,2,j . . . h1,nu,j

h2,1,j h2,2,j . . . h2,nu,j
...

... . . .
...

hny,1,j hny,2,j . . . hny,nu,j

 (5.34)

where each hi,k,j represents the impulse response of the variable i (i = 1, ..., ny)
related to the input variable k (k = 1, ..., nu) in the time instant j.

Additionally, F i ∈ Rny is calculated by the equation below:

F i =
i

∑
n=1

φn (5.35)

where φn represents the response of the output to past control actions related to
the instant n and is defined by the following equation:

φn =
N

∑
l=n+1

H l∆u(k + n− j) (5.36)

where N ≥ P is the plant stabilization period.
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The QP is described as follows:

∆u∗ = arg min
∆u

φLMPC := ∆uTQ∆u + 2C f ∆u

s.t. ∆umin ≤ ∆u ≤ ∆umax,

umin ≤ u ≤ umax,

ymin ≤ y ≤ ymax

(5.37)

where ∆u ∈ Rnu M is the increment in the manipulated variables, φLMPC is the
objective function of the LMPC, ∆umin ∈ Rnu M and ∆umax ∈ Rnu M are the min-
imum and maximum bounds of control actions increments, umin ∈ Rnu M and
umax ∈ Rnu M are the minimum and maximum bounds of the manipulated vari-
ables, ymin ∈ Rny P and ymax ∈ Rny P are the minimum and maximum bounds
of the controlled variables, and Q ∈ Rnu M×nu M and array C f ∈ Rnu M are de-
scribed as follow:

Q = STW TWS + R (5.38)

C f
T = eTW TWS (5.39)

where W ∈ RP ny×P ny is the matrix related to control variables weight in objective
function, R ∈ Rnu M×nu M is the matrix of manipulated variables suppression and
e ∈ Rny P is the deviation of open-loop response due to past control actions of the
controlled variables from setpoint (yOL − ySP), where yOL = yk + F, the last two
terms of Equation 5.31.

5.4 Case Study: The Willians-Otto Reactor

5.4.1 Model Equations

The Willians-Otto Reactor equations were described in Chapter 4, in Section
4.5.2. The same equations for the plant are considered here.

5.4.2 Economical Optimization Problem

The economic optimization of the Willians-Otto reactor as presented in
FORBES and MARLIN (1996); MARCHETTI et al. (2009) consists of obtaining the
optimal values of B feed rate and reactor temperature, which maximize profit.
The profit is based on the revenue associated with E and P selling and opera-
tional costs related to raw materials (reagents A and B). In the nominal case, at
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disturbance absence, the A flow rate is fixed at 1.8275 kg/s. The plant optimiza-
tion problem is described as follows:

F∗B , T∗R = arg min
FB, TR

φec = −(1143.38 wP F + 25.92 wE F− 76.23 FA − 114.34 FB)

s.t. w = f (FB, TR, θ),

3 ≤ FB ≤ 6 (kg/s),

70 ≤ TR ≤ 100 (◦C)
(5.40)

where φec is the profit (in $/s), f (FB, TR, θ) is the steady-state equation system
represented by Equations 4.48 to 4.53, w is the mass fraction species vector, F is
the reactor outlet flow rate, evaluated by F = FA + FB (global mass balance) and
θ is the parameters vector of the system. The values in the objective function are
the products selling prices and the reagent costs in $/kg.

For RTO problem purposes, the A species flow rate is considered a distur-
bance to the process. Also, the plant equations vector f is replaced by the model
equations vector fss, as described in the optimization problem represented by
Equation 5.23.

As presented in FORBES and MARLIN (1996); MARCHETTI et al. (2009) and
also confirmed in the present work, the optimal problem solution for the nominal
case is presented in Table 5.1. .

Table 5.1: Economic optimal problem solution.

Variable Unit Steady-State Value

FB kg/s 4.787
TR

◦C 89.703
wA - 0.0875
wB - 0.3896
wC - 0.0153
wE - 0.2906
wP - 0.1095
wG - 0.1075

5.4.3 Controlled and Manipulated Variables

In the RTO strategies evaluated in which the classical MPC objective function
is considered (RTO or H-RTO strategies) the controller designed for Willians-Otto
Reactor considers species E and P mass fractions as controlled variables and the
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species B mass flow rate (FB) and reactor temperature (TR) as manipulated vari-
ables. The species A mass flow rate is considered an unmeasured disturbance of
the system. This choice is justified as the Willians-Otto economical problem pre-
sented in Equation 5.40 has E and P as main products of the unit and considered
as revenue.

With this variables selection, a dynamic model for species E and P should be
identified for application in the controller. It is also important to highlight that in
EMPC strategy , the same dynamic model for wE and wP will be applied.

5.4.4 Model Identification

5.4.4.1 GP Model Identification

For GP model identification, it was applied the DACE package (LOPHAVEN
et al., 2000), available in MATLAB ©v.7.6. Each GP model was obtained in order
to predict the steady-state value of each reactor outlet mass fraction. For iden-
tification, a computational experiment using the Latin Hypercube Design (LHS)
strategy was employed (MCKAY et al., 1979), with 30 points inside the following
domain:

3 ≤ FB ≤ 6 (kg/s) (5.41)

70 ≤ TR ≤ 100 (C) (5.42)

0.5 ≤ FA ≤ 3 (kg/s) (5.43)

Steady-state data was obtained by solving the nonlinear system of equations
represented in Equations 4.48 to 4.53, where the left-hand side of the equations
were considered as null due to steady-state condition.

It is also important to highlight that only wE and wP will be used in the RTO
strategy. However, the GP model identification for other species will also be car-
ried out to evaluate the GP performance.

5.4.4.2 Dynamic Linear Model Identification for the Hammerstein Model
Structures

Once GP models were identified following the strategy described in Section
5.4.4.1, the dynamic linear models could be identified.

For linear model identification, a 5% step disturbance in each input variable
was applied, being the reference a steady-state operating point described in Table
5.1, which represents the optimum economic operational point of the process. In
that case, the disturbance value is FA = 1.8275kg/s.
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The identification problem for the Hammerstein models for both structures 1
and 2 is formulated as a least-squares fitting problem, as follows:

ā∗dyn = arg min
ādyn

N

∑
k=1

[
yk − ypk

]2
s.t. yk = f dyn(yk−1, uk−1, dk−1, ā)

(5.44)

where N is the number of discrete time points, ypk is the measured output vari-
ables vector at time instant k.

For structures 1 and 2, regarding the identification of the linear dynamic mod-
els, different transfer functions were tested to verify which one gives the best fit.
In the present work, orders below three were considered and a maximum of 2 ze-
ros. The Mean Squared Error (MSE) was used as a metric for selecting the transfer
function order and zeros combination, which is calculated as follows:

MSE =
1
N

N

∑
k=1

[
yk − ypk

]2 (5.45)

The parameter estimation problem represented by Equation 5.44 was solved
by using the Nelder-Mead (NELDER and MEAD, 1965) algorithm available in the
MATLAB® function fminsearch.

5.4.4.3 Dynamic Linear Model Identification for the LMPC

For the internal model of the LMPC, discrete transfer functions of each out-
put variable were identified based on a SISO model identification strategy, which
means that a step disturbance in each input variable was done separately, while
the other input variables remained constant. The reference point for model iden-
tification was considered as the economic optimal problem solution presented in
Table 5.1.

The exact estimation procedure and model orders used in the previous section
were applied here. From the estimated transfer function matrix, it is possible to
obtain the step response model, as represented by Equation 5.31.

5.4.5 Dynamic and Steady-State Characterization

For better understanding of the Willians-Otto reactor system, the equation
system were linearized in order to obtain static gain and poles in a given reference
point.

