

OXIDAÇÃO SELETIVA DO CO COM CATALISADORES Pt SUPORTADO EM ÓXIDOS MISTOS DE FERRO-ZIRCONIA

Ricardo Scheunemann

Tese de Doutorado apresentada ao Programa de Pós-graduação em Engenharia Química, COPPE, da Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Doutor em Engenharia Química.

Orientador(es): Martim Schmal

Fábio Bellot Noronha

Rio de Janeiro Outubro de 2009

OXIDAÇÃO SELETIVA DO CO COM CATALISADORES PL SUPORTADO EM ÓXIDOS MISTOS DE FERRO-ZIRCONIA

Ricardo Scheunemann

TESE SUBMETIDA AO CORPO DOCENTE DO INSTITUTO ALBERTO LUIZ COIMBRA DE PÓS-GRADUAÇÃO E PESQUISA DE ENGENHARIA (COPPE) DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE DOUTOR EM CIÊNCIAS EM ENGENHARIA QUÍMICA.

Examinada por:

Prof. Martin Schmal, Dr.Ing.

Prof. Fábio Bellot Noronha, D.Sc.

Prof^a. Vera Maria Martins Salim, D.Sc.

Prof^a. Carla Eponina Hori, D.Sc.

Dr.^a Deborah Vargas Cesar, D.Sc.

RIO DE JANEIRO, RJ - BRASIL OUTUBRO DE 2009 Scheunemann, Ricardo
Oxidação Seletiva do CO com catalisadores Pt
suportado em óxidos mistos de Ferro-Zirconia/Ricardo
Scheunemann. – Rio de Janeiro: UFRJ/COPPE, 2009.
XVI, 140 p.: il.; 29,7 cm.
Orientador: Martim Schmal
Fabio Bellot Noronha
Tese (doutorado) – UFRJ/ COPPE/ Programa de
Engenharia Química, 2009.
Referências Bibliográficas: p. 128-138.
1. Células Combustíveis. 2. Oxidação Seletiva do CO.
3. Óxidos Mistos. I. Schmal, Martin et al. II. Universidade
Federal do Rio de Janeiro, COPPE, Programa de

Dedico esta Tese de Doutorado com carinho e muita gratidão a minha família que amo, aos meus pais Aldino e Maria, meu irmão Leandro e minha cunhada Márcia.

AGRADECIMENTOS

Agradeço:

Aos meus orientadores, Prof. Martin Schmal e Dr. Fabio Bellot Noronha, pelo incentivo, orientação e dedicação, e por acreditar em mim e no nosso trabalho. E também por toda a oportunidade de crescimento profissional e pessoal que me proporcionaram através de seus ensinamentos.

Aos membros da banca que contribuíram para o fortalecimento deste trabalho.

A minha turma de Doutorado 2005/1.

Ao Programa de Engenharia Química da COPPE.

A equipe técnica do NUCAT.

Aos amigos Pedro Paulo Lessa Tojal do Vale e Rafael Araújo da Silva por me ajudarem durante esta caminhada e sempre torcerem pelas minhas conquistas. Seria difícil expressar em palavras o que vocês significam para mim. Muito obrigado!

A minha amiga e irmã Raquel Mendes, por todo seu companheirismo e amizade durante essa longa jornada de estudos.

Aos amigos Thiago e Rodrigo pelo companheirismo e carinho.

A todas as pessoas que de alguma forma tenham acompanhado e contribuído para a realização deste trabalho.

Ao CNPQ, instituição oficial que outorgou a bolsa que permitiu o desenvolvimento deste trabalho.

Á Deus.

Resumo da Tese apresentada à COPPE/UFRJ como parte dos requisitos necessários para a obtenção do grau de Doutor em Ciências (D.Sc.)

OXIDAÇÃO SELETIVA DO CO COM CATALISADORES Pt SUPORTADO EM ÓXIDOS MISTOS DE FERRO-ZIRCONIA

Ricardo Scheunemann Outubro/2009

Orientadores: Martin Schmal Fabio Bellot Noronha Programa: Engenharia Química

Foram preparados óxidos mistos de Fe_xZr_(1-x)O₂ pelo método de precipitação com diferentes razões molares de Fe/Zr. Catalisadores de Pt suportados sobre Fe_2O_3 , ZrO₂ e Fe_xZr_(1-x)O₂ foram preparados pelo método de impregnação seca e avaliados na reação de oxidação seletiva do CO. Análises de DRX foram utilizadas com sucesso para identificar as fases cristalinas. Medidas de TPR mostraram que os suportes óxidos reduzem em altas temperaturas e a platina reduz num patamar de temperatura menor. O TPD de CO foi fundamental para avaliarmos o comportamento dos catalisadores frente à adsorção de CO sobre os sítios de platina, bem como quantificar as espécies dessorvidas. Os resultados de quimissorção foram medidos por H2 e CO, e consequentemente o grau de dispersão e o tamanho das partículas de platina. As análises de DRIFTS revelaram que o CO é fracamente adsorvido sobre os sítios de Pt, sendo que o CO₂ formado é proveniente da reação entre CO gasoso e O₂ adsorvido sobre a platina segundo o mecanismo Eley-Rideal. A Espectroscopia de Mössbauer revelou que as espécies de ferro presentes nos suportes influenciam na redução de PtO_x. Sugere ainda a formação de óxidos mistos após a redução. Os resultados mostram que os catalisadores Pt/ZrO₂, Pt/Fe₂O₃ e Pt/Fe_{0.25}Zr_{0.75}O₂ são os mais seletivos para a reação CO+H₂+O₂ em baixas temperaturas. A atividade intrínseca (TOF) mostrou que os catalisadores 1% Pt/Fe_xZr_(1-x)O₂ e 1% Pt/Fe₂O₃ foram os mais ativos comparados ao Pt/ZrO₂. Os testes de estabilidade com o tempo de reação mostraram que as amostras não apresentaram desativação por um período de 48h.

Abstract of Thesis presented to COPPE/UFRJ as a partial fulfillment of the requirements for the degree of Doctor of Science (D.Sc.)

SELECTIVE CO OXIDATION USING CATALYSTS Pt SUPPORTED ON MIXED OXIDE OF TYPE IRON-ZIRCONIUM

Ricardo Scheunemann

October/2009

Advisors: Martin Schmal Fabio Bellot Noronha Department: Chemical Engineering

Mixed oxides $Fe_xZr_{(1-x)}O_2$ were prepared by precipitation method with different molar ratios of Fe/Zr. Pt was incorporated by dry impregnation on Fe₂O₃, ZrO₂ and Fe_xZr (1-x) O₂ and the all catalysts were evaluated for the selective CO oxidation. XRD results were used to identify crystalline phases. TPR measurements showed that the mixed oxides are reduced at higher temperatures whereas platinum at low temperature, depending on the Fe content. TPD of CO showed the CO desorption capacity on different catalysts and the desorbed species, depending of the metal dispersion determined by chemisorption of H₂ and CO. DRIFTS analysis revealed that CO is weakly adsorbed on Pt sites, depending of the support and mixed oxides and suggests that CO₂ formation occurs by reaction between gaseous CO and O₂ adsorbed on platinum, according to the Eley-Rideal mechanism. Mössbauer spectroscopy revealed that the iron species present in the support influences the reduction of PtO_x . It also suggests the formation of mixed oxide after reduction. Results showed that catalysts Pt/ZrO₂, Pt/Fe₂O₃ and Pt/Fe_{0.25}Zr_{0.75}O₂ are very selective for the CO+H₂+O₂ reaction at low temperatures. The activity based on TOF measurements suggests that the 1% $Pt/Fe_xZr_{(1-x)}O_2$ and 1% Pt/Fe_2O_3 catalysts are the most active compared to the Pt/ZrO_2 . Stability tests showed that these catalysts did not present significant deactivation for a period of 48 hours.

ÍNDICE GERAL

LISTA DE FIGURAS	X
LISTA DE TABELAS	xvi
CAPÍTULO I - INTRODUÇÃO	1
CAPÍTULO II - REVISÃO BIBLIOGRÁFICA	4
2.1 Oxidação Seletiva do CO	6
2.2 Catalisadores de Platina	7
2.3 Efeito de Promotores, Natureza dos Suportes e Condições Reacionais	14
2.4 Óxido de Ferro (Fe ₂ O ₃)	27
2.5 Outros Catalisadores	32
2.6 Óxidos Mistos	37
2.7 Óxido Misto (Fe ₂ O ₃ - ZrO ₂)	49
CAPÍTULO III - METODOLOGIA	60
3.1 Métodos de Preparo	60
3.1.1 Preparação dos Suportes	60
3.1.2 Preparação dos Catalisadores	60
3.2 Caracterização dos Suportes e Catalisadores	61
3.2.1 Fluorescência de Raios-X (FRX)	61
3.2.2 Análise Textural (BET)	62
3.2.3 Difração de Raios-X (DRX)	62
3.2.4 Redução à Temperatura Programada (TPR-H ₂)	62
3.2.5 Quimissorção de H ₂ e CO	63
3.2.6 Dessorção à Temperatura Programada de CO e da Mistura Reacional	63
3.2.7 Análise de Espectroscopia na Região do Infravermelho por Reflectância Difusa	64
do CO	
3.2.8 Espectroscopia de Mössbauer	65
3.2.9 Reação Superficial com Pulsos da Mistura Reacional	66
3.4 Testes Catalíticos	66
CAPÍTULO IV – RESULTADOS e DISCUSSÕES	68
4.1 Caracterização dos Materiais	68
4.1.1 Fluorescência de Raios-X (FRX)	68
4.1.2 Analise Textural (BET)	69
4.1.3 Difração de Raio-X (DRX)	71
4.1.4 Redução à Temperatura Programada (TPR-H ₂)	75
4.1.5 Dessorção de CO à Temperatura Programada (TPD-CO)	82

4.1.6 Quimissorção de CO e H ₂				
4.1.7. Análise de Espectroscopia na Região do Infravermelho por Reflectância Difusa				
do CO				
4.1.8 Espectroscopia de Mössbauer	103			
4.1.8.1 Espectroscopia de Mössbauer sem Redução das Amostras	103			
4.1.8.2 Espectroscopia de Mössbauer com Redução das Amostras				
4.1.9 Reação Superficial com Pulsos da Mistura Reacional	109			
4.2 Testes Catalíticos	112			
4.2.1 Atividade Intrínseca (TOF)	121			
4.2.2 Seletividade				
4.2.3 Estabilidade Catalítica				
CAPÍTULO V – CONCLUSÕES E SUGESTÕES	125			
5.1 Conclusões	125			
5.2 Sugestões	127			
REFERÊNCIAS BIBLIOGRÁFICAS	128			
APÊNDICE	139			

LISTA DE FIGURAS

5 Figura 2.1 – Representação esquemática de uma célula combustível (WENDT et al., 2000). Figura 2.2 – Variação da conversão de CO para o catalisador Pt-Fe/M (Pt/Fe = 3:1, 2:1 e 1:1) 9 em função da temperatura. Condições reacionais: 0,025 mg de catalisador, 50 cm³min⁻¹ e 1%CO, 0,5%O₂ 20%H₂O e balanço H₂ (WATANABE et al., 2003). **Figura 2.3** – Atividade SELOX dos catalisadores 4%Pt/Mordenita (▲), 0,5% Fe/Mordenita 10 (**■**) e 4%Pt–0,5%Fe/Mordenita (O) em função da temperatura de reação. Composição: 1% CO, 0.5% O₂ e balanço H₂. GHSV = 50.000 h⁻¹ (KOTOBUKI *et al.*, 2005). Figura 2.4 - Reatividade de CO pré-adsorvido em (a) 4%Pt/Mordenita e (b) 4%Pt-11 0,5%Fe/Mordenita com injeção de O₂ (KOTOBUKI et al., 2005). Figura 2.5 – Reatividade de CO e H_2 pré-adsorvido em (a) 4%Pt/Mordenita e (b) 4%Pt-12 0,5%Fe/Mordenita com injeção de O₂ (KOTOBUKI et al., 2005). Figura 2.6 – Esquema do mecanismo da reação PROX para os catalisadores (a) 13 4%Pt/Mordenita, (b) 0,5%Fe/Mordenita e (c) 4%Pt-0,5%Fe/Mordenita (KOTOBUKI et al., 2005). Figura 2.7 – Conversão de CO e Seletividade dos catalisadores preparados por diferentes 15 métodos: (1) Pt/y-Al₂O₃, (2) Ce/Pt/y-Al₂O₃-SP, (3) Pt/Ce/y-Al₂O₃-SP, (4) Pt/Ce/y-Al₂O₃-CP. Mistura gasosa: $(1\% \text{ CO}, 1\% \text{ O}_2, 40\% \text{ H}_2, \text{ balanco com He}) \text{ e GHSV} = 40 \text{ L.g}^{-1} \text{.h}^{-1}$. (LIU *et al.*, 2007).

Figura 2.8 – Conversão de CO e Seletividade dos catalisadores preparados por diferentes 15 temperaturas de deposição-precipitação: (1) Pt-Ce/γ-Al₂O₃-CP-30, (2) Pt-Ce/γ-Al₂O₃-CP-60, (3) Pt/Ce/γ-Al₂O₃-CP-80. Mistura gasosa: (1% CO, 1% O₂, 40% H₂, balanço com He) e GHSV = 40 L.g⁻¹.h⁻¹. (LIU *et al.*, 2007).

Figura 2.9 – (a) Efeito da temperatura na conversão de CO e (b) seletividade de $O_2(\blacksquare)$ 1%Pt/ γ -Al₂O₃, (**▲**) 3%Co/ γ -Al₂O₃ e (**●**) 3%Co/1%Pt/ γ -Al₂O₃. Alimentação: O₂/CO = 1,8 φ_{CO} = 1,1% φ_{H2} = 67% φ_{CO2} = 20% φ_{H2O} = 9% e balanço de N₂. GHSV = 40.000 mL.g⁻¹.h⁻¹ (YAN *et al.*, 2004).

Figura 2.10 – Conversão de CO para os catalisadores Pt/Al_2O_3 (**n**), Ru/Al_2O_3 (**n**), Rh/Al_2O_3 (**1**), Pd/Al_2O_3 (**0**) e Au/Fe₂O₃ (**A**), na condição 1 em função da temperatura. Condições reacionais: 0,2g de catalisador, 100cm³min⁻¹, velocidade espacial de 7500 – 36.000 h⁻¹ e 10,1ppm H₂, 1100ppm CO, 990ppm O₂ e balanço de N₂ (SUH *et al.*, 2005).

Figura 2.11 – (A) Conversão de CO para Pt/Al₂O₃ (**n**), Pt/aerogel-SiO₂ (**•**), Pt/C (O) e (B) para 18 PtCo/Al₂O₃ (**n**), PtNi/Al₂O₃ (**•**) e PtMn/Al₂O₃ (O) (SUH *et al.*, 2005).

Figura 2.12 – Formação dos sítios ativos sobre FeOx (TANAKA *et al.*, 2004).20

Figura 2.13 – Atividade catalítica em termos da conversão de CO versus temperatura para a 21 oxidação total de CO. Os catalisadores marcados com (*) foram reduzidos a 300 0 C, enquanto

que os demais foram reduzidos a 500 °C. Condições: 140 mg de catalisador, 80 mL.min⁻¹ e 5%CO/5%O₂/He (MARQUES *et al.*, 2005).

Figura 2.14 – (A) Atividade catalítica em termos da conversão de O_2 e (B) conversão de CO 22 em função da temperatura. Catalisadores marcados com (*) foram reduzidos a 300 $^{\circ}$ C, enquanto os demais foram reduzidos a 500 $^{\circ}$ C. Condições reacionais: 140 mg de catalisador, 80 mL.min⁻¹ e 5%CO/5%O₂/He (MARQUES *et al.*, 2005).