For system linearization, the system was transformed in a state-space formu-
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lation as follows:

Original System:
dx
dt

= f (x, u, d) (5.46)

y = h(x, u, d) (5.47)

Linearized System:

dx′

dt
= Ax′ + Bu′ + Bdd′ (5.48)

y′ = Cx′ + Du′ + Ddd′ (5.49)

where x ∈ Rnx is the vector of state variables, u ∈ Rnu is the vector of input
variables, d ∈ Rnd is the vector of disturbances, y ∈ Rny represents the output
variables, f : Rnx×nu×nd → Rnx is the vector of nonlinear functions of differential-
equations, h : Rnx×nu×nd → Rny is the vector of nonlinear functions that relates
input and output variables of the original system. For the linearized system,
the superscript ′ represents the original variable in terms of deviation variables,
A ∈ Rnx×nx , B ∈ Rnx×nu , Bd ∈ Rnx×nd , C ∈ Rny×nx , D ∈ Rny×nu and Dd ∈ Rny×nd

are matrices of the system, defined as follows:

A =
∂ f
∂x

B =
∂ f
∂u

Bd =
∂ f
∂d

C =
∂h
∂x

D =
∂h
∂u

Dd =
∂h
∂d

(5.50)

where the above matrix are all calculated at a reference point.
The steady-state gain of each output in relation to each input variable can be

obtained as follows:

y′ss = Kuu′ss + Kdd′ss (5.51)

where the subscript ss represents the steady-state value of the variable, Ku ∈
Rny×nu is the steady-state gain matrix of the output variables in relation to the
input variables and Kd ∈ Rny×nd is the steady-state gain matrix of the output
variables in relation to the disturbance variables.

The gains presented in Equation 5.51 are calculated as follows:

Ku =
∂y′ss
∂u′ss

= −CA−1B + D (5.52)

Kd =
∂y′ss
∂d′ss

= −CA−1Bd + Dd (5.53)

Additionally, the poles of the dynamic system are defined as the eigenvalues
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of the matrix A, obtained by solving the characteristic equation of the system:

|A− Iλ| = 0 (5.54)

The time constants of the dynamic system at a given reference point can be
calculated as follows:

τj = −
1
λj

(j = 1, ..., nx) (5.55)

The invariant zeros of the system defined by Equation 5.49 regarding its in-
puts (u′) can be defined as the complex values of s for which the rank of the
Rosembrock system matrix[

A− sI B
C D

]
(5.56)

drops from its normal value (normal rank). Additionally, if the complex values
of s for which the transfer function of the system regarding its inputs (u′)

Gu(s) = C [sI − A]−1 B + D (5.57)

drops from its normal value, this zeros are called transmission zeros (EMAMI-
NAEINI and DOOREN, 1982).

5.5 Results and Discussion

This section presents the results and discussions of the proposed methodol-
ogy applied to the Willians-Otto reactor. First, the Willians-Otto characterization
results are presented. Subsequently, the results regarding nonlinear model iden-
tification based on Hammerstein structures are presented. Finally, the results of
the proposed frameworks applied to the Willians-Otto reactor are presented.

5.5.1 Willians-Otto Reactor Characterization

5.5.1.1 Steady-State Gain Behavior

For a better understanding of the system, the steady-state gain matrix was
calculated following Equations 5.52 and 5.53 at several steady-state points inside
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the domain described below:

3 ≤ FB ≤ 6 (kg/s)

70 ≤ TR ≤ 100 (◦C) (5.58)

FA = 1.875 (kg/s)

In Figures 5.10 to 5.15, the steady-state gain for species A, B, C, E, P and G
mass fractions in relation to each input variable is presented, respectively.
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Figure 5.10: Steady-state gain of wA.

For the output variable wA, the steady-state gain surface presented in Fig-
ure 5.10 shows that for both input variables, the steady-state gains are negative,
which means that an increase in B inlet flow (FB) or an increase in reactor temper-
ature (TR) decrease wA mass fraction. Indeed, both actions increase the reaction
rate of A species, which implies in its concentration reduction.
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Figure 5.11: Steady-state gain of wB.

For the output variable wB, the steady-state gain surfaces in Figure 5.11 show
that the steady-state gain is positive in relation to FB and negative in relation to
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TR. This effect of FB can be direct explained, as it increases the wB concentration
inside the reactor. On the other side, an increase in reactor temperature decreases
wB, due to an increase in the reaction rate of B consumption.
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Figure 5.12: Steady-state gain of wC.

For wC, both steady-state gain surfaces in Figure 5.12 are negative, which
means that an increase in each input variables decreases the steady-state con-
centration of wC. Both effects could be explained by the increase in the reaction
rate that consumes species C.
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Figure 5.13: Steady-Gain of wE.

For wE, the steady-state gain surface in Figure 5.13 shows that the gain in rela-
tion to FB is negative over the entire domain. For the steady-state gain related to
TR, the gain is positive over the entire domain. The effect of FB can be explained
by the overall mass balance equation, which implies in dilution of wE species
and the reduction of the residence time when increasing FB, although it would be
expected to increase the formation reaction rate of E due to increasing of concen-
tration of the reactant B. The effect of TR is related to the increase of species E
formation, as it is a second reaction product.
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Figure 5.14: Steady-state gain of wP.

For wP, the steady-state gain surface in Figure 5.14 shows that both gains
present signal change inside the domain.
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Figure 5.15: Steady-state gain of wG.

For G species, Figure 5.15 shows that the steady-state gain associated to FB is
negative over the entire domain and the steady-state gain associated with TR is
positive over the entire domain. The explanation is the same to the wE species:
increasing FB would dilute the G species concentration and an increase in TR also
increases G formation reaction rate.

In order to better present the gain regions for species E and P, a contour plot
of its gains are presented in Figure 5.16.

The positive regions of wP gains are represented by the gray region in Figure
5.16. For the steady-state gain related to FB, it is possible to notice that the region
comprises the entire domain of temperature (70 ≤ TR ≤ 100 °C). However, it is
limited by B feed flow rate values, defining a curve that splits the positive and
negative gain domains. Similarly, for wP gain related to TR, the region of positive
gain is also well defined by a nonlinear curve that splits the domain.
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Figure 5.16: Steady-state Gain of wP - filled region represents the positive gain
region.

It is important to mention that the economic problem optimum is located in
the region where the steady-state gains of wP related to FB and TR are both nega-
tive.

5.5.1.2 Poles, Zeros and Time Constant Behavior

The poles of the dynamic system were calculated in each steady-state point
to see if the system’s dynamics depend on the operating point. To show this
effect of the poles, the dominant time constant concept was applied, representing
the system’s slowest dynamics. The dominant time constant can be obtained by
selecting the largest pole of the system at each operating point and calculate its
opposite reciprocal.
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Figure 5.17: Dominant time constant of the system.

Figure 5.17 shows that the dominant time constant of the system increases
when the reaction temperature decreases. It is important to say that Hammer-
stein models have a characteristic that the dynamic linear model is time-invariant
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so that the transfer function parameters do not change, being this a possible lim-
itation to predict actual values with accuracy.

Additionally, the dominant time constant range is 250-450s approximately.
Considering a system represented by a first-order linear transfer function, it
means that the settling time would be in the range of 1250-2250s, calculated us-
ing the relation 5τmax, where τmax is the dominant time constant. At the plant
economic optimal point, the time constant is 350s, and the settling time is 1750s
(about 30 min).

Regarding the transmission zeros of the system, the zeros were calculated in
each steady-state point, but no zeros were found in the studied domain.

5.5.2 Nonlinear Model Identification

5.5.2.1 Static Function: GP Model Identification

For each reactor outlet mass fraction, a GP model was obtained, representing
the steady-state value of each variable as a function of the input and disturbance
variables. The GP model works as a surrogate model of the Willians-Otto system
of equations in steady-state. For evaluating the prediction ability of the model,
the MSE was calculated considering a squared mesh of 900 points inside the do-
main [FBmin, FBmax] × [TRmin, TRmax], and the results for each output variable are
presented in Table 5.2.

Table 5.2: Mean Squared Error (MSE) of GP model for each reactor outlet mass
fraction at steady state.

Error wA wB wC wE wP wG

MSE(×103) (basis case) 0.0739 0.3301 0.0028 0.0542 0.0107 0.0644
MSE(×103) (+10% in FA) 0.0750 0.3351 0.0028 0.0550 0.0108 0.0654
MSE(×103) (-10% in FA) 0.0667 0.2978 0.0024 0.0489 0.0096 0.0581

From Table 5.2, it is possible to notice that the MSE is lower than 10−4, which
means an error below 1% for each variable. This result indicates that the GP
model predictions agree with the plant data, being a potential candidate to be
applied as a surrogate model to the original system.

The surface plots of E and P species mass fraction as a function of the inlet
variables (FB e TR) are presented in Figures 5.21 and 5.22, considering the nominal
disturbance value (base case) and disturbances of +10% and -10% in FA. The
results of species A, B, C and G are presented in Figures 5.18 to 5.23.

In Figure 5.21, it is noticed that the input variables TR and FB have a smooth
effect on the mass fraction of species E, and the inlet mass flow disturbances in
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species A have a low influence on this output variable at the steady-state. A dis-
tinct behavior is verified for species P in Figure 5.22, which presents a maximum
inside the domain. This evidence can be justified by P being formed in reaction
2 and consumed in reaction 3. Therefore, depending on the operating point, the
reaction rates change. This evidence is in agreement with changes in the signal
of the static gain inside the domain, as shown in Figure 5.14. Additionally, it is
also noticed that the P mass fraction is significantly affected by the disturbance
in species A inlet mass flow rate and its maximum point.

For species A, B, C and G, in Figures 5.18 to 5.23 is possible to notice that there
is no extremal point inside the domain of their mass fractions. It can be noticed
that the wA mass fraction decreases when increasing FB and TR, which can be
explained by an increase in the first reaction rate. An increase in the wB mass
fraction is noticed when increasing FB due to its hold-up. A decrease in wB is
expected when increasing TR, as the first and second reaction rates also increase.
The wC mass fraction is negatively affected by FB and TR, which can be justified
by the fact that reaction rates 2 and 3 are expected to be greater than reaction rate
1 due to the kinetics parameters values. Species G mass fraction decreases when
increasing FB, mainly related to the effects on species C and P, the reactants of
reaction 3 in which species G is formed. Also, increasing TR increases wG mass
fraction due to an increase in reaction rate 3. Additionally, it is also noticed that
the wA mass fraction varies accordingly to the A species inlet mass flow rate, as
expected. On the other hand, the mass fraction of B is not strongly affected by FA.
A slight decrease in species B mass fraction is expected when increasing FA due
to increasing wA and, consequently, the first reaction rate. For species G, it is also
verified that FA has minor effects on its outlet mass fraction.
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Figure 5.18: wA predicted and actual values in three scenarios of measured dis-
turbance (FA): (a) Basis case, (b) +10% and (c)-10%.
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Figure 5.19: wB predicted and actual values in three scenarios of measured dis-
turbance (FA): (a) Basis case, (b) +10% and (c)-10%.
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Figure 5.20: wC predicted and actual values in three scenarios of measured dis-
turbance (FA): (a) Basis case, (b) +10% and (c)-10%.
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Figure 5.21: wE predicted and actual values in three scenarios of measured dis-
turbance (FA): (a) Base case, (b) +10% and (c)-10%.
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Figure 5.22: wP predicted and actual values in three scenarios of measured dis-
turbance (FA): (a) Base case, (b) +10%, (c)-10% and (d) the maximum value of wP
as a function of FA.
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Figure 5.23: wG predicted and actual values in three scenarios of measured dis-
turbance (FA): (a) Basis case, (b) +10% and (c)-10%.
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5.5.2.2 Hammerstein Structure 1 - Dynamic Block Identification

In Table 5.3, the Mean Squared Errors for each reactor mass fraction nonlinear
model and for each configuration of the transfer function in terms of zeros and
poles are presented. Analyzing Table 5.3, it is possible to note that by increasing
the number of poles and zeros, especially for transfer function orders higher than
4, the MSE is also higher due to the oscillatory behavior of the fitted model. For
species E and P, higher-order models did not significantly reduce the error, such
that a transfer function of third order and one zero was considered.

Table 5.3: Mean Squared Error (MSE) of linear model for each reactor outlet mass
fraction in relation to a perturbation in FB, TR and disturbance FA.

Poles Zeros wA wB wC wE wP wG
1 0 4.18E-07 4.54E-06 2.25E-08 1.54E-06 6.08E-07 1.88E-06
2 0 4.17E-07 4.54E-06 2.24E-08 1.54E-06 6.05E-07 1.88E-06
2 1 3.70E-07 4.52E-06 2.09E-08 1.54E-06 5.96E-07 1.88E-06
3 0 4.16E-07 4.54E-06 3.15E-07 1.54E-06 5.92E-07 1.88E-06
3 1 3.70E-07 4.52E-06 2.09E-08 1.54E-06 5.96E-07 1.87E-06
3 2 3.70E-07 4.52E-06 4.48E-08 1.54E-06 5.96E-07 1.87E-06
4 0 4.15E-07 4.54E-06 2.23E-08 2.75E-06 5.99E-07 3.15E-06
4 1 3.70E-07 1.24E-02 2.09E-08 7.65E-06 5.96E-07 1.35E-03
4 2 3.70E-07 4.50E-06 2.07E-08 1.54E-06 5.96E-07 1.87E-06
4 3 2.69E-05 2.36E-05 1.50E-05 1.54E-06 5.96E-07 1.93E-05
5 0 4.15E-07 5.97E-04 2.23E-08 1.54E-06 5.93E-07 1.88E-06
5 1 3.70E-07 2.79E-05 1.26E-07 1.54E-06 5.96E-07 1.87E-06
5 2 5.55E-07 4.52E-06 2.45E-08 1.54E-06 5.96E-07 1.87E-06
5 3 3.70E-07 3.09E-04 3.76E-06 1.54E-06 5.96E-07 1.96E-05
5 4 2.81E-06 4.44E-05 9.38E-08 3.09E-06 5.96E-07 1.87E-06

In Figures 5.24a to 5.24f, the observed dynamic response and the Hammer-
stein model prediction for mass fraction at reactor outlet is presented.

In Figure 5.24d, it is possible to notice that the proposed model prediction re-
sults are in agreement with the observed dynamic response for species E. How-
ever, it is observed that the plant dynamic response presents overshoot and in-
verse response which the proposed model does not predict.

In the same way, for P species, in Figure 5.24e, it is also verified that the ob-
served response presents inverse response and overshoots that are not predicted
by the Hammerstein Model Structure 1. The steady-state values are well pre-
dicted due to the accuracy of the GP model of the Hammerstein structure (as
presented in Figure 5.22). However, it can be seen that a simple linear model in
the dynamic structure of the Hammerstein model has a low predictive ability of
the complex dynamic behavior. For species A, B, C and G, it can be noticed that
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Figure 5.24: Nonlinear model prediction in deviation variables wA, wB, wC, wE,
wP and wG using Hammerstein Model - Structure 1 with the training data set.

a linear model can represent the dynamic behavior.
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5.5.2.3 Hammerstein Structure 2 - Dynamic Block Identification

In order to overcome the downside related to wP dynamic behavior prediction
of the MISO Structure 1 observed in Section 5.5.2.2, the proposed Hammerstein
Model presented in Equation 5.7 was identified.

In the same way as the identification strategy applied for linear model iden-
tification, the maximum order of 3 for the transfer function was considered, and
the maximum of two zeros was allowed. A transfer function of order 3 and one
zero yield the best accuracy in the same training data set considered for Structure
1, and the resulting mean squared errors for wE and wP were MSE = 3.111× 10−8

and MSE = 5.448× 10−8, respectively. For species E, the MSE decreased almost
50 times, while for species B, the MSE decreased almost 11 times compared with
the results of Structure 1. Figure 5.25 presents the observed dynamics and the
proposed model response for species E and P.
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Figure 5.25: Nonlinear model prediction in deviation variable of wE and wP using
Hammerstein Model - Structure 2 with the training data set.

Analyzing Figure 5.25b, it is possible to notice that the model predictions are
in agreement with the dynamic behavior, including inverse response and over-
shoot predictive ability, which shows that Hammerstein model Structure 2 should
be considered instead of Structure 1 for dynamic prediction.

In order to validate the proposed model and evaluate its predictive ability
in an operating point different from the reference point used for parameter esti-
mation, perturbation in input variables were applied around the reference point
[FB(kg/s), TR(

◦C)] = [4, 75]. Figure 5.26 presents the results of the validation data
set.

Analyzing Figure 5.26, it is possible to notice that the model prediction has
a good agreement to the dynamic behavior using the validation data set, which
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Figure 5.26: Nonlinear model prediction in deviation variable of wE and wP using
Hammerstein Model - Structure 2 with the validation data set.

represents that the model has extrapolation capability and is not overfitted. It is
important to notice that the model has a slight bias compared to its final (steady-
state) value after each perturbation. However, due to its overall good agreement
to its dynamic and steady-state behaviors compared to the first structure, the
proposed model was considered for control application.

5.5.3 RTO Strategies Applied to Willians-Otto Reactor

In order to compare the proposed methodology to previous works in litera-
ture, the following RTO strategies will be considered:

• EMPC1: Economic Model Predictive Control where the NMPC objective
function is equal to the norm of the objective function gradient of the eco-
nomic optimization problem, such that WφNMPC = 0, Wφec = 0 , W∇φec = 1
and W

φ
(P)
ec

= 0.