Figura 2.15 – (A) Atividade catalítica em termos da conversão de O_2 e (B) conversão de CO 23 em função da temperatura para a oxidação seletiva de CO. Condições reacionais: 140mg de catalisador e 80 mL.min⁻¹ de 12%H₂, 5% CO, 5% O₂ e balanço de He (SOUZA *et al.*, 2007).

Figura 2.16 – Conversão, Seletividade e Consumo de O₂ em função da temperatura para 1% e 24 2% Pt/Al_2O_3 . Carga reacional: 1% CO, 1% O₂, 60% H₂, e He balanço, 70mg de catalisador reduzido a 500 $^{0}C/13h$ com H₂ (MANASILP e GULARI, 2002).

Figura 2.17 – Efeito do O₂ no gás de alimentação em função da temperatura para 1% e 2% 25 Pt/Al₂O₃. Carga reacional: 1% CO, O₂ variável, 60% H₂, 25% CO₂, 10% H₂O e He balanço, 70mg de catalisador reduzido a 500 0 C/13h com H₂ (MANASILP e GULARI, 2002).

Figura 2.18 – Conversão e Seletividade do catalisador Pt/FAU (SEBASTIAN *et al.* 2009) 27

Figura 2.19 - Conversão e Seletividade do catalisador Pt/ETS-10 (SEBASTIAN *et al.* 2009) 27

Figura 2.20 – Conversão de CO em função da temperatura. Efeito da temperatura de30calcinação e redução para as amostras (a) AuDP, (b) AuCP e (c) AuRef. (SCIRÈ *et al.*, 2008).

Figura 2.21 – Seletividade em função da temperatura. Efeito da temperatura de calcinação e 31 redução para as amostras (a) AuDP, (b) AuCP e (c) AuRef. (SCIRÈ *et al.*, 2008).

Figura 2.22 – Atividade catalítica das amostras (KUDO et al., 2009).

Figura 2.23 – Mecanismo de reação e desativação para o catalisador Au/ZrO₂ (KONOVA *et* 34 *al.*, 2004a).

32

Figura 2.24 – Mecanismo da oxidação de CO na presença de H_2 (lado esquerdo) e oxidação do 37 H_2 (lado direito). ^{*} sitio de adsorção (QUINET *et al.*, 2009).

Figura 2.25 – Conversão (a) e Seletividade (b) em função da temperatura nos diferentes 39 catalisadores. Condições reacionais: 5%CO, ar (CO/O₂ = 2/1) e H₂ balanço, velocidade espacial 18.600 cm³/g_{cat} (ROH *et al.*, 2004).

Figura 2.26 – Oxidação Preferencial do CO para Pt/Al₂O₃. (\Box) Conversão de O₂, (\Diamond) 40 Seletividade, (•) Conversão de CO em função da temperatura para as diferentes condições de excesso de O₂ (WOOTSCH *et al.*, 2004).

Figura 2.27 – Oxidação Preferencial do CO para Pt/CeO₂ livre de Cloro. (□) Conversão de O₂, 40
(◊) Seletividade, (•) conversão de CO em função da temperatura para diferentes condições λ = O₂/CO (WOOTSCH *et al.*, 2004).

Figura 2.28 – Oxidação total de CO para os catalisadores $Pt/Ce_xZr_{1-x}O_2$ com razão $O_2/CO = 2$ 43 (AYASTUSY *et al.*, 2006).

Figura 2.29 – Conversão de CO (a), Seletividade (b) e Rendimento (c) ricos em H₂ para 44 Pt/Ce_xZr_{1-x}O₂ com O₂/CO = 2 (AYASTUY *et al.*, 2006).

Figura 2.30 - Atividade catalítica para oxidação do CO do catalisador $Au/Ce_{0,8}Zr_{0,2}O_2$ 47 relacionando a variação de pH, percentual de Au, temperatura e tempo de calcinação (WANG *et al.*, 2007b).

Figura 2.31 – Influência da taxa Ce/Ti no catalisador Au/CeO2-TiO2. (\Box) CeO2-TiO2 (1:1); (\circ)48CeO2-TiO2 (10:90); (\blacktriangle)CeO2-TiO2 (20:80); (\diamond) CeO2-TiO2 (30:70); (\blacksquare) TiO2 (Degussa); (*)48CeO2 (Degussa) (SANGEETHA E CHEN, 2009).48

Figura 2.32 – Difratograma das amostras obtidas durante calcinação a 500 ^oC por 2h 51 (STEFANIC *et al.*, 1999).

Figura 2.33 – Difratograma das amostras calcinadas a 600 $^{\circ}$ C na presença de ar (~10⁵Pa) 54 (STEFANIC *et al.*, 2000).

Figura 2.34 – Difratograma das amostras calcinadas a 800 $^{\circ}$ C na presença de ar (~10⁵Pa) 54 (STEFANIC *et al.*, 2000).

Figura 2.35 – Difratograma das amostras ZF0, ZF1 e ZF3 calcinadas a baixa pressão ($\sim 4x10^{-3}$ 55 Pa) em T = 500°C a 1200 °C (STEFANIC *et al.*, 2000).

Figura 2.36 – Difratograma da amostra ZF4 calcinada a baixa pressão (~ $4x10^{-3}$ Pa) em T = 55 500°C a 1200 °C (STEFANIC *et al.*, 2000).

Figura 2.37 – Difratograma da amostra ZF5 calcinada a baixa pressão ($\sim 4x10^{-3}$ Pa) 55 (STEFANIC *et al.*, 2000).

Figura 2.38 – Difratograma das amostras após resfriamento de 1200 $^{\circ}$ C até temperatura 55 ambiente com ar (~10⁵ Pa) (STEFANIC *et al.*, 2000).

Figura 2.39 – Difratograma das amostras calcinadas a 500 °C (STEFANIC *et al.*, 2001).57Figura 2.40 – Difratograma das amostras calcinadas a 800 °C (STEFANIC *et al.*, 2001).57

Figura 2.41 – Quantidades de ácido e base e área superficial do sistema Fe_2O_3 -ZrO₂ com 59 várias composições calcinadas a 700 0 C (WU *et al.*, 1993).

Figura 2.42 – Difratograma do sistema Fe_2O_3 -Zr O_2 com várias composições calcinadas a 700 59 $^{\circ}C$ (WU *et al.*, 1993).

Figura 3.1 - Representação esquemática do espectrômetro Mössbauer.	65
Figura 4.1 – Difratograma do suporte ZrO_2 e catalisador 1% Pt/ZrO ₂ .	72
Figura 4.2 – Difratograma do suporte Fe_2O_3 e catalisador 1% Pt/Fe ₂ O ₃ .	72
Figura 4.3 – Difratograma do suporte $Fe_{0,25}Zr_{0,75}O_2$ e catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O_2.	73
Figura 4.4 – Difratograma do suporte $Fe_{0,5}Zr_{0,5}O_2$ e catalisador 1% Pt/Fe _{0,5} Zr _{0,5} O ₂ .	74

Figura 4.5 – Difratograma do suporte $Fe_{0,75}Zr_{0,25}O_2$ e catalisador 1% Pt/Fe_{0,75}Zr_{0,25}O_2. 74

Figura 4.6 – Perfil de redução do suporte ZrO ₂ e catalisador 1% Pt/ZrO ₂ .	77
Figura 4.7 – Perfil de redução do suporte Fe ₂ O ₃ e catalisador 1% Pt/Fe ₂ O ₃ .	79
Figura 4.8 – Perfil de redução do suporte $Fe_{0,5}Zr_{0,5}O_2$ e catalisador 1% Pt/F $e_{0,5}Zr_{0,5}O_2$.	80
Figura 4.9 – Perfil de redução do suporte $Fe_{0,75}Zr_{0,25}O_2$ e catalisador 1% Pt/Fe_{0,75}Zr_{0,25}O_2.	80
Figura 4.10 – Perfil de redução do suporte $Fe_{0,25}Zr_{0,75}O_2$ e catalisador 1%Pt/ $Fe_{0,25}Zr_{0,75}O_2$.	81
Figura 4.11 – Perfis de Dessorção de CO do catalisador 1% Pt/ZrO ₂ .	83
Figura 4.12 – Perfis de Dessorção da Mistura Reacional (1% CO, 1%O ₂ , 60% H ₂ e balanço	84
He) do catalisador 1% Pt/ZrO ₂ .	
Figura 4.13A – Perfís de Dessorção de CO do catalisador 1% Pt/Fe ₂ O ₃ .	85
Figura 4.13B – Perfis de Dessorção da Mistura Reacional (1% CO, 1%O ₂ , 60% H ₂ e balanço	86
He) (b) do catalisador 1% Pt/Fe ₂ O ₃ .	
Figura 4.14 – Perfis de Dessorção de CO do catalisador 1% Pt/Fe _{0,25} Zr _{0,75} O ₂ .	87
Figura 4.15 – Perfis de Dessorção da Mistura Reacional (1% CO, 1%O ₂ , 60% H ₂ e balanço	87
He) do catalisador 1% Pt/Fe _{0,25} $Zr_{0,75}O_2$.	
Figura 4.16 – Perfis de Dessorção de CO do catalisador 1% Pt/Fe _{0,5} Zr _{0,5} O ₂ .	88
Figura 4.17 – Perfis de Dessorção da Mistura Reacional (1% CO, 1%O ₂ , 60% H ₂ e balanço	89
He) do catalisador 1% Pt/Fe _{0,5} Zr _{0,5} O ₂ .	
Figura 4.18 – (A) Perfís de Dessorção de CO e (B) da Mistura Reacional (1% CO, 1%O ₂ , 60%	90
H_2 e balanço He) (b) do catalisador 1% Pt/Fe _{0,75} Zr _{0,25} O ₂ .	
Figura 4.19 – Isoterma de adsorção de H_2 para o catalisador 1% Pt/ZrO ₂ .	92
Figura 4.20 – Isoterma de adsorção de CO para o catalisador 1% Pt/ZrO ₂ .	92
Figura 4.21 – Isoterma de adsorção de CO para o catalisador 1% Pt/Fe ₂ O ₃ .	93
Figura 4.22 – Isoterma de adsorção de CO para o catalisador 1% Pt/Fe _{0,25} Zr _{0,75} O ₂ .	93
Figura 4.23 – Isoterma de adsorção de CO para o catalisador 1% Pt/Fe _{0,5} Zr _{0,5} O ₂ .	94
Figura 4.24 – Isoterma de adsorção de CO para o catalisador 1% Pt/Fe _{0,75} Zr _{0,25} O ₂ .	94
Figura 4.25 – DRIFTS de CO adsorvido para 1% Pt/Fe ₂ O ₃ . (A) fluxo 5% CO/He a 30 °C, (B)	97
câmara fechada a 30 °C, (C) aquecimento em câmara fechada a 50 °C, (D) aquecimento em	
câmara fechada a 100 °C, (E) aquecimento em câmara fechada a 220 °C e (F) fluxo 5% CO/He	
a 220 °C.	
Figura 4.26 – DRIFTS de CO adsorvido para a amostra 1% Pt/Fe _{0,25} Zr _{0,75} O ₂ . (A) fluxo 5%	98
CO/He a 30 °C, (B) câmara fechada a 30 °C, (C) aquecimento em câmara fechada a 50 °C, (D)	
aquecimento em câmara fechada a 100 °C, (E) aquecimento em câmara fechada a 220 °C e (F)	
fluxo 5% CO/He a 220 °C.	
	00

Figura 4.27 – DRIFTS de CO + O₂ adsorvido para 1% Pt/Fe₂O₃. (A) fluxo CO + O₂ a 30 °C, 99 (B) câmara fechada a 30 °C por 5', (C) câmara fechada a 30 °C por 15', (D) câmara fechada a 30 °C por 30', (E) aquecimento em câmara fechada a 50 °C, (F) aquecimento em câmara

fechada a 100 °C, (G) aquecimento em câmara fechada a 220 °C e (H) fluxo CO + O₂ a 220 °C.

Figura 4.28 – DRIFTS de CO + O_2 adsorvido para 1% Pt/Fe_{0,25}Zr_{0,75}O₂. (A) fluxo CO + O_2 a 100 30 °C (B) câmara fechada a 30 °C por 5', (C) câmara fechada a 30 °C por 15', (D) câmara fechada a 30 °C por 30', (E) aquecimento em câmara fechada a 50 °C, (F) aquecimento em câmara fechada a 100 °C, (G) aquecimento em câmara fechada a 220 °C e (H) fluxo CO + O_2 a 220 °C.

Figura 4.29 – DRIFTS de CO + O_2 + H_2 adsorvido para 1% Pt/Fe₂O₃. (A) fluxo CO + O_2 + H_2 102 a 30 °C (B) câmara fechada a 30 °C por 5', (C) câmara fechada a 30 °C por 15', (D) câmara fechada a 30 °C por 30', (E) aquecimento em câmara fechada a 50 °C, (F) aquecimento em câmara fechada a 100 °C, (G) aquecimento em câmara fechada a 220 °C e (H) fluxo CO + O_2 + H_2 a 220 °C.

Figura 4.30 – DRIFTS de CO + O_2 + H_2 adsorvido para 1% Pt/Fe_{0,25}Zr_{0,75} O_2 . (A) fluxo CO + 102 O_2 + H_2 a 30 °C (B) câmara fechada a 30 °C por 5', (C) câmara fechada a 30 °C por 15', (D) câmara fechada a 30 °C por 30', (E) aquecimento em câmara fechada a 50 °C, (F) aquecimento em câmara fechada a 100 °C, (G) aquecimento em câmara fechada a 220 °C e (H) fluxo CO + O_2 + H_2 a 220 °C.

Figura 4.31 - Espectros de Mössbauer dos catalisadores 1% Pt/Fe₂O₃, 1% Pt/Fe_{0,25}Zr_{0,75}O₂, 1% 104 Pt/Fe_{0,5}Zr_{0,5}O₂ e 1% Pt/Fe_{0,75}Zr_{0,25}O₂ sem redução.

Figura 4.32 - Espectros de Mössbauer do catalisador 1% $Pt/Fe_{0,25}Zr_{0,75}O_2$ sem redução obtido a 106 30K.

Figura 4.33 - Espectros de Mössbauer dos catalisadores 1% Pt/Fe₂O₃, 1% Pt/Fe_{0,25}Zr_{0,75}O₂, 1% 109 Pt/Fe_{0,5}Zr_{0,5}O₂ e 1% Pt/Fe_{0,75}Zr_{0,25}O₂ com redução no catalisador.

Figura 4.34 – Reação superficial com pulsos da mistura reacional. Carga reacional (1%CO, 110 $1\%O_2$, 60%H₂ e balanço He), $O_2/CO = 1$, W = 100 mg e F = 100 mL/min.

Figura 4.35 – Variação da Velocidade Espacial para o catalisador 1% $Pt/Fe_{0,25}Zr_{0,75}O_2$. Carga 112 reacional (1%CO, 1%O₂, 60%H₂ e balanço He) e $O_2/CO = 1$.

Figura 4.36 – Conversão de CO para os catalisadores. Carga reacional (1%CO, 1%O₂, 60%H₂ 113 e balanço He), $O_2/CO = 1$, W = 100 mg e F = 100 mL/min.

Figura 4.37 – Conversão de O₂ para os catalisadores. Carga reacional (1%CO, 1%O₂, 60%H₂ e 114 balanço He), $O_2/CO = 1$, W = 100 mg e F = 100 mL/min.

Figura 4.38 – Conversão de CO, O_2 e Seletividade para o catalisador 1% Pt/Fe₂O₃. Carga 115 reacional (1%CO, 1%O₂, 60%H₂ e balanço He), $O_2/CO = 1$, W = 100 mg e F = 100 mL/min.

Figura 4.39 – Conversão de CO, O₂ e Seletividade para o catalisador 1% Pt/ZrO₂. Carga 117 reacional (1%CO, 1%O₂, 60%H₂ e balanço He), $O_2/CO = 1$, W = 100 mg e F = 100 mL/min.

Figura 4.40 – Conversão de CO, O₂ e Seletividade para o catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂. 118 Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1, W = 100 mg e F = 100 mL/min.

Figura 4.41 – Conversão de CO, O₂ e Seletividade para o catalisador 1% Pt/Fe_{0,5}Zr_{0,5}O₂. Carga 119 reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1, W = 100 mg e F = 100 mL/min.

Figura 4.42 – Conversão de CO, O₂ e Seletividade para o catalisador 1% Pt/Fe_{0,75}Zr_{0,25}O₂. 120 Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1, W = 100 mg e F = 100 mL/min.

Figura 4.43 – Estabilidade Catalítica para os catalisadores 1% Pt/Fe₂O₃, 1% Pt/Fe_{0,25}Zr_{0,75}O₂ e 124 1% Pt/ZrO₂. Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1, W = 100 mg e F = 100 mL/min.

LISTA DE TABELAS

Tabela 2.1 - Tipos de Células a Combustível (WENDT, 2000).	5
Tabela 2.2 – Composição das diferentes correntes utilizadas (SEBASTIAN et al. 2009)	26
Tabela 2.3 – Reação SELOX dos catalisadores de Pt em diferentes temperaturas com excesso	41
de O ₂ (λ = 1 e λ = 2), onde X _{CO} é a conversão de CO, X _{O2} é a conversão de O ₂ e S é a	
seletividade (WOOTSCH et al., 2004).	
Tabela 2.4 – Características físicas dos catalisadores de $Pt/Ce_xZr_{1-x}O_2$ (x = 0, 0,15, 0,5, 0,68, 0,8	42
e 1) (AYASTUY et al., 2006).	
Tabela 2.5 – Conversão de CO, Seletividade e Rendimento (S.X _{CO}) referente à temperatura	44
ótima de operação da reação PROX para $\lambda = 1$ e $\lambda = 2$ (AYASTUY <i>et al.</i> , 2006).	
Tabela 2.6 – Composição molar e DRX (POPOVIC et al., 1996).	50
Tabela 2.7 – Fração molar das amostras e análise de DRX (STEFANIC et al., 1999).	52
Tabela 2.8 – Analise de fases do sistema Fe ₂ O ₃ -ZrO ₂ (STEFANIC <i>et al.</i> , 2000).	53
Tabela 2.9 – Composição molar das amostras e análise de fases do sistema Fe ₂ O ₃ -ZrO ₂	56
(STEFANIC <i>et al.</i> , 2001).	
Tabela 2.10 – Propriedades físicas do sistema Fe ₂ O ₃ -ZrO ₂ (WU et al., 1993).	58
Tabela 3.1 – Nomenclatura e método de preparo utilizado.	61
Tabela 3.2 – Condições empregadas na análise de FRX.	61
Tabela 3.3 – Etapas do experimento de quimissorção.	63
Tabela 3.4 – Condições de Análise Cromatográficas.	67
Tabela 4.1 – Resultados de composição química dos suportes.	68
Tabela 4.2 – Resultados de composição química dos catalisadores.	69
Tabela 4.3 – Análise textural dos catalisadores e suportes.	69
Tabela 4.4 – Quantificação do consumo de H_2 no TPR dos suportes.	76
Tabela 4.5 – Quantificação do consumo de H_2 no TPR dos catalisadores.	76
Tabela 4.6 – Quantificação das espécies dessorvidas no TPD de CO.	82
Tabela 4.7 – Quantificação das espécies dessorvidas no TPD da mistura reacional.	82
Tabela 4.8 – Quimissorção Irreversível de H_2 e CO após redução a 500 °C.	91
Tabela 4.9 - Parâmetros de Mössbauer dos catalisadores a 25 °C sem redução.	104
Tabela 4.10 - Parâmetros de Mössbauer do catalisador 1% Pt/Fe _{0,25} Zr _{0,75} O ₂ a 30K.	106
Tabela 4.11 – Parâmetros de Mössbauer dos catalisadores a 25 °C com redução.	107
Tabela 4.12 – Quantificação do CO_2 dessorvido para os catalisadores metálicos.	111
Tabela 4.13 – Quantificação do CO_2 dessorvido para os catalisadores de óxidos mistos.	111
Tabela 4.14 – Comparação de catalisadores para uma conversão máxima de O_2 .	120
Tabela 4.15 – Seletividade e TOF para os catalisadores a 90 °C.	121
Tabela 4.16 – Seletividade e conversão de CO para os catalisadores.	122

CAPÍTULO I

INTRODUÇÃO

Ao longo de toda a era industrial, entrando na era da informação, a energia tem servido como alicerce do progresso humano. Contudo, nossa fonte de energia primordial - o petróleo - é finita e não-renovável. Com o previsível esgotamento do petróleo nas próximas décadas, torna-se urgente à busca por fontes energéticas alternativas, capazes de assegurar ao mesmo tempo o suprimento diante de uma demanda mundial crescente e a devida proteção ao meio ambiente. Sabe-se que os países em desenvolvimento, ao contrário dos países desenvolvidos, ainda não atingiram seu ápice na demanda por energia, o que constitui um bom motivo para que este desenvolvimento ocorra de forma sustentável.

Com o advento de uma nova e eficiente fonte de energia, grandes transformações na sociedade, tanto no estilo de vida como nos aspectos econômicos, são inevitáveis. Podendo citar, como exemplo, a primeira revolução industrial, causada pelo advento das máquinas a vapor, e nos dias atuais o processo de globalização. Com isso, uma nova era energética vem despontando de forma concreta no cenário mundial como uma alternativa de energia limpa e renovável: a era do hidrogênio, que está fundamentada na tecnologia de células combustíveis.

O hidrogênio é um dos elementos mais abundantes no universo, representando uma fonte alternativa de energia. Contudo, ele está sempre associado a outro elemento, de forma que para obtê-lo puro ou semi-puro são necessários processos de produção. A produção de energia a partir de hidrogênio usando fontes renováveis como solar ou eólica passa pelo uso da eletrólise da água (CONTE, 2001). A energia requerida para a eletrólise da água pode ser de origem nuclear ou a partir de fontes renováveis, como energia hidroelétrica, solar ou eólica. A eletrólise da água responde por apenas 4% da capacidade mundial de produção de H₂, devido ao alto custo (ARMOR, 1999).

Quando se utilizam os combustíveis fósseis para produção de hidrogênio, o CO₂ é um importante subproduto e quanto maior o hidrocarboneto, maior é a produção relativa de CO₂, que é o principal causador do efeito estufa. Portanto, entre os combustíveis fósseis, o gás natural é o mais adequado à produção de H₂ devido ao seu maior conteúdo relativo de hidrogênio e também porque as reservas mundiais comprovadas de gás natural já excedem as de petróleo e vem crescendo mais rapidamente do que estas, tendência que deve ser mantida no século XXI (LUNSFORD, 2000). Quanto aos combustíveis fósseis, o gás natural responde por 48% da produção mundial de H₂, o petróleo por 30% e o carvão por 18% (ARMOR, 1999). A utilização de fontes renováveis, como biomassa e resíduos orgânicos, também é altamente promissora, mas ainda se apresentam em estágios iniciais de desenvolvimento.

Existem diversos tipos de células combustíveis. Todas se baseiam em um arranjo que consiste de dois eletrodos (ânodo e cátodo), que são separados por um eletrólito sólido ou líquido. Dependendo da natureza do eletrólito a pilha pode ser de natureza polimérica eletrolítica (PEMFC), alcalina (AFC), de ácido fosfórico (PAFC), de carbonato fundido (MCFC), de óxido sólido (SOFC), metanol direto (DMFC), regenerativa (RFC) e de Fe/CO₂ (STEELE *et al.*, 2001).

Segundo PARK *et al.* (2009) a célula combustível do tipo PEMFC apresenta eletrodos tipicamente de carbono cobertos por uma fina camada de platina para catalisar as reações eletroquímicas. Esta célula tem se mostrado bastante promissora para aplicações energéticas, ideal para aplicações automotivas e pequenas aplicações domésticas à baixa temperatura de operação (~ 80 °C) e rápida partida em veículos com combustão interna.

Conforme PETTERSSON e WESTERHOLM (2001), quantidades superiores a 10 ppm de CO envenenam os ânodos de platina da PEMFC, uma vez que o CO é adsorvido sobre a superfície do catalisador bloqueando o acesso do hidrogênio e assim reduzindo drasticamente a eficiência e o tempo de vida da célula combustível. Segundo SONG (2002) vários métodos de remoção de CO têm sido propostos nos últimos anos, como a adsorção preferencial do CO, metanação, tecnologias a base de membranas e processo de oxidação seletiva do CO (SELOX).

A reação de oxidação seletiva (SELOX), também chamada de oxidação preferencial do CO (PROX) é um método que apresenta grandes vantagens com relação a outras tecnologias existentes pelo fato de operar relativamente a baixas temperaturas e na pressão atmosférica (HÖHLEIN *et al.*, 2000). Essa reação é exotérmica e o termo seletivo indica que ela pode ser realizada na presença de H₂, sem que ele seja oxidado a

 H_2O . Para o bom desempenho dessa reação devemos utilizar catalisadores altamente seletivos capazes de eliminar o CO sem afetar o H_2 . Na literatura os catalisadores a base de Pt, Cu, Au e Ru foram os mais testados para essa reação. Tem-se feito o uso de promotores como Fe, por exemplo, que ajuda na seletividade para formação de CO₂ (HASEGAWA *et al.*, 2002).

Atualmente existem estudos relacionados ao catalisador de platina para a reação SELOX utilizando óxidos mistos do tipo $Ce_xZr_{(1-x)}O_2$ como suporte, o qual apresenta a presença de vacâncias em sua estrutura, que permitem a migração do oxigênio da rede para participar da reação de oxidação. Com relação ao óxido misto $Fe_xZr_{(1-x)}O_2$ não encontra-se na literatura nenhum trabalho relacionado com o seu uso para este tipo de reação. Porém existem estudos relacionados com a sua caracterização estrutural (STEFANIC *et al.*, 1999), (2000) e (2001), fato este que impulsionou a sua escolha devido a semelhança de estrutura com o $Ce_xZr_{(1-x)}O_2$ que já vem sendo aplicado neste tipo de reação. Com isso, o objetivo desta tese é estudar a remoção de CO da mistura reacional (CO, H₂ e O₂) que é utilizada na corrente de entrada das células a combustível, utilizando para isso catalisadores de platina suportados em óxidos mistos do tipo $Fe_xZr_{(1-x)}O_2$, bem como, estudar a síntese e as características estruturais e superficiais, visando esclarecer os mecanismos e as transformações que ocorrem durante a reação SELOX.

Em relação à estrutura desta tese, o capítulo I refere-se a uma breve introdução sobre o tema que será desenvolvido durante esta pesquisa. O capítulo II trata sobre a revisão bibliográfica onde serão abordados os fundamentos e conceitos indispensáveis para a compreensão deste trabalho. O capítulo III apresenta a parte referente à metodologia de pesquisa utilizada. No capítulo IV são apresentados os resultados e discussões obtidos e no capítulo V as conclusões e sugestões.

CAPÍTULO II revisão bibliográfica

As células combustíveis são dispositivos que podem transformar energia de uma reação química em energia elétrica à medida que são alimentadas por combustíveis externos, diferentemente de baterias, que precisam ser recarregadas. Elas apresentam grandes vantagens em relação aos processos atuais, tais como: maior eficiência, baixa emissão de gases poluentes, processo modular, instalações compactas, etc. Apesar de ainda caras, elas possuem o potencial de fornecer energia em grandes proporções e de forma descentralizada, por intermédio de pequenas fontes produtoras (RIFKIN, 2003).

Segundo WENDT *et al.* (2000) o esquema simplificado de uma célula a combustível é apresentado na Figura 2.1, constituída basicamente por ânodos e catodos de platina ou platina-rutênio suportados em carbono. Sendo assim, hidrogênio é oxidado a prótons, liberando elétrons, segundo a reação:

Ânodo:
$$H_2 \rightarrow 2H^+ + e^-$$
 (1)

No eletrodo oposto, considerando-se as células a membrana trocadora de prótons (meio ácido), tem-se a reação:

Catodo: 2 H⁺ + 2 e⁻ + 1/2 O₂
$$\rightarrow$$
 H₂O (2)

A reação global, que é acompanhada de liberação de calor, pode ser escrita da seguinte forma:

$$H_2 + 1/2 O_2 \rightarrow H_2O$$
 (3)

Figura 2.1 – Representação esquemática de uma célula combustível (WENDT et al., 2000).

Na Tabela 2.1 estão representados os diferentes tipos de células a combustível, bem como suas características principais. Atualmente, as células do tipo alcalina AFC (Alkaline Fuel Cell) têm um papel importante somente em viagens espaciais, não apresentando aplicação terrestre, devido ao fato de utilizarem somente hidrogênio e oxigênio ultra-puro. Além disso, funcionam a uma baixa temperatura de operação e necessitam de um processo relativamente complicado para a remoção da água do eletrólito. Entretanto, este tipo de célula foi o precursor das células mais modernas.

Tipo	Eletrólito (espécie transportada)	Faixa de Temp. (°C)	Vantagens	Desvantagens	Aplicações
Alcalina (AFC)	KOH (OH ⁻)	60 - 90	- Alta eficiência (83% teórica)	 Sensivel a CO₂ Gases ultra puros, sem reforma do combustível 	- Espaçonaves - Aplicações militares
Membrana (PEMFC)	Polímero: Nafion® (H3O ⁺)	80 - 90	 Altas densidade de Operação flexível 	- Custo da membrana potência e eficiência - Contaminação do catalisador com CO	- Veículos automotores e catalisador - Espaçonaves - Mobilidade
Ácido fosfórico (PAFC)	H ₃ PO ₃ (H ₃ O ⁺)	160 - 200	- Maior desenvolvimento tecnológico	- Controle da porosidade do eletrodo - Sensibilidade a CO - Eficiência limitada pela corrosão	 Unidades estacionárias Unidades estacionárias (100 kW a alguns MW) Cogeração eletricidade/ calor
Carbonatos fundidos (MCFC)	Carbonatos Fundidos (CO3 ²⁻)	650 - 700	- Tolerância a CO/CO ₂ - Eletrodos à base de Ni	 Problemas de materiais Necessidade da reciclagem de CO₂ Interface trifásica de difícil controle 	 Unidades estacionárias de algumas centenas de kW Cogeração eletricidade/ calor
Cerâmicas (SOFC)	ZrO ₂ (O ²⁻)	800 - 900	 Alta eficiência (cinética favorável) A reforma do combustível pode ser feita na célula 	 Problemas de materiais Expansão térmica Necessidade de pré- reforma 	 Unidades estacionárias de 10 a algumas centenas de kW Cogeração eletricidade/ calor

Tabela 2.1 - Tipos de Células a Combustível (WENDT et al., 2000).

2.1 OXIDAÇÃO SELETIVA DO CO

A reação de oxidação seletiva do CO (SELOX) em presença de H₂ começou a ter seus primeiros trabalhos publicados utilizando catalisadores de Pt suportados em Alumina. Este tipo de reação se baseia na diferença de reatividade entre o CO e o H₂ visando o preparo de catalisadores altamente ativos para a oxidação do CO e também minimizar o consumo de hidrogênio. Os parâmetros operacionais mais significativos são: a temperatura, composição da carga reacional e a velocidade espacial. Pela literatura podemos verificar que a velocidade espacial pode variar na faixa de 2.000 – 500.000 h⁻¹ e a temperatura encontra-se na faixa de 25 – 240 °C, sendo que se deve sempre ter em foco que a faixa ótima está entre 25 – 120 °C. Em relação à composição reacional três variáveis estão sendo estudadas: a concentração de H₂O, concentração de CO₂ e a razão O₂/CO, pois afetam a atividade, seletividade e estabilidade catalítica (WÖRNER *et al.*, 2003).