• EMPC2: Economic Model Predictive Control where the NMPC objective
function is equal to the economic problem objective function itself, such
that WφNMPC = 0, Wφec = 1 , W∇φec = 0 and W

φ
(P)
ec

= 0.

• H-RTO1: Hybrid Real-Time Optimization similar to the approach of MA-
TIAS and LE ROUX (2018), such that WφNMPC = 1, Wφec = 0 , W∇φec = 0 and
W

φ
(P)
ec

= 0.

• H-RTO2: A proposed modified Hybrid Real-Time Optimization where a
terminal cost using the economic objective function is added to the classical
NMPC objective function, such that WφNMPC = 1, Wφec = 0 , W∇φec = 0 and
W

φ
(P)
ec

= 1.
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• Perfect Model: The plant model is used in both steady-state optimization
and NMPC. It means that the first-principles equations that represent the
plant are applied, such that the modeling error can be considered negligible.
Also, the disturbances are assumed to be known. In this case, WφNMPC = 1,
Wφec = 0 , W∇φec = 0 and W

φ
(P)
ec

= 0. The main difference between the Per-
fect Model and H-RTO1 structures is that the disturbances are assumed to
be measured in the Perfect Model structure. In H-RTO1, the disturbances
are estimated through an EKF. Also, in H-RTO1, the models applied in
NMPC and RTO layers are identified models.

• RTO: A classical two-layer RTO framework with a two stage linear MPC
(QP-LMPC) based on the strategy proposed in YING et al. (1998), where
the complete framework is described in Section 5.3.2. It is worthwhile to
mention that the steady-state model identified by the Gaussian Process is
applied in the optimization problem defined by Equation 5.23 and an iden-
tified linear model is applied in a two-stage linear MPC.

For a fairly comparison, the controller tuning main parameters are the same
for all controllers, which were obtained by trial and error. The sampling time of
the controllers is 5min, the prediction horizon is P = 100 sampling instants, the
control horizon is M = 1 sampling instant, the weight matrices are Wy = Iny,
Wu = 0, W∆u = 5× 10−5Inu. It is important to highlight that the controllers do
not track the manipulated variables reference values, since Wu = 0. It is impor-
tant to mention that the prediction horizon was considered to be long enough
for stability purposes. The prediction horizon is ten times greater than the sys-
tem’s settling time. The EKF tuning was considered as P+

0 = diag(10, 10, 10),
Q = diag(10−3, 10−3, 10−1) and R = diag(10−4, 10−4). The tuning parameters for
the controller and EKF were obtained by trial and error.

The simulation scenario comprises step disturbances of 30% in magnitude in
unmeasured disturbances at each 60 sampling instants (300 min). The distur-
bances and the optimal values for wE, wP, FB and TR are described in Table 5.4.

Table 5.4: Disturbance values of FA and steady-state optimal solution for the eco-
nomical problem.

wE wP FA (kg/s) FB (kg/s) TR (°C)
d1 (0 ≤ t < 300min) 0.2906 0.1095 1.8275 4.7874 89.7039
d2 (300 ≤ t < 600min) 0.2978 0.1139 1.2792 3.4774 85.6849
d3 = d1 (600 ≤ t < 900min) 0.2906 0.1095 1.8275 4.7874 89.7039
d4 (900 ≤ t ≤ 1200min) 0.2854 0.1062 2.3757 6.0000 92.4673
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Figure 5.27 presents the closed-loop trajectories of the plant controlled vari-
ables for all the strategies considered.
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Figure 5.27: Closed-loop dynamic trajectories of controlled variables in using dif-
ferent RTO strategies: (a), (c), (e), (g), (i), (k) wE and (b), (d), (f), (h), (j), (l) wP.

Analyzing Figure 5.27, it is possible to notice that the dynamic trajectory for
EMPC1 and EMPC2 presented similar behavior and both strategies led the plant
to its optimum setpoints values, although the controller does not use this infor-
mation in the objective function. Moreover, the controlled variables trajectory in
EMPC1 tends to achieve the optimal values faster than in EMPC2. This evidence
might be explained by the fact that minimizing the gradient norm is a more direct
way of finding the economic objective function optimum rather than minimizing
the objective function itself. When comparing H-RTO1 and H-RTO2 strategies, it
is possible to notice that H-RTO2 led the controlled variables to their optimal val-
ues faster than H-RTO1. This evidence could be explained by the terminal cost
present in the NMPC objective function, which enforces the controller to mini-
mize this last term. The RTO strategy is the one that presents the slowest response
in leading the plant to their optimum values. This could be explained by the fact
that the optimum setpoints determined by the RTO layer are only updated when
a new steady-state is reached. During the transient period, the controller tends
to reject the disturbance and keep the controlled variables at their previous op-
timum values. Also, the RTO strategy showed an offset during the occurrence
of the first disturbance for variable wP. Additionally, the RTO strategy where a
perfect model is considered and disturbance in FA is known is the one that faster
led the plant to its optimal values. From a practical perspective, this strategy may
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be unrealistic. When comparing all other strategies, the H-RTO2 strategy was the
one that faster led the plant to an optimum point, especially for the disturbance
d3 and d4.

Figure 5.28 presents the closed-loop trajectories of the plant manipulated vari-
ables for all the considered strategies.
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Figure 5.28: Closed-loop dynamic trajectories of manipulated variables: (a), (c),
(e), (g), (i), (k) FB and (b), (d), (f), (h), (j), (l) TR.

In terms of the manipulated variables profile, analyzing Figure 5.28, it is possi-
ble to notice that EMPC1 strategy reaches the optimal values of the manipulated
variables faster than EMPC2. As discussed for the controlled variables profile,
using the economic optimization problem objective function gradient as the con-
troller’s objective function imposes faster convergence towards the optimal val-
ues of the decision variables. H-RTO2 strategy drove the manipulated variables
to optimal values faster than H-RTO1. The RTO strategy does not achieve the op-
timal values of the manipulated variables and, consequently, does not track the
controlled variables’ optimal setpoints, except for the nominal points. Also, dur-
ing the transient period, the RTO strategy imposes two different profiles for the
manipulated variables during the transient period. One for disturbance rejection,
while the controlled variables setpoints are not updated and another that starts
when a new steady-state is reached, such that the disturbance is updated and the
RTO updates the setpoints.

Figure 5.29 presents the closed-loop trajectories of the disturbance estimation
for all the considered strategies.

In terms of disturbance estimation, analyzing Figure 5.29, all strategies con-
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Figure 5.29: Closed-loop dynamic trajectories of disturbance estimation.

verged to the plant value. It is possible to notice that EMPC1 presented a faster
convergence than the other strategies. Additionally, although the RTO strategy
updates the disturbance later due to the necessity of steady-state detection, the
steady-state estimation also led the estimated disturbance to the plant value.

As proposed by DELOU et al. (2021), in order to compare the economic per-
formance of each strategy, the Accumulated Loss Function is calculated, defined
as follows:

AccLossk =
k

∑
l=0

(∣∣∣φec(yl, ul, d̂
+
l−1)− φ∗ec,l

∣∣∣)∆t (5.59)

where φ∗ec represents the plant optimum at instant l and ∆t is the sampling time.
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The accumulated Loss Function can be interpreted as a discrete version of
the difference between the integral of the economic objective function and the
integral of the plant optimum value. In practice, it means the loss of the RTO
strategy along the horizon when compared to the plant true optimum.

Figure 5.30 presents the optimization problem objective function and the accu-
mulation loss during the simulation. Regarding the economic objective function,
except for the RTO strategy, the optimal value was achieved. For the RTO strat-
egy, as the manipulated variables do not match their optimal values, the objective
function also does not match. EMPC1 and H-RTO2 are the strategies that faster
achieve the optimum value, which is justified by the controlled and manipulated
variables profile.
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Figure 5.30: Closed-loop dynamic trajectory of economic objective function and
the accumulated loss function: (a), (c), (e), (g), (i), (k) Objective function φeco and
(b), (d), (f), (h), (j), (l) Accumulated Loss Function ($).

Regarding the accumulated loss function in Figure 5.30, as expected, the RTO
strategy is the one with higher loss, since the manipulated variables do not match
their optimal values. H-RTO1 presented better performance than RTO but worse
than H-RTO2, EMPC1 and EMPC2 strategies. Between EMPC1 and EMPC2, the
first one presented lower loss. EMPC1 presented a performance comparable to
H-RTO2. It is worthwhile to mention that the two proposed strategies (EMPC1
and H-RTO2) performed better than the others. The accumulated loss function
values at the end of the simulation horizon is presented in Table 5.5.