De acordo com KIM *et al.*, (2009) as equações de 4 a 8 descrevem as reações envolvidas no Processo de Oxidação Preferencial do CO:

- $CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)} \qquad \Delta H^{0}_{298K} = -282,984 \text{ J/mol}$ (4)
- $H_{2(g)} + \frac{1}{2} O_{2(g)} \rightarrow H_2O_{(g)}$ $\Delta H^0_{298K} = -241,818 \text{ J/mol}$ (5)
- $CO_{(g)} + H_2O_{(g)} \leftrightarrow H_{2(g)} + CO_{2(g)}$ $\Delta H^0_{298K} = -41,166 \text{ J/mol}$ (6)
- $CO_{(g)} + 3 H_{2(g)} \rightarrow CH_{4(g)} + H_2O_{(g)} \qquad \Delta H^0_{298K} = -205,813 \text{ J/mol}$ (7)
- $CO_{2(g)} + 4 H_{2(g)} \rightarrow CH_{4(g)} + 2 H_2O_{(g)}$ $\Delta H^0_{298K} = -164,647 \text{ J/mol}$ (8)

Conforme podemos observar pela equação 8, a presença do CO_2 afeta a seletividade e a atividade dos catalisadores, uma vez que este composto compete pelos sítios ativos com o CO e ainda reage com hidrogênio formando metano. A reação de deslocamento de água descrita por meio da equação 6 mostra que pode ocorrer uma maior formação de hidrogênio, mascarando os dados de seletividade. O controle da razão O_2/CO é de fundamental importância, pois o excesso de O_2 favorece a oxidação de hidrogênio através da equação 5, sendo está a principal reação paralela (WANG *et al.*, 2002). Com relação à carga estequiométrica é necessário $\frac{1}{2}$ mol de O_2 para oxidar 1 mol de CO conforme a equação 4, sendo que são necessários uma quantidade em excesso de O_2 para maximizar essa conversão na qual a faixa usual fica entre 0,5-5.

2.2 CATALISADORES de PLATINA

Os catalisadores a base de platina têm uma aplicação muito importante para o estudo da reação SELOX por serem os catalisadores tradicionais e os mais pesquisados na literatura. Tendo em vista os trabalhos apresentados na literatura para este sistema, iremos descrever neste tópico uma breve síntese mostrando suas vantagens e desvantagens, bem como o estudo das condições reacionais de interesse.

KAHLICH *et al.* (1997) realizaram um estudo sobre a oxidação seletiva do CO utilizando o catalisador 0,5% Pt/Al₂O₃ (Degussa, F 213 XR/D) em baixas concentrações de CO (0,02 - 1,5%) e (pO₂/pCO = 0,5 - 1,5). Foi encontrado como sendo de 200 °C a temperatura ótima da reação SELOX. A seletividade foi estudada em duas partes: a primeira na região de temperatura 150 – 200 °C e a outra a 250 °C. Observou-se que na primeira etapa a pressão parcial de CO não afetou a seletividade. Concluíram também que uma ação de bloqueio na superfície do catalisador devido ao efeito de adsorção do CO evitou a oxidação do H₂, colaborando para a alta seletividade nesta faixa de temperatura. A diminuição da seletividade a 250 °C foi devido à dessorção do CO e oxidação do H₂, resultados que estão de acordo com os dados de TPD-CO, onde apenas 10% do CO adsorvido inicialmente permaneceu na superfície do catalisador nesta temperatura.

Da mesma forma SON *et al.* (2002) avaliaram a seletividade e atividade da reação SELOX utilizando o catalisador 5% Pt/Al₂O₃ através de um novo pré-tratamento que consistia na redução do catalisador sob fluxo de H₂ por 1h, a 500 °C, seguido de resfriamento da amostra até 30 °C e adição de 5 mL de água destilada no leito catalítico. O catalisador molhado foi reduzido novamente com fluxo de H₂ a 500 °C por 1h. Esse método foi comparado ao método tradicional de preparo. A conversão de CO e a seletividade pelo método tradicional atingiram seu valor máximo na faixa de temperatura entre 200 – 250 °C, enquanto que os resultados obtidos para o catalisador tratado com H₂O indicam que a seletividade aumentou na faixa de 30 – 100 °C enquanto que a conversão de CO teve seu melhor desempenho na faixa de 150 – 200 °C, mostrando que este resultado está de acordo com os valores encontrados por KAHLICH *et al.* (1997), que utilizaram em seus experimentos um catalisador padrão comercial, evidenciando assim que esse novo método de preparo apresenta um grande potencial para aplicação nesta reação. O grande diferencial entre esses catalisadores

reduzidos com e sem a presença de H_2O está no tamanho de partícula e dispersão metálica. As medidas de TEM mostraram melhor dispersão para os catalisadores tratados com água, tendo distribuição de tamanho de partícula entre 1-5 nm com diâmetro médio de 2 nm, enquanto que na amostra sem água esses valores foram de 10-30 nm para distribuição de tamanho de partícula e 16 nm para o diâmetro médio.

Outro trabalho de grande importância foi realizado por SIRIJARUPHAN *et al.* (2004) sobre a desativação do catalisador 5% Pt/Al_2O_3 no inicio da reação SELOX. Seus resultados foram baseados na técnica denominada de ITKA (análise cinética transiente isotópica) que avalia os intermediários na superfície do catalisador em função do tempo de reação. Os testes catalíticos foram realizados a 90 °C e 1,8 atm. Os resultados mostraram que a taxa de oxidação de CO e seletividade de CO₂ diminuem rapidamente no período inicial da reação, ilustrando a desativação do catalisador de Pt com o tempo. A desativação ocorre devido à diminuição da concentração dos intermediários de CO₂ e também devido à deposição de carbono na superfície da Pt o que causa uma diminuição brusca da seletividade.

O efeito do tamanho de partícula sobre a taxa de reação e seletividade utilizando o catalisador 2% Pt/Al₂O₃ foi estudado por ATALIK e UNER, (2006). Foram testadas quatro temperaturas de calcinação (410, 450, 500 e 600 °C) e todos catalisadores foram reduzidos a 300 °C por 2h. A mistura reacional continha (1,6 % CO, 0,8% O₂, 20% H₂ e balanço com He) e a relação O₂/CO usada foi estequiométrica ($\lambda = 1$). Os resultados obtidos mostraram que a ordem da reação com relação à pressão parcial do oxigênio aumentou conforme se deu o aumento do tamanho de partícula, indicando alta dependência da cinética da reação com a pressão parcial de oxigênio para os catalisadores com tamanho de partícula grande. A conversão de CO atingiu o valor máximo de 40 % para todos os catalisadores. Acima desta temperatura a conversão diminuiu em conseqüência da reação de deslocamento de água entre CO₂ e H₂ em fase gasosa. A seletividade máxima não foi afetada pelo tamanho de partícula. Na literatura SON *et al.* (2002) já tinham avaliado a atividade e seletividade variando o tamanho de partícula e puderam concluir que a alta seletividade e atividade foram devido ao pequeno tamanho de partícula (~2nm).

WATANABE *et al.* (2003) estudaram catalisadores de Pt-Fe/Mordenita com razão Pt:Fe (3:1, 2:1 e 1:1 em peso molar) preparados pelo método de troca iônica. O efeito do teor de ferro foi avaliado em função da temperatura de reação utilizando uma carga reacional com 1% CO, 0,5% O₂, 20% H₂O e 78,5% H₂. De acordo com os resultados apresentados na Figura 2.2 o catalisador Pt/Fe = 2:1 apresentou o melhor desempenho em relação aos demais, com a seletividade e conversão de CO atingindo 100% na faixa de temperatura entre 80 e 200 ⁰C. Os mesmos confirmaram que nenhum efeito de degradação devido à presença de água ocorreu na faixa de temperatura examinada em 24h, indicando que o catalisador metálico é estável a alta umidade.

Figura 2.2 – Variação da conversão de CO para o catalisador Pt-Fe/M (Pt/Fe = 3:1, 2:1 e 1:1) em função da temperatura. Condições reacionais: 0,025 mg de catalisador, 50 cm³min⁻¹ e 1%CO, 0,5%O₂, 20%H₂O e balanço H₂ (WATANABE *et al.*, 2003).

Outro trabalho semelhante foi o realizado por KOTOBUKI *et al.* (2005), que estudaram o efeito da temperatura de reação utilizando catalisadores Pt/Mordenita, Fe/Mordenita e Pt-Fe/Mordenita preparados pelo método de troca iônica. De acordo com os resultados apresentados na Figura 2.3 o catalisador Fe/Mordenita praticamente não apresentou atividade nas condições testadas. Para o catalisador Pt/Mordenita notase a conversão de CO acima da temperatura de 150 °C e a conversão de O₂ a partir da temperatura de 100 °C, sendo que a seletividade apresentou um máximo na temperatura de 200 °C, não excedendo 60%. O catalisador Pt-Fe/Mordenita, principalmente em baixas temperaturas, apresentou alta conversão de CO e seletividade, embora a conversão de O₂ diminuísse levemente acima da temperatura de 150 °C. A conversão de CO e a seletividade excederam em 90% e 95%, respectivamente em temperaturas de

operação menores do que 50 °C. Esses resultados mostram que uma maior carga de Pt/Fe = 4:0,5 apresentou uma melhor conversão em temperaturas bem menores, diferentemente do valor encontrado por WATANABE *et al.* (2003), que utilizaram uma relação Pt/Fe = 2:1.

Figura 2.3 – Atividade SELOX dos catalisadores 4%Pt/Mordenita (\blacktriangle), 0,5% Fe/Mordenita (\blacksquare) e 4%Pt–0,5%Fe/Mordenita (O) em função da temperatura de reação. Composição: 1% CO, 0,5% O₂ e balanço H₂. GHSV = 50.000 h⁻¹ (KOTOBUKI *et al.*, 2005).

A análise da reatividade de CO pré-adsorvido nos catalisadores de Pt/Mordenita e Pt-Fe/Mordenita através da oxidação de CO com a injeção de pulsos O_2 é apresentada na Figura 2.4. Após a saturação da superfície metálica com CO no catalisador Pt/Mordenita foram injetados pulsos de O_2 . Observou-se que a altura do pico de O_2 (m/z = 32) permaneceu constante, indicando que não ocorreu adsorção de O_2 nos sítios de Pt saturados com CO, não formando CO₂ (m/z = 44). Já no catalisador Pt-Fe/Mordenita a altura dos picos de O_2 não ficaram constantes (m/z = 32) confirmando que as moléculas de CO (m/z = 28) adsorvidas nos sítios de Pt reagiram com O_2 formando CO₂ (m/z = 44).

Figura 2.4 – Reatividade de CO pré-adsorvido em (a) 4%Pt/Mordenita e (b) 4%Pt-0,5%Fe/Mordenita com injeção de O_2 (KOTOBUKI *et al.*, 2005).

Estudou-se também a presença de H₂ co-adsorvido juntamente com CO nos mesmos catalisadores, conforme Figura 2.5. Observou-se que no catalisador Pt/Mordenita a saturação de CO (m/z = 28) e H₂ (m/z = 2) é mais rápida que no catalisador Pt-Fe/Mordenita. A injeção dos pulsos de O₂ (m/z = 32) na corrente de He confirmou que nenhum CO₂ (m/z = 44) e H₂O (m/z = 18) foram formados, confirmando que O₂ não foi consumindo. Novamente no catalisador Pt-Fe/Mordenita, CO₂ (m/z = 44) foi liberado assim que começou a injeção de O₂ (m/z = 32), mas não se observou a formação de H₂O (m/z = 18).

Figura 2.5 – Reatividade de CO e H₂ pré-adsorvido em (a) 4%Pt/Mordenita e (b) 4%Pt-0,5%Fe/Mordenita com injeção de O₂ (KOTOBUKI *et al.*, 2005).

A partir destes resultados os autores concluíram que a reação SELOX não ocorreu no catalisador Pt/Mordenita devido a forte adsorção do CO e H_2 nos sítios ativos o que impediu o acesso de O_2 aos sítios desse catalisador. Isto indica que a adsorção dissociativa de O_2 e sua reação com CO pré-adsorvido são essenciais para a ocorrência da reação SELOX, o que corresponde ao mecanismo de Langmuir-Hinshelwood. O catalisador Fe/Mordenita não apresentou nenhuma atividade, visto que os seus sítios catalíticos estão todos na fase FeO. O catalisador Pt-Fe/Mordenita apresentou sítios de Pt disponíveis para a adsorção de CO, bem como, H_2 e os sítios de Fe atuaram como sítios disponíveis para adsorção dissociativa de O_2 . Esse mecanismo de adsorção bifuncional é apresentado na Figura 2.6.

Figura 2.6 – Esquema do mecanismo da reação PROX para os catalisadores (a) 4%Pt/Mordenita, (b) 0,5%Fe/Mordenita e (c) 4%Pt-0,5%Fe/Mordenita (KOTOBUKI *et al.*, 2005).

A oxidação seletiva do CO usando catalisadores 1% Pt/Mordenita e 1% Pt/Al₂O₃ também foi estudada por REN e HONG (2007). A composição da mistura continha (1% CO, 1,5% O₂, 20% CO₂, 40% H₂ e balanço com N₂) e GHSV = 10.000 h⁻¹. A concentração de CO foi menor do que 100 ppm na faixa de temperatura (97 a 210 °C) para o catalisador 1%Pt/Mordenita e na faixa de (165 a 210 °C) para 1%Pt/Al₂O₃. Estas diferenças de atividade foram atribuídas devido ao tamanho de partícula da Pt nos dois suportes. Os dados encontrados para Pt/Mordenita são consistentes com o trabalho realizado por KOTOBUKI *et al.*, (2005) que obteram alta conversão de CO acima da temperatura de 150 °C.

KIM *et al.* (2009) estudaram a reação seletiva do CO utilizando um catalisador comercial de Pt/Al₂O₃ (Aldrich) com teores de Pt igual a 1 e 5%. A composição reacional continha 1% CO, 1% O₂, 50% H₂ e balanço com He. A massa de catalisador utilizada foi 0,1g. Os resultados obtidos para este catalisador mostraram que ouve uma diferença muito insignificante nas temperaturas em que ocorreram 100 % de conversão de CO, uma vez que o catalisador com 5% de Pt atingiu 100% de conversão de CO na temperatura de 140 °C e o catalisador com 1% alcançou conversão de 100% na temperatura de 180 °C. Com relação à seletividade para CO₂ o catalisador com 1% de Pt apresentou o melhor desempenho atingindo 60 % em toda faixa de temperatura estudada (45 a 200 °C) para uma conversão de 100% de O₂. Esses resultados estão de acordo com o trabalho de SON *et al.* (2002) que encontraram 100% de conversão de CO na faixa de temperatura entre 200 e 250 °C utilizando um catalisador 5% Pt/Al₂O₃.

2.3 EFEITO de PROMOTORES, NATUREZA dos SUPORTES e CONDIÇÕES REACIONAIS

O aumento da seletividade e atividade catalítica na presença de H_2O e CO_2 utilizando catalisadores a base de platina também pode ser realizado com o uso de diferentes promotores. A aplicação de óxidos redutíveis como CeO₂, ZrO₂, FeO_x e MnO_x, bem como, o uso de metais (Co, Ce, Sn, Ni, Fe e K) têm uma grande aplicação para este tipo de reação. Neste tópico, a influência e a importância do uso dos promotores catalíticos será discutida.

A adição de Cério foi estudada por SON e LANE (2001) utilizando o catalisador 5%Pt/5%Ce/Al₂O₃. O promotor empregado teve pouca influência sobre a seletividade, tendo efeito apenas na conversão do CO, que foi favorecida em baixas temperaturas. A estabilidade catalítica foi observada monitorando-se a conversão de CO por 4 dias e 15h de reação, observando-se uma queda na conversão de 5%. Em outro estudo semelhante SON (2006) utilizou o mesmo catalisador, porém avaliou o efeito da variação de Pt e Ce. Os resultados obtidos mostram que a conversão de CO foi de ~90% a 150 °C e a seletividade apresentou decréscimo conforme aumentou a temperatura. Essa diminuição foi devido à competição da reação de oxidação do H₂ em altas temperaturas. Com isso, conclui-se que a carga ótima (5% Ce e 5% Pt) foi a que apresentou os melhores resultados.

LIU *et al.* (2007) avaliaram o método de preparo do catalisador 0,9% Pt/Al₂O₃ promovido com 2,5%Ce. Foram testados dois métodos: Deposição-Precipitação Seqüencial (SP) conforme HUANG *et al.* (2007) e Codeposição-Precipitação (CP) com diferentes temperaturas de precipitação (30, 60 e 80 °C). Os testes foram realizados com uma mistura gasosa (1% CO, 1% O₂, 40% H₂, balanço com He) e GHSV = 40 L.g⁻¹.h⁻¹. O método de preparo influenciou de forma significativa na conversão do CO e seletividade (Figura 2.7), bem como a adição do promotor Ce, uma vez que o catalisador Pt-Ce/Al₂O₃-CP exibiu conversão máxima de CO de 80% na temperatura de 120 °C, sendo que o catalisador tradicional (Pt/Al₂O₃) teve conversão próximo de zero nesta mesma temperatura, confirmando assim, a grande importância de usarmos novos sistemas catalíticos para melhorar a eficiência de remoção do CO. Com relação ao método CP com diferentes temperaturas de precipitação (Figura 2.8), nota-se que a 120 °C o catalisador Pt-Ce/Al₂O₃-CP-80 apresentou conversão de CO de 85%, novamente

muito melhor que o catalisador tradicional. De acordo com os estudos realizados por RAJARAM *et al.* (1999), isto foi possível devido à forte interação entre Pt e Ce formado pelo processo redox entre Pt^{4+} e Ce³⁺, que pode ocorrer em uma solução básica a 80 °C. Concluíram também que o uso de Ce como promotor proveu a ativação do O₂ e foi essencial para ajudar na adsorção de CO, facilitando a reação SELOX em atmosfera rica de H₂.

Figura 2.7 – Conversão de CO e Seletividade dos catalisadores preparados por diferentes métodos: (1) Pt/ γ -Al₂O₃, (2) Ce/Pt/ γ -Al₂O₃-SP, (3) Pt/Ce/ γ -Al₂O₃-SP, (4) Pt/Ce/ γ -Al₂O₃-CP. Mistura gasosa: (1% CO, 1% O₂, 40% H₂, balanço com He) e GHSV = 40 L.g⁻¹.h⁻¹. (LIU *et al.*, 2007).

Figura 2.8 – Conversão de CO e Seletividade dos catalisadores preparados por diferentes temperaturas de deposição-precipitação: (1) Pt-Ce/ γ -Al₂O₃-CP-30, (2) Pt-Ce/ γ -Al₂O₃-CP-60, (3) Pt/Ce/ γ -Al₂O₃-CP-80. Mistura gasosa: (1% CO, 1% O₂, 40% H₂, balanço com He) e GHSV = 40 L.g⁻¹.h⁻¹. (LIU *et al.*, 2007).

Outro promotor que vem tendo grande destaque é o Cobalto. YAN *et al.* (2004) estudaram o efeito da adição deste promotor no catalisador Pt/Al_2O_3 . Os catalisadores apresentaram alta atividade à baixa temperatura, uma vez que catalisadores de Pt geralmente atuam melhor na faixa de temperatura entre 150 - 220 ⁰C. Em relação à seletividade não foi observada diferença significativa entre os catalisadores,

permanecendo praticamente constante em toda faixa de temperatura estudada (~30%) conforme os resultados apresentado na Figura 2.9. O efeito do Co sobre o catalisador Pt/Al₂O₃ pode estar associado a vários fatores, como o efeito sinergético entre os componentes ativos de Co-Pt. Os cátions de Co podem promover a adsorção de O₂ sobre a Pt, servindo como um estado precursor para a adsorção dissociativa do O₂ que também pode acontecer diretamente sobre CoO_x, com o auxílio do oxigênio localizado nas vacâncias. O spillover do oxigênio do CoO_x para Pt promoveria a reação de oxidação do CO. Os autores observaram também que a adição de CO₂ e H₂O na corrente de alimentação não inibiu a conversão e a seletividade em temperaturas abaixo de 120 0 C.

Figura 2.9 – (a) Efeito da temperatura na conversão de CO e (b) seletividade de O₂ (**n**) 1%Pt/γ-Al₂O₃, (**A**) 3%Co/γ-Al₂O₃ e (**•**) 3%Co/1%Pt/γ-Al₂O₃. Alimentação: O₂/CO = 1,8 φ_{CO} = 1,1% φ_{H2} = 67% φ_{CO2} = 20% φ_{H2O} = 9% e balanço de N₂. GHSV = 40.000 mL.g⁻¹.h⁻¹ (YAN *et al.*, 2004).

SUH *et al.* (2005) estudaram a remoção do CO utilizando catalisadores à base de Pt com diferentes promotores metálicos (Co, Ni e Mn) e diferentes suportes (C, aerogel-SiO₂ e Al₂O₃). Foram testadas duas condições de reação: o sistema 1 contém 0,2g de catalisador e alimentação (10,1ppm H₂, 1100ppm CO, 990ppm O₂ e balanço de N₂), sem a presença de CO₂ e vapor d'agua sendo introduzido a uma vazão de 100 cm³ min⁻¹ e velocidade espacial de 7500 – 36.000 h⁻¹. O sistema 2 contém 0,5g de catalisador e uma mistura reacional de 71,92% H₂, 23,46% CO₂, 7700ppm CO e 38.500ppm Ar. Uma quantidade de vapor d'agua equivalente a 12,1% do total de gases secos foi adicionada na corrente de alimentação. A vazão utilizada foi na faixa de 86,9 – 694,8 cm³.min⁻¹ e GHSV 7500 – 60.000 h⁻¹.

A conversão de CO foi testada utilizando cinco catalisadores a base de metais nobres na condição 1. Conforme a Figura 2.10, os resultados da atividade catalítica diminuem na seguinte ordem: Ru/Al₂O₃ > Pt/Al₂O₃ > Rh/Al₂O₃ > Pd/Al₂O₃ > Au/Fe₂O₃, embora essa ordem fosse alterada em algumas regiões de temperatura. O catalisador Ru/Al₂O₃ apresentou uma maior atividade na remoção de CO em relação ao catalisador Pt/Al₂O₃ na faixa de temperatura entre 25 -175 ⁰C e acima da temperatura de 250 ⁰C. Os catalisadores Pd/Al₂O₃ e Au/Fe₂O₃ apresentaram pouca atividade catalítica quando comparado aos demais. Os catalisadores apresentaram uma perda de H₂ na seguinte ordem: Pt/Al₂O₃ = Au/Fe₂O₃ < Ru/Al₂O₃ = Rh/Al₂O₃ < Pd/Al₂O₃, onde os catalisadores Ru/Al₂O₃ e Rh/Al₂O₃ consomem uma grande quantidade de H₂ acima de 250 ⁰C devido à ocorrência da metanação nesta região de temperatura. Já no catalisador Pd/Al₂O₃ ocorre à reação H₂ – O₂ na temperatura de 75 ⁰C, causando grandes perdas de H₂.

Figura 2.10 – Conversão de CO para os catalisadores $Pt/Al_2O_3(\bullet)$, $Ru/Al_2O_3(\Box)$, $Rh/Al_2O_3(\bullet)$, $Pd/Al_2O_3(O)$ e Au/Fe₂O₃ (\blacktriangle), na condição 1 em função da temperatura. Condições reacionais: 0,2g de catalisador, 100cm³min⁻¹, velocidade espacial de 7500 – 36.000 h⁻¹ e 10,1ppm H₂, 1100ppm CO, 990ppm O₂ e balanço de N₂ (SUH *et al.*, 2005).

A dependência da conversão do CO para o catalisador de Pt em função dos diferentes suportes é apresentada na Figura 2.11A. Os catalisadores apresentaram a seguinte ordem para conversão de CO: Pt/C > Pt/aerogel-SiO₂ > Pt/Al₂O₃, enquanto que a ordem de interação metal-suporte foi alumina > sílica > carbono. Quando CO gasoso é adsorvido na superfície da platina, a ligação C-O da molécula de CO enfraquece favorecendo a reação com o oxigênio adsorvido levando a formação de CO₂. As fracas interações metal-suporte também promovem a reação H₂–O₂, bem como a oxidação total do CO.

Figura 2.11 – (A) Conversão de CO para Pt/Al_2O_3 (**n**), $Pt/aerogel-SiO_2$ (**o**), Pt/C (O) e (**B**) para $PtCo/Al_2O_3$ (**n**), $PtNi/Al_2O_3$ (**o**) e $PtMn/Al_2O_3$ (O) (SUH *et al.*, 2005).

Os autores estudaram o efeito da adição de promotores metálicos Co, Ni e Mn ao catalisador Pt/Al₂O₃ e puderam avaliar quais destes apresentaram maior eficiência de remoção de CO conforme os resultados apresentados na Figura 2.11B. O catalisador Pt-Co/Al₂O₃ apresentou uma alta conversão CO sendo observada a presença de teores de CO abaixo de 10 ppm na faixa de temperatura de 25 -175 ^oC, enquanto o catalisador Pt-Ni/Al₂O₃ apresentou uma menor eficiência de remoção em relação a este catalisador na mesma faixa de temperatura, o que vem a concordar com os dados já discutidos anteriormente por YAN *et al.* (2004). Outra vantagem observada nestes catalisadores com promotores metálicos foi o pequeno consumo de H₂ durante a reação.

FeO foi estudado como promotor por LIU *et al.* (2002) os quais observaram que sua adição ao catalisador Pt/Al_2O_3 aumentou a seletividade e atividade catalítica. O efeito deste promotor sobre o mecanismo de adsorção do CO fez com que ele passasse a ser não competitivo com H₂, aumentando a conversão do CO. A molécula de FeO ficou localizada sobre a superfície da Pt ou então imediatamente adjacente a ela resultando na sua interação com a platina. Com isso, o resultado desta interação foi à reação do CO adsorvido com oxigênio adsorvido em um sitio adjacente favorecendo a formação de CO₂.

Outro estudo utilizando FeO_x. foi o trabalho desenvolvido por TANAKA et al. (2004) com os catalisadores Pt/Al₂O₃, Pt/CeO₂ e Ru/Al₂O₃. Os resultados catalíticos mostraram que as amostras promovidas apresentam comportamento catalítico diferenciado dependendo do metal e suporte utilizado. Os catalisadores FeO_x/1%Pt/CeO₂ e FeO_x/1%Ru/Al₂O₃ tiveram um desempenho bastante semelhante tanto na atividade como na seletividade, quando comparado as amostras não promovidas, entretanto, a inserção de FeOx na amostra 1% Pt/Al₂O₃ promoveu o aumento da atividade e seletividade em toda faixa de temperatura estudada, podendo-se alcançar altos níveis de conversão em temperaturas inferiores a 100 °C. A alta atividade é devido aos efeitos de sinergia entre Fe/Pt/suporte, na qual um possível mecanismo de reação envolvendo FeO_x pode ser descrito, conforme Figura 2.12. Um sítio FeO_x possuindo duas vacâncias de oxigênio pode promover a adsorção do CO, bem como a adsorção do H₂ de forma dissociativa, logo o CO ou H₂ adsorvido reage com o oxigênio da rede cristalina acontecendo assim a reação na qual o oxigênio da rede é reposto pelo

 O_2 em fase gasosa. Cabe ressaltar que a oxidação do H_2 não acontece em sítios FeO_x com apenas uma vacância de oxigênio, pois H_2 não adsorve na forma molecular.

Figura 2.12 – Formação dos sítios ativos sobre FeO_x (TANAKA et al., 2004).

SIRIJARUPHAN *et al.* (2005) também avaliaram o efeito de 0,5% Fe sobre o catalisador 5% Pt/Al₂O₃ e notaram que houve aumento da taxa intrínseca do sitio ativo, como resultado de mais O₂ adsorvido em sítios ativos e/ou incremento na capacidade de adsorção do O₂, porém não houve aumento do número de sítios ativos. A adição deste promotor tornou este catalisador menos vulnerável a desativação. Com relação a constante de velocidade da reação de oxidação seletiva de CO, para o catalisador Pt-Fe/Al₂O₃ foi o dobro em relação ao catalisador Pt/Al₂O₃. Outro efeito observado foi o aumento da acessibilidade do CO adsorvido ao O₂.

MINEMURA *et al.* (2005) estudaram a oxidação seletiva do CO utilizando como promotor um metal alcalino (K) sobre o catalisador Pt/Al₂O₃. A relação O₂/CO usada neste trabalho foi estequiométrica e a carga reacional foi 0,2% CO, 0,2%O₂, 75% H₂ e balanço He. A oxidação do CO e a seletividade foram afetadas pela relação K/Pt, sendo que a condição ótima foi igual a 10. A concentração de CO ficou abaixo de 10 ppm na faixa de temperatura compreendida entre 100 – 137 °C, ou seja, este promotor teve um desempenho significativo, uma vez que a faixa de redução do CO ficou abaixo da exigida (100 ppm) para uma corrente de alimentação da célula PEMFC. Isto pode ser
explicado devido à interação entre o potássio e os grupos OH formados devido à adsorção dos átomos de Hidrogênio e Oxigênio na superfície do catalisador (BERGELD *et al.*, 2001). Com relação ao mecanismo ainda não foi relatado nada sobre o tema e sugerem-se investigações sobre o mecanismo, uma vez que esse promotor mostrou-se promissor para este tipo de reação. Estes resultados vão de acordo com o trabalho desenvolvido por KURIYAMA *et al.* (2007), que também estudaram o mesmo sistema.

MARQUES *et al.* (2006) realizaram um estudo comparativo dos catalisadores Pt/Al₂O₃ e Pt/Nb₂O₅ promovidos com Sn. O catalisador Pt/Nb₂O₅ apresentou conversão de 100% a 160 ^oC, enquanto que o catalisador Pt/Al₂O₃ atingiu a mesma conversão na temperatura de 230 ^oC, conforme pode-se observar na Figura 2.13. Logo os catalisadores de Pt suportados em Nióbia apresentaram alta atividade em relação aos catalisadores de alumina para oxidação total do CO.

Figura 2.13 – Atividade catalítica em termos da conversão de CO versus temperatura para a oxidação total de CO. Os catalisadores marcados com (*) foram reduzidos a 300 $^{\circ}$ C, enquanto que os demais foram reduzidos a 500 $^{\circ}$ C. Condições: 140 mg de catalisador, 80 mL.min⁻¹ e 5%CO/5%O₂/He (MARQUES *et al.*, 2006).

A oxidação seletiva do CO foi avaliada em termos da conversão de O_2 e de CO (Figura 2.14). Os catalisadores suportados em Nióbia apresentaram conversão de 100% de O_2 em temperaturas mais baixas que as observadas no catalisador suportado em alumina (90 °C para Pt/Nb₂O₅ e 105 °C para Pt-Sn/Nb₂O₅, 140 °C para Pt/Al₂O₃ e Pt-

Sn/Al₂O₃). Portanto, o catalisador de alumina apresentou maior conversão de CO: 100% a 140 0 C para Pt/Al₂O₃ e 82% para Pt-Sn/Al₂O₃, 52% a 90 0 C para Pt/Nb₂O₅ e 36% a 105 0 C para Pt-Sn/Nb₂O₅.