Table 5.6 presents the computational cost of each proposed strategy based on
its average iteration time in s. For its evaluation, the algorithms ran in an Intel
Core® i7-9750H @2.60Hz with 32GB DDR4 RAM memory.
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Table 5.5: Accumulated loss function at the end of simulation.

Strategy Accumulated Loss Function ($)

EMPC1 8.52× 104

EMPC2 10.92× 104

H-RTO1 14.04× 104

H-RTO2 7.84× 104

RTO 20.32× 104

Perfect Model 0.6245× 104

Table 5.6: Computational cost of each RTO strategy.

Average iteration time (s)

Step/ Strategy EMPC1 EMPC2 HRTO1 HRTO2 RTO Perfect Model

Optimization - - 4.06E-01 3.69E-01 3.63E-01 6.79E-01
EKF 5.20E-04 3.90E-04 8.40E-04 3.20E-04 - -

Controller 4.03E-01 3.77E-01 4.62E-01 9.23E-02 5.71E-02 7.13E+01
Plant Integration 1.17E-02 1.46E-02 1.49E-02 1.37E-02 1.21E-02 1.03E-02

Total time (s) 4.15E-01 3.92E-01 8.84E-01 4.76E-01 4.33E-01 7.20E+01

Ratio in relation to perfect model (%) 5.76E-01 5.45E-01 1.23E+00 6.61E-01 6.01E-01 1.00E+02

From Table 5.6, it is possible to notice that the strategies that apply the GP
model in the optimization step (H-RTO1, H-RTO2 and RTO) are almost two times
faster than the strategy where the perfect model is used. Here, it is important to
mention that in RTO strategy, the time consumed by the optimization step in-
cludes the steady-state disturbance estimation. The total average iteration time
in EMPC1 and EMPC2 strategies is lower than in H-RTO1, H-RTO2 and RTO
strategies. It is mainly related to the fact that the economic optimization problem
is not solved in EMPC1 and EMPC2 strategies, since there is not a steady-state
optimization layer in these frameworks. Additionally, the strategies based on
the Hammerstein model demand on average 0.7% of the perfect model case to-
tal time. This last evidence shows the advantage of using identified nonlinear
models for EMPC and H-RTO strategies, enabling its utilization in real-time ap-
plications.

As mentioned before, a key benefit of the proposed strategy is not being de-
pendent on first-principles models. The data-driven modeling approach based
on a Hammerstein model allows compatibility between optimization and con-
trol layers, even if considering a two-layer approach such as H-RTO. In future
research, the developed strategy could be combined with a modifier adapta-
tion strategy, using a GP to represent the plant-model mismatch without loss of
generality. Moreover, in this work, the model predicted variables are also the
plant output variables (y), being useful for control purposes. Then, a Modifier-
Adaptation could be developed by considering adaptation terms in the output
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variables. Moreover, GP models have an interesting feature which is an estimate
of uncertainty. Thus, additional constraints could be added to the optimization
and control layers regarding model accuracy, which can be helpful when the plant
is operating at a point that is outside the training data.

5.5.4 Comparison of the Proposed Strategies in the Presence of

Noise

The results presented in Section 5.5.3 were achieved without considering mea-
surement noise. In the present section, the proposed strategies, namely, EMPC1,
EMPC2, H-RTO1, and H-RTO2, are compared to verify their robustness to noise.
Here, it is important to highlight that the RTO strategy is not considered in the
comparison since it was shown that EMPC and H-RTO strategies presented a
better economic benefit.

In the presence of noise, EKF plays a fundamental role in filtering the mea-
surements and disturbance estimation. Thus, the EKF tuning was considered as
P+

0 = diag(100, 100, 100), Q = diag(10−3, 10−3, 10−1) and R = diag(10−4, 10−4).
The tuning parameters for the controller and EKF were obtained by trial and er-
ror.

The measurement noise was considered as a zero-mean normal distributed
noise, which was artificially added to the measurements in the following manner:

yp
noise = [Iny + diag(wnoise

y )]yp (5.60)

where yp
noise ∈ Rny is the plant output variable measurement with noise, wy ∈

Rny , such that ωnoise
y ∼ N (0, Σnoise

y ), and Σnoise
y is the measurement noise covari-

ance matrix. The covariance matrix is calculated as Σnoise
y = nnoise Iny , considering

that nnoise is the noise amplitude.
Two noise amplitudes were compared: nnoise = 0.01 (0.1%) and nnoise =

0.05 (5%). Figures 5.31, 5.32, and 5.33 present the results of the output variables,
manipulated variables, and estimated disturbance, respectively, considering 1%
noise amplitude.

In Figure 5.37, the noisy measurements of wE and wP were filtered and
smoothed by EKF, which was achieved by the tuning considered in the scenario
of measurements. It is possible to notice that the filtered quantities smooth the re-
sults such that overshoots are not captured. The main risk is constraint violation
since the controller considers the filtered quantities in the strategy. Here, the op-
timization and control problems did not consider constraints in output variables.
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Figure 5.31: Closed-loop dynamic trajectory of economic output variables in the
presence of 1% measurement noise: (a), (c), (e), (g) wE and (b), (d), (f), (h) wP.
Dots represent the measurements with noise, solid lines represent the estimated
output variables by EKF, dotted lines represent the calculated optimal setpoints
of output variables and dashed lines represent the plant optimum value.
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Figure 5.32: Closed-loop dynamic trajectories of manipulated variables in the
presence of 1% measurement noise: (a), (c), (e), (g) FB and (b), (d), (f), (h) TR.
Solid lines represent the optimal output variables determined by the RTO strate-
gies and dashed lines represent the plant optimum value.

Thus, this effect was not seen. It is interesting to notice that, even considering
noisy measurements, the strategies led the plant toward the optimum points.
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Figure 5.33: Closed-loop dynamic trajectories of disturbance estimation in the
presence of 1% measurement noise. Solid lines represent disturbance estimated
by EKF and dashed lines represent the disturbance plant value.

In Figure 5.32, it is possible to notice that the noise is propagated to the ma-
nipulated variables. However, it can also be noticed that the strategies were able
to lead the plant toward its optimum values.

In Figure 5.33, it is possible to notice that the estimated disturbance obtained
by EKF converged to the plant value. When comparing the results obtained in
the noisy measurements scenario to the scenario of measurements without noise
(Figure 5.29), it is noticed a slower convergence of the disturbance parameter,
which is also related to the noise filtering ability observed in the output variables
(Figure 5.31).
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Figures 5.34, 5.35, and 5.36 present the results of the output variables, manip-
ulated variables, and estimated disturbance, respectively, considering 5% noise
amplitude.
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Figure 5.34: Closed-loop dynamic trajectory of output variables in the presence of
5% measurement noise: (a), (c), (e), (g) wE and (b), (d), (f), (h) wP. Dots represent
the measurements with noise, solid lines represent the estimated output variables
by EKF, dotted lines represent the calculated optimal setpoints of output variables
and dashed lines represent the plant optimum value.

In Figure 5.34, it is possible to notice that the filter could smooth the noisy
measurements. It is also possible to notice that the filtered values present some
noise behavior related to the propagation of noise to the manipulated variables.
In Figure 5.35, this effect is prominent in FB. It is possible to notice that the strate-
gies led the manipulated variables toward the plant’s optimum value. However,
the manipulated variables presented variability. In Figure 5.36, it is also noticed
that the estimated disturbance presents noisy behavior, oscillating around the
plant value. It is interesting to notice that in EMPC2 and H-RTO1 strategies
(5.36(c) and 5.36(d), respectively), in the iteration interval of 150 ≤ k ≤ 180,
the estimated disturbance presents an integrating behavior, which is interrupted
by a new disturbance that occurs at iteration k = 180. Indeed, this effect is also
transferred to the controller, as can be seen by the manipulated variables profile,
especially for FB (Figures 5.35(c) and 5.35(e)), since a similar behavior is noticed.

Regarding economic information, Figures 5.37 5.38 and presents the economic
objective function and the Accumulated Loss Function obtained in each strategy
in the presence of 1% and 5% measurement noise amplitude.

From Figure 5.37, it can be noticed that objective function values present an
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Figure 5.35: Closed-loop dynamic trajectories of manipulated variables in the
presence of 5% measurement noise: (a), (c), (e), (g) FB and (b), (d), (f), (h) TR.
Solid lines represent the optimal output variables determined by the RTO strate-
gies and dashed lines represent the plant optimum value.

amplitude higher than 1%, which is justified by the weights associated with each
measured value in the objective function and amplify the noise effect. The solid
lines represent the calculated objective function value using the filtered output
variables values. This effect is even more prominent in the scenario of 5% pre-
sented in Figure 5.38. In this case, it is possible to notice that the measured ob-
jective function, due to noisy measurements, presents an amplitude of almost
50%. Here, it is important to highlight that strategies that consider the objective
function as a controlled variable directly, necessary need a data pretreatment step
since the noise measurements can be amplified when dealing with the objective
function information itself. The accumulated loss is also calculated considering
the objective function filtered values. It can also be noticed that the proposed
strategies led the plant toward the optimum value, such that the objective func-
tion obtained with noisy measurements oscillates around the plant’s optimum
value. As expected, the accumulated loss function increases when the distur-
bances occur since there is a gap between the plant’s actual value and the true
optimum value. The oscillatory behavior imposed by noisy measurements also
contributes to the increase in the accumulated loss function.

Table 5.7 presents the accumulated loss function values at the end of the sim-
ulation horizon considering noise amplitudes of 1% and 5%, respectively.

From Table 5.7, it is possible to notice that EMPC2 presented the lowest ac-
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Figure 5.36: Closed-loop dynamic trajectories of disturbance estimation in the
presence of 5% measurement noise. Solid lines represent the disturbance esti-
mated by EKF and dashed lines represent the plant value.

cumulated loss function value in the two cases of noise amplitude, followed by
H-RTO2. Compared to the scenario of measurements without noise, EMPC1 and
H-RTO2 were the strategies that presented the lower accumulated loss function
values. In the scenario of noisy measurements, H-RTO2 kept presenting lower
values, while EMPC2 outperformed EMPC1. Here, it is important to highlight
that EMPC1 depends on the gradient of the economic objective function, which is
obtained through the dynamic model. However, it also depends on the estimated
disturbance FA, such that noise may also impact. However, it is important to
highlight that a specific tuning could also improve the accumulated loss function
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Figure 5.37: Closed-loop dynamic trajectory of economic objective function and
the accumulated loss function in the presence of 1% measurement noise: (a), (c),
(e), (g) Objective function φeco ($/s) and (b), (d), (f), (h) Accumulated Loss Func-
tion ($). Dots represent the measured values, solid lines represent the calculated
value using estimated quantity by EKF, and dashed lines represents the plant op-
timum value.

Table 5.7: Accumulated loss function at the end of simulation considering noisy
measurements.

Strategy
Accumulated Loss Function ($)

filtered values
nnoise = 0.01 (1%)

Accumulated Loss Function ($)
filtered values

nnoise = 0.05 (5%)

EMPC1 4.051× 105 6.686× 105

EMPC2 3.465× 105 5.723× 105

H-RTO1 3.892× 105 7.261× 105

H-RTO2 3.627× 105 6.006× 105

for each strategy. Here, the tuning was kept the same for the sake of comparison.
Indeed, the EKF tuning plays a major role in strategies that uses transient data for
state and parameter estimation, as also highlighted by (MATIAS and LE ROUX,
2018), and it is also an important step for the proposed strategies proposed in this
chapter.
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Figure 5.38: Closed-loop dynamic trajectory of economic objective function and
the accumulated loss function in the presence of 5% measurement noise: (a), (c),
(e), (g) Objective function φeco and (b), (d), (f), (h) Accumulated Loss Function ($).
Dots represent the measured values, solid lines represent the calculated value
using estimated quantity by EKF, and dashed lines represents the plant optimum
value.

5.6 Partial Conclusions

This chapter presented several RTO frameworks based on an EMPC structure
which considers a Hammerstein model of the plant. This modeling approach can
be applied in the absence of first-principles models. In this strategy, the steady-
state nonlinear mapping and the linear dynamic model identification are inde-
pendent, considering that the steady-state model can be identified based on pre-
vious knowledge of the plant behavior. The modeling approach considered the
interactions among the state variables and the input directionality, a limitation
of some Hammerstein model structures. The proposed strategies were applied
to the Willians-Otto Reactor benchmark. In terms of the prediction ability of the
models, the proposed modeling approach shows an error ten times lower than
the classic Hammerstein structure approach. In terms of the proposed RTO strat-
egy, in the scenario of measurements without noise, the EMPC presented superior
results than the recently proposed two-layers and H-RTO approaches in closed-
loop. Also, using the economic objective function gradient as NMPC objective
function (EMPC1) outperformed the one that considers the economic objective
function itself (EMPC2). A modified H-RTO approach (H-RTO2) considering a
terminal economic cost in the controller’s objective function presented results
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comparable to the EMPC1 strategy. Regarding computational cost, the EMPC
strategies presented a lower average iteration time than H-RTO and conventional
RTO strategies. Finally, the strategies that apply the Hammerstein model in RTO
formulation demand only 0.7% of a framework where a first-principle model is
considered for optimization and control. The EMPC and H-RTO strategies were
also compared in the scenario of noisy measurements with amplitude of 1% and
5%. Considering the presence of noisy measurements, the proposed strategies
were able to lead the plant toward the optimum point. It was shown that the EKF
was able to filter the noisy measurements. However, some noise was propagated
to the manipulated variables due to the noisy estimated disturbance value. Com-
paring the accumulated loss function values obtained for each strategy, EMPC2
presented the lowest one, followed by H-RTO2. The effect of noisy disturbance
estimation may affect the gradient values used in EMPC1, which EMPC2 and H-
RTO2 outperformed. Indeed, EKF tuning is a essential for strategies that apply
transient data for state and parameter estimation.
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Chapter 6

Conclusion

A central question regarding RTO strategies is the process model, since the
RTO layer is typically based on the resolution of a model-based optimization
problem (ELLIS et al., 2014) and, therefore, the convergence to the plant’s op-
timum also depends on it. Some strategies known as Modifier Adaptation ap-
proaches were developed in the literature to guarantee the convergence to the
optimum, even if the model does not meet the local adequacy criteria proposed
by FORBES and MARLIN (1996). Some recent developments in the MA approach
are based on Gaussian Process (MA-GP and MAy-GP), which can be interpreted
as higher order correction terms to the rigorous model (FERREIRA et al., 2018).
Most RTO strategies assume that a reliable process model is at hand, which may
not be valid. Thus, strategies for obtaining a process model based on a data-
driven approach are also necessary.

In this way, in Chapter 4, the RTO using the MA-GP approach, considered a
rigorous model with GP correction terms, was compared to a pure data-driven
model using a GP as an estimator. The proposed methodology was applied to
the exothermic CSTR reactor and the Williams-Otto reactor benchmark problems.
The results obtained in both case studies, considering the proposed methodology
and the MA-GP approach, were able to drive the plant to a neighborhood of the
optimum point. Regarding the relative average deviation obtained in each strat-
egy, the values obtained showed that the data-driven strategy presented similar
performance compared to the plant-model mismatch approach. The main ad-
vantage of the proposed strategy is that it can be applied in the absence of any
steady-state model of the plant, which enables a data-driven RTO approach. In
addition, it was also compared the GP to model the output variables instead of
modeling the objective function and constraints, as established in MA-GP. The
results also showed similar results using the direct output variables modeling,
which is an advantage since the model can be directly applied for control pur-
poses and is not limited to a specific optimization problem.
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The results described in Chapter 4 were obtained, disregarding the process
dynamics. However, in practical applications, it may need to be considered.
Indeed, as the plant model used in RTO is a steady-state model, the delay in
the optimization and sampling steps until the plant reaches a new steady state
may be an issue. Also, another critical point in the practical implementations of
RTO strategies is the integration between the optimization and supervisory con-
trol layers, especially regarding the differences between the models used in each
layer, resulting in unachievable points arising from the RTO layer for the control
layer.

In this sense, this thesis proposes an integrated approach of the optimization
and supervisory control layers based on a data-driven modeling strategy, which
can be applied in the absence of first-principles models and enables using EMPC
and H-RTO approach.

In Chapter 5, a modeling approach based on a Hammerstein model struc-
ture was proposed, such that the steady-state plant model was applied as the
Hammerstein model nonlinear function. The steady-state model was based on a
Gaussian Process, which can be interpreted as a process mapping and identified
using selected steady-state data obtained from plant historical data. A signif-
icant advantage of the proposed strategy based on the Hammerstein model is
that identifying steady-state and dynamic functions can be done independently,
as the steady-state and dynamic functions in the Hammerstein structure are in
series. Additionally, the modeling approach considered the interactions among
the state variables and the input directionality, a limitation of some Hammerstein
model structures. This characteristic was achieved by considering parallel Ham-
merstein structures.