Figura 2.14 – (A) Atividade catalítica em termos da conversão de O_2 e **(B)** conversão de CO em função da temperatura. Catalisadores marcados com (*) foram reduzidos a 300 ^oC, enquanto os demais foram reduzidos a 500 ^oC. Condições reacionais: 140 mg de catalisador, 80 mL.min⁻¹ e 5%CO/5%O₂/He (MARQUES *et al.*, 2006).

A influência dos suportes (zircônia, sílica, alumina e céria) em catalisadores a base de Pt foi estudado por SOUZA *et al.* (2007). O catalisador Pt/ZrO₂ apresentou a maior conversão de CO na oxidação total (livre de H₂) (100% a 150 °C). Os demais catalisadores Pt/Al₂O₃, Pt/CeO₂ e Pt/SiO₂ apresentaram conversões de 100% nas seguintes temperaturas (220, 240 e 260 °C, respectivamente). Como a zircônia é um suporte redutível com sítios ativos formados na interface Pt/suporte, a oxidação do CO procedeu-se através de um mecanismo bifuncional: as partículas de Pt adsorvem CO e

no suporte ativam o oxigênio. Na oxidação seletiva de CO (rica em H_2) os catalisadores Pt/ZrO_2 e Pt/CeO_2 apresentaram menores conversões em temperaturas mais baixas (62% a 130 °C e 58% a 100 °C) em relação aos catalisadores Pt/Al_2O_3 e Pt/SiO_2 (100% a 140 °C e 100% a 200 °C, respectivamente), conforme os resultados da Figura 2.15A e 2.15B. A atividade dos catalisadores suportados em óxidos redutíveis em baixas temperaturas pode estar relacionada à forte interação entre metal/suporte, a qual cria um novo sitio ativo para adsorção de CO, aumentando assim a atividade catalítica para a reação de oxidação do CO.

Figura 2.15 – (A) Atividade catalítica em termos da conversão de O_2 e (B) conversão de CO em função da temperatura para a oxidação seletiva de CO. Condições reacionais: 140mg de catalisador e 80 mL.min⁻¹ de 12%H₂, 5% CO, 5% O₂ e balanço de He (SOUZA *et al.*, 2007).

O efeito da concentração de O₂ utilizando dois catalisadores 1% e 2% Pt/Al₂O₃ preparados pelo método sol-gel no qual avaliaram a influência da H₂O e da razão O₂/CO foi estudado por MANASILP e GULARI (2002). A conversão de CO foi estudada utilizando-se um gás com a seguinte composição: 1%CO, 1%O₂, 65% H₂ e balanço de He. Os autores observaram que na temperatura de 110 0 C a conversão foi em torno de 15 – 20% para ambos catalisadores (Figura 2.16). Aumentando-se a temperatura para 170 0 C a conversão passou de 20% a 80% para o catalisador 2% Pt/Al₂O₃ e de 15% para 55% para o catalisador 1% Pt/Al₂O₃. Ao atingir a temperatura de 210 0 C, ambos catalisadores apresentaram uma redução brusca na sua conversão. A seletividade dos dois catalisadores permaneceu constante (~45-50%) até atingir 170 0 C, logo após apresentam uma queda brusca (~10%) a 210 0 C. Isso pode ser explicado devido à conversão de oxigênio nessa faixa de temperatura.

Figura 2.16 – Conversão, Seletividade e Consumo de O₂ em função da temperatura para 1% e 2% Pt/Al₂O₃. Carga reacional: 1% CO, 1% O₂, 60% H₂, e He balanço, 70mg de catalisador reduzido a 500 0 C/13h com H₂ (MANASILP e GULARI, 2002).

A variação da concentração de O_2 na corrente de alimentação apresentou grande influência sobre a conversão e seletividade de CO de acordo com o exposto na Figura 2.17. Utilizando-se 0,5% de O_2 , a conversão de CO ficou em torno de 51% a 151 °C. Com o aumento dessa concentração a conversão passou para 98% a 150 °C com 1% de O_2 e 100% a 150 °C com 1,35% de O_2 . A seletividade mostrou um comportamento inverso, ou seja, o aumento de O_2 provocou um decréscimo da seletividade, obtendo-se aproximadamente 35%, 50% e 55% de seletividade para 1,35%, 1% e 0,5% de O_2 respectivamente.

Figura 2.17 – Efeito do O₂ no gás de alimentação em função da temperatura para 1% e 2% Pt/Al_2O_3 . Carga reacional: 1% CO, O₂ variável, 60% H₂, 25% CO₂, 10% H₂O e He balanço, 70mg de catalisador reduzido a 500 ⁰C/13h com H₂ (MANASILP e GULARI, 2002).

Com relação ao efeito da água, os catalisadores a base de Pt tem sua conversão e estabilidade promovidas devido à formação dos grupos hidroxilas formados pela adsorção dissociativa da água sobre a platina, tendo como conseqüência o decréscimo da energia de ativação, que era em torno de 74 kJ sem a presença de H₂O atingindo cerca de 37 kJ com a injeção de 10% H₂O na corrente de alimentação do gás, para a oxidação do CO e H₂, aumentando assim a conversão de ambos.

Da mesma forma SEBASTIAN *et al.* (2009) avaliaram a reação seletiva do CO na presença de H₂O e CO₂ utilizando catalisadores de Pt suportados em diferentes tipos de zeólitas (FAU e ETS-10). Os suportes foram sintetizados em fase liquida via hidrotérmica. A platina foi introduzida na estrutura dos microporos via troca iônica. O reator continha 100 mg de catalisador e WHSV = 2 ml.min⁻¹.mg⁻¹. O efeito de CO₂ e H₂O foi estudado a partir de 4 correntes de diferentes reformadores conforme exposto na Tabela 2.2.

Composição	Reformador 1	Reformador 2	Reformador 3	Reformador 4
% H ₂	98,75	72,74	70,63	95,88
% CO	1,25	1,25	1,21	1,21
% CO ₂	0	26,01	25,25	0
% H ₂ O	0	0	2,90	2,90

Tabela 2.2 – Composição das diferentes correntes utilizadas (SEBASTIAN et al. 2009).

Os resultados do catalisador Pt/FAU (Figura 2.18) mostram que a atividade catalítica não apresentou alteração devido à presença de CO₂ quando utilizou-se as correntes dos reformadores 1 e 2. Já o catalisador Pt/ETS-10 (Figura 2.19) apresentou forte inibição uma vez que na temperatura de 443 K a introdução de CO₂ diminuiu a conversão de CO de 80% para 30%. Estes resultados podem ser explicados devido à natureza básica deste suporte o qual interage com o CO₂ que é um reagente de natureza ácida. No caso do suporte FAU não ocorreu influencia devido à natureza acida deste suporte não ocorrendo interação com o CO2. Com relação à seletividade nota-se na Figura 2.19 que, para qualquer valor de conversão de CO, a seletividade é menor na presença de CO₂. O efeito da adição de H₂O foi positivo para ambos catalisadores conforme as correntes dos reformadores 3 e 4. O catalisador Pt/FAU apresentou redução nas temperaturas para atingir 50 e 100% de conversão de CO em cerca de 20 e 15 K, respectivamente. O catalisador Pt/ETS-10 o efeito observado foi ainda maior uma vez que a temperatura para atingir 50% de conversão diminuiu cerca de 65 K, enquanto que a temperatura para atingir 100% de conversão de CO foi em torno de 433 K. Esses resultados estão em acordo com MANASILP e GULARI, (2002) já que o efeito da água promoveu a conversão e estabilidade devido à formação dos grupos hidroxilas formados pela adsorção dissociativa da água sobre a platina.

Figura 2.18 – Conversão e Seletividade do catalisador Pt/FAU (SEBASTIAN *et al.*, 2009).

Figura 2.19 – Conversão e Seletividade do catalisador Pt/ETS-10 (SEBASTIAN *et al.*, 2009).

2.4 ÓXIDO de FERRO (Fe₂O₃)

Óxidos redutíveis do tipo Fe₂O₃ impregnados com metal nobre ou algum outro tipo de óxido apresentam alta eficiência para remoção de CO em baixas temperaturas de reação devido à grande quantidade de oxigênio disponível na rede cristalina. Este sistema vem ganhando destaque devido ao seu baixo custo quando comparado aos óxidos de metais nobres. Com isso, serão apresentados neste tópico os principais trabalhos da literatura relacionados à sua aplicação como catalisador para remoção de CO.

LI *et al.* (2003) estudaram a remoção de CO utilizando nanopartículas de Fe_2O_3 . O bom desempenho deste material foi atribuído a presença de pequenas partículas e ao teor de FeOOH presentes no óxido de ferro. A ordem da reação foi medida isotermicamente a 244 °C e a relação linear entre a concentração de CO na corrente de entrada e o CO₂ produzido indicaram que esta reação é de 1^a ordem em relação ao CO. As reações de redução envolvidas durante esse processo são expostas a seguir:

$$3 \operatorname{Fe}_2 \operatorname{O}_3 + \operatorname{CO} \to 2 \operatorname{Fe}_3 \operatorname{O}_4 + \operatorname{CO}_2 \tag{9}$$

$$Fe_{3}O_{4} + CO \rightarrow 3 FeO + CO_{2}$$
⁽¹⁰⁾

$$FeO + CO \rightarrow Fe + CO_2$$
 (11)

$$6 \operatorname{Fe} + 2 \operatorname{CO} \rightarrow 2 \operatorname{Fe_3C} + \operatorname{O_2}$$
(12)

Essa ultima reação poderá produzir Fe_5C_2 , Fe_7C_3 ou outros carbetos de ferro, dependendo da concentração de CO e O_2 e do tempo de residência. Com relação às reações (9–11), podemos observar que todo CO consumido durante a reação com as diferentes formas de óxido de ferro produziram a mesma quantidade de CO₂.

KHEDR *et al.* (2006) observaram o efeito da temperatura na oxidação catalítica do CO sobre partículas de Fe₂O₃ preparados pelo método de coprecipitação usando solução de FeCl₃. Eles constataram que os cristalitos de Fe₂O₃ (78 nm) apresentaram eficiência de 90 e 98% nas temperaturas de 400 e 500 °C, respectivamente. O mecanismo da oxidação catalítica de CO foi investigado comparando-se os dados de oxidação na ausência e presença de oxigênio e concluíram que o mecanismo encontrado foi de adsorção, bem como a sua ordem de reação foi de 1^a ordem em relação ao CO, concordando com os dados encontrados por LI *et al.* (2003).

Conforme HALIM *et al.* (2007), diferentes fatores afetam a oxidação do CO em partículas de Fe₂O₃, tais como, tamanho de cristalito e temperatura de reação. Observou-se que a taxa de conversão de CO para CO₂ aumentou conforme se procedeu o aumento da temperatura de reação e a diminuição do tamanho de cristalito. Em temperaturas de 400 e 500 °C, a conversão de CO atingiu valores de 90% e 98% respectivamente, para amostras com tamanhos de cristalitos em torno de 75 nm, porém, em temperaturas de 400 °C as amostras apresentaram os melhores desempenhos em virtude do fenômeno de sinterização do óxido de ferro em temperaturas relativamente altas. Com relação aos estudos de mecanismo da reação foi encontrado que esta é de primeira ordem com relação ao CO. Os dados catalíticos foram comparados na ausência e presença de oxigênio e constataram que a oxidação catalítica procedeu-se por meio de um mecanismo de adsorção, onde os reagentes são adsorvidos na superfície do catalisador ocorrendo à quebra das ligações O-O formando CO₂. Com isso os dados encontrados pelo autor estão de acordo com os trabalhos realizados por KHEDR *et al.* (2006) e LI *et al.* (2003).

CHENG *et al.* (2007) realizaram estudos de oxidação do CO a baixas temperaturas utilizando o catalisador CuO/Fe₂O₃ preparados pelo método de coprecipitação a partir de seus sais precursores. As amostras preparadas foram calcinadas a 200, 300, 400, 500 e 600 0 C por 5h em fluxo de ar, respectivamente. A atividade catalítica aumentou nas amostras calcinadas entre 200 e 300 0 C e decresceu na faixa de 300 a 600 $^{\circ}$ C. O catalisador calcinado a 300 $^{\circ}$ C apresentou o melhor desempenho catalítico em relação aos demais atingindo conversão total de CO a 100 $^{\circ}$ C. Esta amostra apresentou o menor tamanho de partícula do Cu (20 nm) favorecendo o seu melhor desempenho.

O efeito da atividade catalítica em baixas temperaturas de reação também foi estudado por TRIPATHI *et al.* (1999) sobre os sistemas Fe_2O_3 e Au/ Fe_2O_3 na faixa de temperatura compreendida entre 28 e 179 °C. Os resultados demonstraram que a oxidação de CO ocorreu através de um mecanismo Redox devido à quimissorção de CO sobre as nanopartículas de ouro. Os testes catalíticos apresentaram redução de CO quase completa na temperatura ambiente e acima desta.

KHOUDIAKOV *et al.* (2005) estudaram dois métodos de preparo (deposiçãoprecipitação e coprecitação convencional) para o catalisador Au/Fe₂O₃ visando sua aplicação na oxidação do CO. As análises de DRX para as amostras não calcinadas apresentaram perfil amorfo, enquanto que nas amostras calcinadas foram observadas a presença das fases α -Fe₂O₃ e Au (111). Os resultados catalíticos obtidos para este catalisador com aquecimento a 350 °C por 3h mostram que a conversão de CO em função do tempo apresentou alta atividade. Após 40 min de reação a temperatura atingiu seu equilíbrio em aproximadamente 30 °C. Nenhuma diminuição na conversão foi observada após 6 h de reação em ambos os métodos de preparo. Com relação aos métodos de preparo, a deposição-precipitação destacou-se produzindo amostras altamente estáveis com o tempo de reação.

Da mesma forma SCIRÈ *et al.* (2008) estudaram os métodos de preparo (deposição-precipitação e coprecitação convencional) para o catalisador Au/Fe₂O₃ e compararam seus resultados com um catalisador comercial, os quais investigaram o efeito do pré-tratamento sobre a atividade catalítica. Todas as amostras calcinadas a 200 °C e reduzidas em atmosfera de H₂ a 150 °C apresentaram aumento na conversão de CO de acordo com o aumento da temperatura de reação, atingindo um máximo

respectivamente de 95% AuDP a 70 °C, 80% AuRef a 90 °C e 45% AuCP a 140 °C, vindo a diminuir após esses valores de temperatura. Com isso, conclui-se que o método de preparo influenciou na avaliação catalítica na seguinte ordem: AuDP > AuRef > AuCP. Já a seletividade é fortemente influenciada pela temperatura de reação. O efeito da temperatura de calcinação (200, 300 e 400 °C) sobre conversão de CO, bem como, a temperatura de redução (150 e 300 °C) foram significativos, uma vez que a conversão de CO para as amostras AuDP e AuCP diminuem continuamente com o aumento da temperatura de calcinação. Já a amostra AuRef apenas foi afetada na temperatura de 400 °C. A temperatura de redução afetou todas as amostras resultando numa menor conversão de CO. A seletividade não foi afetada pela temperatura de calcinação e redução, dependendo somente da temperatura de reação. Todos esses resultados podem ser vistos nas Figuras 2.20 e 2.21.

Figura 2.20 – Conversão de CO em função da temperatura. Efeito da temperatura de calcinação e redução para as amostras (a) AuDP, (b) AuCP e (c) AuRef (SCIRÈ *et al.*, 2008).

Figura 2.21 – Seletividade em função da temperatura. Efeito da temperatura de calcinação e redução para as amostras (a) AuDP, (b) AuCP e (c) AuRef. (SCIRÈ *et al.*, 2008).

Da mesma forma, KUDO *et al.* (2009) estudaram um novo método de preparo para o catalisador Au/Fe₂O₃ modificando o método convencional de coprecipitação através da adição da solução de HAuCl₄ depois do crescimento do grão de hidróxido de ferro. Três diferentes esquemas de adição de HAuCl₄ foram propostos: (i) as soluções Fe(NO₃)₃. 9H₂O e HAuCl₄. 4H₂O foram simultaneamente misturadas com Na₂CO₃ e agitadas por 1,5h (método convencional de coprecipitação), (ii) a solução de HAuCl₄. 4H₂O foi continuamente adicionada por 1h a uma taxa constante sobre a solução Fe(NO₃)₃. 9H₂O e Na₂CO₃ seguido por um tempo adicional de 0,5h e (iii) a solução Fe(NO₃)₃. 9H₂O e Na₂CO₃ foi agitada por 1h seguido então pela adição de HAuCl₄. 4H₂O. Os resultados são apresentados nas Figuras 2.22(a-b). Os resultados das amostras calcinadas a 200 °C mostram que houve completa conversão de CO e alta atividade. Por outro lado as amostras calcinadas a 400 °C mostram relativamente alta atividade catalítica, embora à conversão de CO tenha sido menor do que a encontrada nos catalisadores calcinados a 200 °C.

Figura 2.22 – Atividade catalítica das amostras (KUDO et al., 2009).

Outro parâmetro de grande importância para a reação SELOX é a influência da H_2O e CO_2 na corrente de alimentação da célula combustível, uma vez que o reformador industrial apresenta em sua composição real 25% CO_2 e 10 - 15% H_2O . SCHUBERT *et al.* (2004), estudaram o efeito dessas variáveis em uma corrente rica em H_2 utilizando o sistema 2,5% Au/Fe₂O₃. As amostras foram preparadas pelo método de deposição-precipitação e coprecipitação e os testes foram realizados com uma corrente ideal (livre de CO_2 e H_2O) e uma real (com CO_2 e H_2O). A adição de CO_2 reduziu a taxa de conversão de CO e a seletividade. A adição de H_2O teve um efeito promotor sobre a atividade e seletividade, suprimindo a competição com a reação de oxidação do H_2 , bem como, redução na desativação causada pela formação de espécies carbonatos e bicarbonatos menos estáveis termicamente na superfície do catalisador.

2.5 OUTROS CATALISADORES

Diversos metais nobres como Ru, Pd, Au e óxidos como CuO tem sido utilizados na reação de oxidação seletiva do CO associados a suportes com características fisico-químicas diferentes dos materiais tradicionais já empregados. Nanocatalisadores de ouro vêm sendo empregados na reação seletiva do CO com vários tipos de suportes, tais como, Fe₂O₃, CeO₂, MnO₂, TiO₂, Al₂O₃, ZnO, Co₃O₄, ZrO₂ e SnO₂. Sendo assim, será apresentado neste tópico uma síntese dos principais trabalhos relacionados ao uso desses novos catalisadores.

SNYTNIKOV et al. (2003) realizaram um estudo comparativo entre os metais Ru, Pt e Pd suportados em "Sibunit" (material de carbono). Os testes catalíticos foram realizados com 0,6g de catalisador diluídos em 2g de quartzo com alimentação sendo composta por 0,6% de CO, 0,6% de O₂ e 98,8% de H₂. A conversão máxima (99,9%) de CO para o catalisador de Ru/C foi alcançada entre 105 – 120 °C, para o catalisador a base de Pt/C ocorreu na temperatura de 135 - 165 °C, enquanto que o catalisador de Pd/C atingiu apenas 55 % na temperatura de 155 °C. O aumento da temperatura de reação para valores acima dos mencionados não causou efeito sobre o potencial de conversão de CO, uma vez que a conversão de equilíbrio termodinâmico foi atingida. A seletividade para a reação de oxidação seletiva decresceu com o aumento da temperatura, sendo que os valores encontrados foram de 55 % a 105 °C para Ru/C, 60 % a 135 °C para Pt/C e 32 % a 155 °C para o catalisador Pd/C. Analisando estes resultados, foi concluído que o catalisador Ru/C apresentou o melhor desempenho, entretanto os dados de seletividade mostraram-se ligeiramente superiores para o catalisador de Pt/C. Em relação à estabilidade todos os catalisadores mostraram-se estáveis num período de 48 h de reação.

KONOVA *et al.* (2004a) estudaram o sistema Au/ZrO₂ e propuseram um mecanismo para a oxidação total do oxigênio conforme Figura 2.23. A primeira etapa consiste na adsorção do CO sobre as partículas de ouro, reagindo em seguida com o oxigênio da interface metal-suporte (fase 1) podendo seguir dois caminhos diferentes. No primeiro ocorre a migração do oxigênio para a superfície do átomo de ouro formando um carbonato (fase 2), o qual se decompõe formando CO₂ e o sitio ativo para ser regenerado é usado novamente na reação de oxidação do CO. O segundo caminho reacional (fase 3) para a espécie carbonato é a sua migração para o suporte produzindo carbonato estável na forma de Zr(CO₃)₂. O papel do oxigênio é na regeneração dos sítios ativos, ocorrendo na adsorção do O₂ da fase gasosa nas vacâncias do óxido de zircônio. A desativação ocorre devido aos carbonatos formados sobre a superfície do catalisador que impedem a adsorção do O₂ para regeneração dos sítios ativos.

Figura 2.23 – Mecanismo de reação e desativação para o catalisador Au/ZrO₂ (KONOVA *et al.* 2004a).

O sistema Au/TiO₂ foi estudado por KONOVA *et al.* (2004b), onde foi proposto um mecanismo de desativação para a oxidação total do CO conforme descrito nas equações 13-17. A primeira reação (eq.13) mostra a etapa de adsorção do CO sobre a partícula de Au. Após, o CO adsorvido na superfície forma espécies carbonilas, que se transformam em um complexo intermediário decompondo-se em duas rotas diferentes. Esse complexo pode decompor-se envolvendo os produtos da reação e liberando o sitio ativo conforme descrito na equação 14. Já a outra possibilidade mostra que o complexo intermediário migra para a superfície formando espécies carbonatos (eq.15). Em consequência dessa etapa, a quantidade de O₂ da rede na interface metal-suporte diminui por causa da cobertura da superfície do suporte pelas espécies carbonatos levando a desativação do catalisador. Na equação 16 notamos que o O₂ gasoso é adsorvido nas vacâncias do oxigênio da superfície do óxido metálico, passando através de diversas formas de oxidação preenchendo todos os defeitos da superfície. Na ultima etapa do mecanismo (eq.17) o oxigênio do sitio ativo é restaurado e pode novamente fazer parte do processo de oxidação. A desativação ocorre devido à migração dos íons carbonatos para a superfície do catalisador. Quando ocorre a cobertura total, o acesso dos novos átomos de oxigênio para regeneração dos sítios fica impedido devido ao acumulo de uma camada de carbonato fazendo com que as partículas de ouro fiquem separadas do suporte e a formação do complexo ativo fique impedida levando ao processo de desativação conforme já descrito por (KONOVA *et al.*, 2004a).

Au...O-Ti-O + CO (g)
$$\rightarrow$$
 Au...O-Ti-O (13)

$$\begin{array}{c} O \\ \parallel \\ C \\ Au...O-Ti-O \end{array} \longrightarrow \left(\begin{array}{c} O \\ \parallel \\ C \\ Au...O-Ti-O \end{array} \right) \longrightarrow Au...-Ti-O + CO_{2 (g)}$$
(14)

$$O_{2(g)} \to (O_2^-)_{ad.} \to (20^-)_{ad.} \to (20^{2-})_{ad.}$$
 (16)

$$Au \cdots Ti - O + (O^{2-}) \rightarrow Au \cdots O - Ti - O$$
(17)

Da mesma forma DENKWITZ *et al.* (2009) estudaram a atividade, estabilidade e desativação do catalisador Au/TiO₂ na oxidação preferencial do CO na faixa de temperatura de 80 – 180 °C. A mistura utilizada na reação PROX continha 1 kPa CO, 1 kPa O₂, 75 kPa de H₂ e balanço com N₂. Os resultados mostram que a seletividade é afetada pelo aumento da temperatura, uma vez que a 80°C a seletividade era de 60% e quando a temperatura atingiu 180 °C esse valor decresceu bruscamente para 15%. A temperatura de reação teve significante influência sobre a atividade e desativação do catalisador. Com o aumento da temperatura a taxa de reação aumentou alcançando valores de 11,5 x 10⁻³ e 8,2 x 10⁻³ mol.g_{Au}⁻¹.s⁻¹ após 10 e 1000 min de reação respectivamente a 180 °C. A desativação após 1000 min diminui com a temperatura na ordem de 80 > 100 > 140 > 180 °C.

CHANG *et al.* (2007) estudaram a oxidação do CO em baixas temperaturas através dos catalisadores Au/CeO₂ e Au/MnO₂ preparados pelo método deposiçãoprecipitação. Os resultados de DRX para o catalisador Au/CeO₂ com temperatura de calcinação do suporte em 200 °C apresentaram tamanho de cristalito de 9,2 nm, enquanto que o catalisador Au/CeO₂ com temperatura de calcinação do suporte em 400 °C obteve 9,6 nm para o tamanho de cristalito, ou seja, o aumento da temperatura de calcinação do suporte teve influência direta sobre o tamanho de cristalito, indicando que o catalisador apresentou aumento na sua cristalinidade. Com relação ao tamanho de partícula de ouro, ocorreu aumento de 2–4 nm em T=120 °C para 2–5 nm quando aumentou a temperatura de calcinação para 180 °C. Esse resultado foi atribuído a leve aglomeração das partículas de ouro devido ao aumento da temperatura de calcinação. Foi encontrado também que o catalisador Au/CeO₂ apresentou os estados Au⁰ e Au³⁺, enquanto que o catalisador Au/MnO₂ continha apenas ouro metálico na sua estrutura. Os dados catalíticos mostraram que o catalisador Au-180/CeO₂(400) obteve maior conversão de CO (99%) em relação ao catalisador Au/MnO₂. Esse resultado foi atribuído à alta eficiência redox do suporte CeO₂, da coexistência das espécies Au⁰ e Au³⁺ na interface metal-suporte, das vacâncias de oxigênio na superfície do suporte e pelo efeito sinergético associado às nanopartículas do suporte e do ouro.

RIBEIRO *et al.* (2008a) estudaram a oxidação seletiva do CO utilizando nanocatalisadores de Au suportados em Al_2O_3 e ZrO_2 . Os catalisadores foram preparados pelo método de deposição-precipitação. Todos os catalisadores apresentaram tamanho médio de partículas na faixa de 2-5 nm. Os testes catalíticos mostraram oxidação completa do CO em temperaturas inferiores a 100 °C. Para avaliar o melhor catalisador foi realizado um teste na isoconversão a 85% onde o catalisador Au/ZrO₂ apresentou melhor desempenho na temperatura de 23 °C com seletividade de 65%. A alta atividade foi atribuída a diferentes mecanismos de reação, sendo que neste caso ocorreu pela adsorção de CO e O₂ sobre os sítios vizinhos ao ouro.

QUINET *et al.* (2009) estudaram a cinética de oxidação do CO e oxidação preferencial do CO utilizando o catalisador Au/Al₂O₃. O esquema proposto através da Figura 2.24 mostra que o ciclo a esquerda representa o mecanismo proposto para reação PROX, onde o O₂ molecular adsorvido é ativado no Au pela reação com H₂ para formar OOH^{*} e espécies H^{*}. Este mecanismo não requer a dissociação de O₂ sobre Au, a qual é altamente ativa. A dissociação do H₂ é mais fácil do que a dissociação O₂ e as espécies H^{*} estabilizam a adsorção de O₂ favorecendo a formação de espécies OOH^{*} sobre Au. O CO^{*} e OOH^{*} são convertidos a CO₂ e OH^{*}. Este OH^{*} então reage com CO^{*} para produzir CO₂ e H^{*}. O ciclo se completa quando 2 H^{*} se recombinam em H₂ ou reagem com O_2 molecular para formar uma nova espécie OOH^{*}. O ciclo à direita refere-se a oxidação de H₂ baseado no trabalho de BARTON e PODKOLZIN (2005) utilizando um catalisador Au/SiO₂.

Figura 2.24 – Mecanismo da oxidação de CO na presença de H_2 (lado esquerdo) e oxidação do H_2 (lado direito). * sitio de adsorção (QUINET *et al.*, 2009).

A oxidação seletiva do CO foi também estudada com catalisadores CuO suportados em diferentes óxidos (ZrO₂, CeO₂ e Nb₂O₅) por RIBEIRO *et al.* (2008b). Esses materiais foram preparados pelo método de combustão com uréia. Os resultados catalíticos mostraram que o catalisador 6% CuO/CeO₂ apresentou o melhor resultado, atingindo 94% para conversão de CO e seletividade de 53% na temperatura de 150 °C. Esses valores foram atribuídos à alta dispersão das partículas de CuO sobre o suporte resultando em uma forte interação óxido-suporte.

2.6 ÓXIDOS MISTOS

Os óxidos mistos têm apresentado grande aplicação como oxidantes devido as suas propriedades redox e a alta capacidade de estocagem de oxigênio. Recentemente uma nova geração de óxidos mistos contendo CeO_2 e ZrO_2 tem apresentado grande aplicação como agente oxidante, uma vez que a adição de ZrO_2 aumenta a capacidade de estocagem de oxigênio, as propriedades redox, a resistência térmica e melhora a atividade catalítica em baixas temperaturas. Todas as mudanças nas propriedades físicas do óxido de cério são ocasionadas através da substituição do Ce^{4+} pelo Zr^{4+} nos vértices da sua estrutura ocasionando a formação de uma solução sólida. Muitas técnicas de

preparo têm sido propostas, dentre as quais podemos destacar a precipitação convencional e o método sol-gel. Com isso, torna-se importante apresentar os principais trabalhos referentes ao uso dos óxidos mistos na oxidação seletiva do CO.

THAMMACHART et al. (2001) estudaram a oxidação total do CO através do catalisador $Ce_xZr_{(1-x)}O_2$ (x = 0, 0,25, 0,5, 0,75 e 1) preparados pelo método sol-gel. O tamanho de partícula foi influenciado pela temperatura de calcinação. A 500 °C os óxidos mistos apresentaram valores na faixa de 5-6 nm, enquanto que a 900 °C passou para 9-10 nm. Com relação à área superficial, foi encontrado que a adição de ZrO₂ na matriz do CeO₂ retarda o processo de crescimento dos cristais aumentando a estabilidade térmica dos catalisadores. Já em altas temperaturas a área superficial diminui drasticamente para todas as amostras. Os resultados de DRX sugerem a presença de uma estrutura cúbica quando x é menor ou igual a 0,5 indicando que o Ce e Zr são altamente homogêneos. Já a fase tetragonal e monoclínica foi detectada nas amostras com x > 0.5, sendo que a fase monoclínica teve grande destaque nas amostras calcinadas a 900 °C. Os testes catalíticos apresentaram influência quanto à transferência de massa para altas conversões de CO e forte dependência da razão Ce/Zr, sendo que, a atividade diminui conforme se procede a diminuição da razão Ce/Zr. Neste estudo o catalisador Ce_{0.75}Zr_{0.25}O₂ foi o que apresentou a melhor redução de CO devido a sua alta redutibilidade.