This modeling approach was applied to the Willians-Otto Reactor benchmark.
In terms of the prediction ability of the models, the proposed modeling approach
shows an error ten times lower than the classic Hammerstein structure approach.
Additionally, it was also able to predict complex dynamic behavior, especially for
E and P species, which are the most important from the economic perspective.

The proposed modeling approach was also applied in several RTO frame-
works based on EMPC and H-RTO structures, which were compared to the clas-
sical RTO approach with a steady-state detection step. In terms of economic ac-
cumulated loss, the EMPC and H-RTO strategies presented lower losses than the
classic RTO with SSD since, in this last approach, the plant operates under a sub-
optimal condition until reaching a new steady state. The EMPC presented supe-
rior results than the H-RTO approaches in closed-loop. Also, using the economic
objective function gradient as NMPC objective function (EMPC1) outperformed
the one that considers the economic objective function itself (EMPC2). A modi-
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fied H-RTO approach (H-RTO2) considering a terminal economic cost in the con-
troller’s objective function presented results comparable to the EMPC1 strategy.

Regarding computational cost, the EMPC strategies presented a lower aver-
age iteration time than H-RTO and conventional RTO strategies. As an advantage
of using the identified modeling approach, the strategies that apply the Ham-
merstein model in RTO formulation demand only 0.7% of a framework where a
first-principle model is considered for optimization and control.

Regarding the robustness of the proposed strategies to noisy measurements,
the EMPC and H-RTO strategies were compared considering noise amplitudes of
1% and 5%. It was shown that the four strategies (EMPC1, EMPC2, H-RTO1, and
H-RTO2) were able to lead the plant toward the plant optimum. Comparing the
accumulated loss function, EMPC2 outperformed the strategies in the two cases
of noise amplitude, followed by H-RTO2. It was also shown that noise is prop-
agated into the controller through the disturbance estimation, which presents
noise. Thus, it was also highlighted that EKF tuning plays a significant role in
the proposed strategies since it considers the use of transient data.

6.1 Future Research

Based on the contributions of this work, the following topics are suggested as
future research:

• Apply the proposed RTO framework to other case studies to evaluate the
computational cost reduction in large-scale problems.

• Apply the proposed modeling approach based on Hammerstein models in
D-RTO problems.

• Combine the MAy-GP strategy and the proposed modeling strategy based
on the Hammerstein model to improve the plant-model mismatch correc-
tion.

• Evaluate the usage of dynamic GP models based on a data-driven approach,
and add a trust-region constraint to the EMPC optimization problem based
on the GP uncertainty.
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FRUZZETTI, K., PALAZOĞLU, A., MCDONALD, K., 1997, “Nolinear model
predictive control using Hammerstein models”, Journal of Pro-
cess Control, v. 7, n. 1, pp. 31–41. doi: <https://doi.org/
10.1016/S0959-1524(97)80001-B>. Availability: <https://www.
sciencedirect.com/science/article/pii/S095915249780001B>.

GAO, W., ENGELL, S., 2005, “Iterative set-point optimization of batch chro-
matography”, Computers & chemical engineering, v. 29, n. 6, pp. 1401–
1409.

GAO, W., WENZEL, S., ENGELL, S., 2016, “A reliable modifier-adaptation
strategy for real-time optimization”, Computers and Chemical Engineer-
ing, v. 91, pp. 318–328. Availability: <http://dx.doi.org/10.1016/j.
compchemeng.2016.03.019>.

GARCÍA, C. E., PRETT, D. M., MORARI, M., 1989, “Model predictive con-
trol: Theory and practice—A survey”, Automatica, v. 25, n. 3, pp. 335–
348. doi: <https://doi.org/10.1016/0005-1098(89)90002-2>.
Availability: <https://www.sciencedirect.com/science/article/
pii/0005109889900022>.

182

10.48550/ARXIV.1807.02811
10.48550/ARXIV.1807.02811
https://arxiv.org/abs/1807.02811
https://arxiv.org/abs/1807.02811
https://doi.org/10.1016/j.jprocont.2020.04.004
https://www.sciencedirect.com/science/article/pii/S0959152420302018
https://www.sciencedirect.com/science/article/pii/S0959152420302018
https://doi.org/10.1016/S0959-1524(97)80001-B
https://doi.org/10.1016/S0959-1524(97)80001-B
https://www.sciencedirect.com/science/article/pii/S095915249780001B
https://www.sciencedirect.com/science/article/pii/S095915249780001B
http://dx.doi.org/10.1016/j.compchemeng.2016.03.019
http://dx.doi.org/10.1016/j.compchemeng.2016.03.019
https://doi.org/10.1016/0005-1098(89)90002-2
https://www.sciencedirect.com/science/article/pii/0005109889900022
https://www.sciencedirect.com/science/article/pii/0005109889900022


GARCIA, C. E., MORARI, M., 1981, “Optimal Operation of Integrated Process-
ing Systems. Part I: Open-loop on-line optimizing control”, AIChe Jour-
nal, v. 27, n. 6, pp. 960–968.

GARCIA, C. E., MORSHEDI, A. M., 1986, “Quadratic Programming Solution of
Dynamic Matrix Control (QDMC)”, Chemical Engineering Communica-
tions, v. 46, n. 1-3, pp. 73–87.

GELBART, M. A., 2015, Constrained Bayesian Optimization and Applications. Tese
de D.Sc., Harvard University, Cambridge, Massachusetts.

GELBART, M. A., SNOEK, J., ADAMS, R. P., 2014. “Bayesian Optimization with
Unknown Constraints”. doi: <10.48550/ARXIV.1403.5607>. Avail-
ability: <https://arxiv.org/abs/1403.5607>.

GIUDICI, R., NASCIMENTO, C., BEILER, I. C., SCHERBAKOFF, I., 1998, “Mod-
eling of industrial nylon-6,6 polycondensation process in a twin-screw
extruder reactor. I. phenomenological model and parameter adjust-
ing”, Journal of Applied Polymer Science, v. 67.

GIUNTA, A., ELDRED, M., 2000, “Implementation of a trust region model
management strategy in the DAKOTA optimization toolkit”. In: 8th
Symposium on Multidisciplinary Analysis and Optimization. Availability:
<https://arc.aiaa.org/doi/abs/10.2514/6.2000-4935>.

GOMES, M. V. D. C., 2007, Otimização Sequencial por Aproximações - Uma Aplicação
em Tempo Real para o Refino de Petróleo. Tese de D.Sc., Universidade
Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.

GOMES, M. V., DAVID, I., BOGLE, L., ODLOAK, D., BISCAIA, E. C., 2006, “An
application of metamodels for process optimization”. In: Marquardt,
W., Pantelides, C. (Eds.), 16th European Symposium on Computer Aided
Process Engineering and 9th International Symposium on Process Systems
Engineering, v. 21, Computer Aided Chemical Engineering, Elsevier, pp.
1449–1454. Availability: <https://www.sciencedirect.com/science/
article/pii/S1570794606802518>.

GOMES, M. V., BOGLE, I. D. L., BISCAIA, E. C., ODLOAK, D., 2008, “Using
kriging models for real-time process optimisation”. In: Braunschweig,
B., Joulia, X. (Eds.), 18th European Symposium on Computer Aided Process
Engineering, v. 25, Computer Aided Chemical Engineering, Elsevier, pp.
361–366. Availability: <https://www.sciencedirect.com/science/
article/pii/S157079460880065X>.

183

10.48550/ARXIV.1403.5607
https://arxiv.org/abs/1403.5607
https://arc.aiaa.org/doi/abs/10.2514/6.2000-4935
https://www.sciencedirect.com/science/article/pii/S1570794606802518
https://www.sciencedirect.com/science/article/pii/S1570794606802518
https://www.sciencedirect.com/science/article/pii/S157079460880065X
https://www.sciencedirect.com/science/article/pii/S157079460880065X


GONZÁLEZ, A. H., ODLOAK, D., 2009, “A stable MPC with zone control”, Jour-
nal of Process Control, v. 19, n. 1, pp. 110–122. doi: <https://doi.org/
10.1016/j.jprocont.2008.01.003>. Availability: <https://www.
sciencedirect.com/science/article/pii/S0959152408000097>.

GRACIANO, J. E. A., JÄSCHKE, J., LE ROUX, G. A., BIEGLER, L. T.,
2015, “Integrating self-optimizing control and real-time optimiza-
tion using zone control MPC”, Journal of Process Control, v. 34,
pp. 35–48. doi: <https://doi.org/10.1016/j.jprocont.2015.07.
003>. Availability: <https://www.sciencedirect.com/science/
article/pii/S0959152415001523>.

GRAMACY, R. B., 2020, Surrogates: Gaussian Process Modeling, Design and Op-
timization for the Applied Sciences. Boca Raton, Florida, Chapman
Hall/CRC. http://bobby.gramacy.com/surrogates/.

HAIMES, Y. Y., WISMER, D. A., 1972, “A computational approach to the com-
bined problem of optimization and parameter identification”, Auto-
matica, v. 8, n. 3, pp. 337–347.

HARNISCHMACHER, G., MARQUARDT, W., 2007a, “A multi-variate Ham-
merstein model for processes with input directionality”, Journal of Pro-
cess Control, v. 17, n. 6, pp. 539–550.

HARNISCHMACHER, G., MARQUARDT, W., 2007b, “Nonlinear model pre-
dictive control of multivariable processes using block-structured
models”, Control Engineering Practice, v. 15, n. 10, pp. 1238–
1256. doi: <https://doi.org/10.1016/j.conengprac.2006.10.016>.
Availability: <https://www.sciencedirect.com/science/article/
pii/S0967066106002012>. Special Issue - International Symposium
on Advanced Control of Chemical Processes (ADCHEM).

HAWE, G. I., SYKULSKI, J. K., 2008, “Probability of improvement methods for
constrained multi-objective optimization”. In: 2008 IET 7th Interna-
tional Conference on Computation in Electromagnetics, pp. 50–51.

HEIDERINEJAD, M., LIU, J., CHRISTOFIDES, P., 2012, “Economic Model Pre-
dictive Control of Nonlinear Process Systems Using Lyapunov Tech-
niques”, AIChE Journal, v. 58, n. 3, pp. 855–870.

HEIRUNG, T. A. N., YDSTIE, B. E., FOSS, B., 2015, “Dual MPC for FIR Systems:
Information Anticipation”, IFAC-PapersOnLine, v. 48, n. 8, pp. 1033 –
1038.

184

https://doi.org/10.1016/j.jprocont.2008.01.003
https://doi.org/10.1016/j.jprocont.2008.01.003
https://www.sciencedirect.com/science/article/pii/S0959152408000097
https://www.sciencedirect.com/science/article/pii/S0959152408000097
https://doi.org/10.1016/j.jprocont.2015.07.003
https://doi.org/10.1016/j.jprocont.2015.07.003
https://www.sciencedirect.com/science/article/pii/S0959152415001523
https://www.sciencedirect.com/science/article/pii/S0959152415001523
http://bobby.gramacy.com/surrogates/
https://doi.org/10.1016/j.conengprac.2006.10.016
https://www.sciencedirect.com/science/article/pii/S0967066106002012
https://www.sciencedirect.com/science/article/pii/S0967066106002012


HELDT, S., 2010, “Dealing with structural constraints in self-optimizing control
engineering”, Journal of Process Control, v. 20, n. 9, pp. 1049–1058.

HELMDACH, D., YASENEVA, P., HEER, P. K., SCHWEIDTMANN, A. M.,
LAPKIN, A. A., 2017, “A Multiobjective Optimization Including
Results of Life Cycle Assessment in Developing Biorenewables-
Based Processes”, ChemSusChem, v. 10, n. 18, pp. 3632–3643.
doi: <https://doi.org/10.1002/cssc.201700927>. Availabil-
ity: <https://chemistry-europe.onlinelibrary.wiley.com/doi/
abs/10.1002/cssc.201700927>.

HERNANDEZ, E., ARKUN, Y., 1993, “Control of nonlinear systems using poly-
nomial ARMA models”, AIChE Journal, v. 39, n. 3, pp. 446–460.

HERNÁNDEZ, R., ENGELL, S., 2019, “Economics Optimizing Control
with Model Mismatch Based on Modifier Adaptation**This work
is part of the Collaborative Research Center ”Integrated Chem-
ical Processes in Liquid Multiphase Systems” - InPROMPT. Fi-
nancial support by the Deutsche Forschungsgemeinschaft (DFG) is
gratefully acknowledged (TR63)”, IFAC-PapersOnLine, v. 52, n. 1,
pp. 46–51. doi: <https://doi.org/10.1016/j.ifacol.2019.06.035>.
Availability: <https://www.sciencedirect.com/science/article/
pii/S240589631930120X>. 12th IFAC Symposium on Dynamics and
Control of Process Systems, including Biosystems DYCOPS 2019.

HOSKINS, J. C., KALIYUR, K. M., HIMMELBLAU, D. M., 1991, “Fault diagnosis
in complex chemical plants using artificial neural networks”, AIChE
Journal, v. 37, n. 1, pp. 137–141.

JACOBS, J., ETMAN, L., VAN KEULEN, F., ROODA, J., 2004, “Framework
for sequential approximate optimization”, Structural and Multidisci-
plinary Optimization, v. 27, n. 5, pp. 384– 400. doi: <https://
doi.org/10.1007/s00158-004-0398-8>. Availability: <http://www.
sciencedirect.com/science/article/pii/S2405896319301211>.

JAECKLE, C. M., MACGREGOR, J. F., 1998, “Product design through multi-
variate statistical analysis of process data”, AIChE Journal, v. 44, n. 5,
pp. 1105–1118. Availability: <http://doi.wiley.com/10.1002/aic.
690440509>.

JÄSCHKE, J., SKOGESTAD, S., 2011, “NCO tracking and self-optimizing con-
trol in the context of real-time optimization”, Journal of Process Control,
v. 21, n. 10, pp. 1407–1416.

185

https://doi.org/10.1002/cssc.201700927
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201700927
https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201700927
https://doi.org/10.1016/j.ifacol.2019.06.035
https://www.sciencedirect.com/science/article/pii/S240589631930120X
https://www.sciencedirect.com/science/article/pii/S240589631930120X
https://doi.org/10.1007/s00158-004-0398-8
https://doi.org/10.1007/s00158-004-0398-8
http://www.sciencedirect.com/science/article/pii/S2405896319301211
http://www.sciencedirect.com/science/article/pii/S2405896319301211
http://doi.wiley.com/10.1002/aic.690440509
http://doi.wiley.com/10.1002/aic.690440509


JÄSCHKE, J., CAO, Y., KARIWALA, V., 2017, “Self-optimizing control – A sur-
vey”, Annual Reviews in Control, v. 43, pp. 199–223.

JOHNSON, M. E., MOORE, L. M., YLVISAKER, D., 1990, “Minimax and max-
imin distance designs”, Journal of Statistical Planning and Inference, v. 26,
n. 2, pp. 131–148.

JOHNSTON, L. P. M., KRAMER, M. A., 1995, “Maximum likelihood data rec-
tification: Steady-state systems”, AIChE Journal, v. 41, n. 11, pp. 2415–
2426. doi: <https://doi.org/10.1002/aic.690411108>. Availabil-
ity: <https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/
aic.690411108>.

JONES, D. R., SCHONLAU, M., WELCH, W. J., 1998, “Efficient Global Optimiza-
tion of Expensive Black-Box Functions”, Journal of Global Optimization,
v. 13, n. 4 (Dec), pp. 455–492. doi: <10.1023/A:1008306431147>. Avail-
ability: <https://doi.org/10.1023/A:1008306431147>.

JOSEPH, V. R., GUL, E., BA, S., 2015, “Maximum projection designs for com-
puter experiments”, Biometrika, v. 102, n. 2, pp. 371–380.

KARIWALA, V., 2007, “Optimal measurement combination for local self-
optimizing control”, Industrial and Engineering Chemistry Research, v. 46,
n. 11, pp. 3629–3634.

KARIWALA, V., CAO, Y., JANARDHANAN, S., 2008, “Local self-optimizing
control with average loss minimization”, Industrial and Engineering
Chemistry Research, v. 47, n. 4, pp. 1150–1158.

KIM, I.-W., LIEBMAN, M. J., EDGAR, T. F., 1990, “Robust error-in-variables
estimation using nonlinear programming techniques”, AIChE Jour-
nal, v. 36, n. 7, pp. 985–993. doi: <https://doi.org/10.1002/aic.
690360703>. Availability: <https://aiche.onlinelibrary.wiley.
com/doi/abs/10.1002/aic.690360703>.
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