ROH *et al.* (2004) estudaram o catalisador Pt/CeO₂–ZrO₂ na reação de oxidação do CO para avaliar o efeito da estrutura do suporte (tetragonal ou cúbica) e o teor de Pt conforme apresentado na Figura 2.25. O suporte foi sintetizado utilizando o método da co-precipitação/digestão, com a Pt sendo introduzida através de impregnação úmida utilizando uma solução Pt(NH₃)₄(NO₃)₂. O suporte Ce_{0,8}Zr_{0,2}O₂ apresentou geometria tetragonal com diâmetro de cristalito igual a 4,6 nm. Analisando, primeiramente, os catalisadores suportados em CeO₂ e ZrO₂, percebeu-se que a amostra 1%Pt/ZrO₂ apresenta atividade insignificante, enquanto que o catalisador 1%Pt/CeO₂ teve conversão de CO em torno de 30% a 60 $^{\circ}$ C, que pode ser explicada pela maior capacidade do CeO₂ em armazenar oxigênio em sua estrutura. Em relação aos catalisadores CeO₂–ZrO₂, a amostra Pt/Ce_{0,2}Zr_{0,8}O₂ (fase tetragonal) teve fraco desempenho catalítico obtendo atividade em torno de 20%. Entretanto, o catalisador Pt/Ce_{0,8}Zr_{0,2}O₂ (fase cúbica) apresentou alta atividade (~80%) e seletividade (96%) em temperaturas inferiores a 100 $^{\circ}$ C, mostrando o alto potencial deste catalisador para ser

aplicado na reação SELOX. Como se sabe, a alta atividade atribuída aos catalisadores suportados em óxidos redutíveis é devido ao processo redox na interface metal/suporte e a presença de vacâncias de oxigênio. Assim, a maior atividade do catalisador $Pt/Ce_{0,8}Zr_{0,2}O_2$ em relação ao $Pt/Ce_{0,2}Zr_{0,8}O_2$ pode ser relacionada com a maior capacidade de armazenamento de oxigênio.

Figura 2.25 – Conversão (a) e Seletividade (b) em função da temperatura nos diferentes catalisadores. Condições reacionais: 5%CO, ar (CO/O₂ = 2/1) e H₂ balanço, velocidade espacial 18.600 cm³/g_{cat} (ROH *et al.*, 2004).

A oxidação preferencial do CO na presença de H₂ utilizando catalisadores de Pt/Ce_xZr_{1-x}O₂ (x = 0, 0,15, 0,5, 0,68 e 1) foi estudada por WOOTSCH *et al.* (2004) e seus resultados foram comparados ao catalisador Pt/Al₂O₃. Estudos sobre o efeito de temperatura (90–300 0 C) e teor de O₂ (λ = 0,8-2) foram pesquisados onde a seletividade apresentou um ponto máximo para todos os valores de λ conforme exposto na Figura 2.26. Já o catalisador Pt/CeO₂ apresentou um comportamento diferenciado em relação à

seletividade, bem como a conversão de O_2 foi alta em temperaturas ao redor de 90 ^{0}C (Figura 2.27).

Figura 2.26 – Oxidação Preferencial de CO para Pt/Al₂O₃. (\Box) Conversão de O₂, (\Diamond) Seletividade, (•) Conversão de CO em função da temperatura para as diferentes condições de excesso de O₂ (WOOTSCH *et al.*, 2004).

Figura 2.27 – Oxidação Preferencial de CO para Pt/CeO₂ livre de Cloro. (\Box) Conversão de O₂, (\diamond) Seletividade e (\bullet) conversão de CO em função da temperatura para diferentes razões $\lambda = O_2/CO$ (WOOTSCH *et al.*, 2004).

Os catalisadores Pt/Ce_xZr_{1-x}O₂ contendo diferentes razões Ce/Zr foram estudados e seus resultados são apresentados na Tabela 2.3, onde se pôde observar que a conversão de O₂ foi aproximadamente 100%. Conclui-se também que o catalisador Pt/Ce_{0,68}Zr_{0,32}O₂ apresentou a melhor conversão de CO na razão $\lambda = O_2/CO = 1$. Esses resultados estão em acordo com os estudos feitos por THAMMACHART *et al.*, (2001) e ROH *et al.*, (2004).

Tabela	2.3 –	Reação	SELOX	dos ca	atalisador	es de Pi	t em d	iferentes	temperatur	as com
excesso	de O ₂	$\lambda = 1 \epsilon$	$\epsilon \lambda = 2), \epsilon$	onde X	_{CO} é a coi	nversão	de CO	, X _{O2} é a	conversão	de O ₂ e
S é a se	letivid	lade (WO	DOTSCH	I et al.,	2004).					

, , , , , , , , , , , , , , , , , , ,		$\lambda = 1$		$\lambda = 2$			
Catalisadores	$X_{CO}(\%)$	X ₀₂ (%)	S (%)	X _{CO} (%)	X_{02} (%)	S (%)	
(a) T = 100 °C							
Pt/Al ₂ O ₃	0,7	1,6	43	10	12	40	
Pt/CeO ₂ (livre Cl)	78	98	80	95	98	48	
Pt/Ce _{0,68} Zr _{0,32} O ₂	74	93	79	59	98	30	
Pt/Ce _{0,5} Zr _{0,5} O ₂	69	99	70	76	97	39	
Pt/Ce _{0,15} Zr _{0,85} O ₂	57	98	58	60	99	30	
Pt/ZrO ₂	58	95	60	98	98	50	
(b) T = 150 °C							
Pt/Al ₂ O ₃	33	60	55	98	95	51	
Pt/CeO ₂ (livre Cl)	61	99	62	65	99	33	
Pt/Ce _{0,68} Zr _{0,32} O ₂	55	93	59	34	97	18	
Pt/Ce _{0,5} Zr _{0,5} O ₂	44	99	45	53	98	27	
Pt/Ce _{0,15} Zr _{0,85} O ₂	38	98	39	36	99	18	
Pt/ZrO ₂	29	97	30	88	98	45	
(c) $T = 200^{\circ}C$							
Pt/Al ₂ O ₃	68	98	71	61	97	32	
Pt/CeO ₂ (livre Cl)	44	97	45	55	99	28	
Pt/Ce _{0,68} Zr _{0,32} O ₂	43	94	46	32	96	17	
Pt/Ce _{0,5} Zr _{0,5} O ₂	33	98	34	37	97	19	
Pt/Ce _{0,15} Zr _{0,85} O ₂	31	99	31	34	98	17	
Pt/ZrO ₂	23	98	24	75	98	38	

A oxidação seletiva de CO sobre catalisadores de Pt/Al_2O_3 tem sido explicada através do mecanismo de Langmuir-Hinshelwood (L-H) do tipo competitivo, onde a Pt atua como sítio ativo na adsorção de CO e H₂, com a seletividade dependendo somente do grau de cobertura destes componentes. No caso dos catalisadores $Pt/Ce_xZr_{1-x}O_2$, a atividade da fase Pt apresenta um mecanismo competitivo do tipo L-H e a mistura de óxidos $Ce_xZr_{1-x}O_2$ tem capacidade de estocar oxigênio. Desta forma, o mecanismo L-H não competitivo pode ser imaginado na interface metal/suporte para a adsorção do CO. Os autores propuseram quatro diferentes mecanismos que influenciam nesta reação:

I – mecanismo L-H do tipo competitivo para oxidação de CO e H₂ sobre partículas de Pt;

II – mecanismo L-H do tipo não-competitivo na interface metal/suporte, no caso de suportes redutíveis;

III – oxidação direta de H₂ sobre a superfície de $Ce_xZr_{(1-x)}O_2$;

IV – reação de deslocamento de água a altas temperaturas, particularmente no caso de amostras contendo Cério;

Da mesma forma AYASTUY *et al.* (2006) estudaram a oxidação total e seletiva do CO com catalisadores Pt/Ce_xZr_(1-x)O₂ (x = 0, 0,15, 0,5, 0,68, 0,8 e 1). A atividade catalítica foi relacionada com a redutibilidade do suporte e também com o conteúdo de Pt. O gás reagente continha a seguinte composição: 1% CO, 60% H₂, 0,5-1% O₂, 0-5% CO₂, 0-5% H₂O e balanço com He. As propriedades físicas dos catalisadores são apresentadas na Tabela 2.4, onde se pôde notar que a adição de Zr ao Ce não modificou o tamanho de partícula, a qual se encontra na faixa de 6,5 – 8,0 nm.

			/						
Catalisadores	BET^{a}	V_p^{b}	d _p ^c	d_s^d	TPR H_2^{e}	Pt^{f}	D ^g	d_{Pt}^{h}	TPR H_2^{i}
	$(m^2.g^{-1})$	(cm ³ .g ⁻¹)	(nm)	(nm)	$(\mu mol.g^{-1})$	(%)	(%)	(nm)	(µmol.g ⁻¹)
Pt/CeO ₂	164	0,19	4,0	6,9	530	0,54	71,5	1,3	50
Pt/Ce _{0,8} Zr _{0,2} O ₂	103	0,18	4,8	8,0	996	0,32	58,8	1,6	98
Pt/Ce _{0,68} Zr _{0,32} O ₂	101	0,24	7,0	7,8	1290	0,27	63,3	1,5	134
Pt/Ce _{0,5} Zr _{0,5} O ₂	99	0,21	6,4	6,5	1320	0,16	85,7	1,1	142
Pt/Ce _{0,15} Zr _{0,85} O ₂	97	0,26	8,7	7,4	510	0,25	54,0	1,7	53
Pt/ZrO ₂	57	0,24	13,5	14,0	~0	0,16	81,6	1,2	2

Tabela 2.4 – Características físicas dos catalisadores de $Pt/Ce_xZr_{(1-x)}O_2$ (x = 0, 0,15, 0,5, 0,68, 0,8 e 1) (AYASTUY *et al.*, 2006).

^a suportes, ^b volume de poros do suporte, ^c diâmetro médio dos suportes, ^d tamanho dos cristalitos do suporte, ^e TPR a 600 °C dos suportes, ^f % de metal, ^g dispersão do metal, ^h tamanho de partícula médio da Pt e ⁱ TPR a 400 °C dos catalisadores.

Na oxidação total a conversão de CO acima da temperatura de 200 0 C não foi verificada. A atividade dos catalisadores contendo Ce (x = 0,8, 0,68 e 0,15) foi similar. O catalisador com x = 0,5 teve a menor atividade da série de catalisadores que

continham Ce juntamente com o catalisador de zircônia pura. Esses resultados são apresentados na Figura 2.28. Os catalisadores foram avaliados utilizando uma corrente contendo 60%H₂ e os resultados de conversão de CO, seletividade e rendimento são apresentados na Figura 2.29. Comparando essas figuras notou-se que, exceto para os catalisadores Pt/Ce_{0.15}Zr_{0.85}O₂ e Pt/ZrO₂ as curvas de conversão de CO são modificadas em baixas temperaturas na presença de H2. Na oxidação total a conversão de CO aumentou com a temperatura até atingir a conversão completa, enquanto que a conversão de CO com H₂ atingiu um valor máximo de CO (X_{COmax.}) em uma dada temperatura máxima (T_{max.}) e, então, começou a decrescer. Os valores de T_{max}, X_{COmax}, seletividade Smax e rendimento de CO (S.X_{CO})max referentes a Figura 2.29 são mostradas na Tabela 2.5. A atividade e a seletividade dependem fortemente do excesso de oxigênio (λ). Para altos valores de λ maior é a conversão de CO, em contrapartida a seletividade diminui. Na Tabela 2.5, observamos que para valores de $\lambda = O_2/CO = 1$, a conversão máxima e a seletividade foram iguais devido à conversão de O₂ ser completa. É importante ressaltar que os catalisadores Pt/Ce_{0.8}Zr_{0.2}O₂, Pt/Ce_{0.68}Zr_{0.32}O₂ e Pt/Ce_{0.5}Zr_{0.5}O₂ apresentaram remoção completa de CO quando utilizou-se uma razão $O_2/CO = 2$. Esses valores foram maiores e em temperaturas inferiores a 100 °C quando comparados ao trabalho realizado por WOOTSCH et al., (2004).

Figura 2.28 – Oxidação total de CO para os catalisadores $Pt/Ce_xZr_{1-x}O_2$ com razão $O_2/CO = 2$ (AYASTUY *et al.*, 2006).

Figura 2.29 – Conversão de CO (a), Seletividade (b) e Rendimento (c) ricos em H₂ para $Pt/Ce_xZr_{1-x}O_2$ com razão $O_2/CO = 2$ (AYASTUY *et al.*, 2006).

temperatura otm								
	$\lambda = 1$				$\lambda = 2$			
Catalisadores	T _{max}	X _{COmax}	S _{max}	(S.X _{CO}) _{max}	T _{max}	X _{COmax}	S _{max}	(S.X _{CO}) _{max}
	(°C)	(%)	(%)	(%)	(°C)	(%)	(%)	(%)
Pt/CeO ₂	91	56,7	56,7	32,1	73	94,4	47,2	44,5
Pt/Ce _{0,8} Zr _{0,2} O ₂	71	70,8	70,8	50,1	67	100	50	50
Pt/Ce _{0,68} Zr _{0,32} O ₂	71	77,3	77,3	59,8	71	99,4	49,7	49,4
Pt/Ce _{0,5} Zr _{0,5} O ₂	127	55,9	55,9	31,2	97	100	50	50
Pt/Ce _{0,15} Zr _{0,85} O ₂	90	69,1	69,1	47,7	91	91,6	45,8	41,9
Pt/ZrO ₂	164	28,8	28,8	8,3	170	48,6	24,3	11,8

Tabela 2.5 – Conversão de CO, Seletividade e Rendimento (S.X_{CO}) referente à temperatura ótima de operação para $\lambda = 1$ e $\lambda = 2$ (AYASTUY *et al.*, 2006).

WANG *et al.* (2007a) estudaram a oxidação do CO utilizando o catalisador CuO/Ce_{0,8}Zr_{0,2}O₂ (0, 1, 2, 5, 10 e 15% de CuO) sintetizados via método citrato. O catalisador com 15% de CuO calcinado a 500 °C por 4h apresentou os picos padrões de difração em 35,5° e 38,7° (20), o qual indica a formação de CuO na fase *bulk*. Já o catalisador com 5% de CuO calcinado a 800 °C por 4h apresentou os mesmos picos padrões de difração. Com relação à área superficial (BET), apresentam uma diminuição conforme se procedeu o aumento da temperatura, onde pode-se observar que os catalisadores calcinados a 800 °C apresentaram os menores valores. A conversão de CO aumentou de acordo com o aumento da temperatura e da carga CuO. O efeito sinergético entre CuO e o suporte Ce_{0,8}Zr_{0,2}O₂ e a dispersão do CuO foram os fatores responsáveis pela alta atividade catalítica. O catalisador com 5 % de CuO calcinado a 500 °C por 4h apresentou o melhor desempenho, enquanto que o catalisador com 15% de CuO apresentou uma diminuição na atividade catalítica.

CAO et al. (2007) também estudaram o sistema CuO/Ce_{0.8}Zr_{0.2}O₂ (0, 5, 10, 15, 20, 30 e 40% de CuO) sintetizados usando um método assistido por surfactante. Os testes foram realizados em baixas temperaturas de reação. As análises de DRX e TEM indicam a presença de partículas com formato cúbico. A isoterma de adsorçãodessorção revelou um sistema mesoporoso com alta área especifica e distribuição de tamanho de poros uniforme. Os testes catalíticos mostraram que a oxidação de CO é muito efetiva em baixas temperaturas de operação e que a carga de CuO, temperatura de calcinação, área superficial e tamanho de partícula influenciam de forma direta sobre a atividade. Foi observado neste estudo que o catalisador com 25% CuO calcinado a 400 °C por 4h exibiu o melhor desempenho em relação aos demais. Neste estudo ficou evidente que o método de preparo teve uma grande influencia sobre o resultado dos testes catalíticos, uma vez que o sistema estudado anteriormente por WANG et al. (2007a), apresentou como melhor catalisador 5% CuO/Ce_{0,8}Zr_{0,2}O₂, ou seja, o oposto ao resultado obtido aqui neste trabalho. Com isso, conclui-se que os catalisadores sintetizados via método citrato apresentam a melhor opção para este tipo de catalisador, uma vez que a carga de CuO necessária é bem menor.

WANG *et al.* (2007b) também utilizaram como catalisador Au/Ce_{0,8}Zr_{0,2}O₂ (Au = 0,1, 0,2, 0,5, 1, 2, 4 e 6%) preparados pelo método deposição-precipitação. A atividade catalítica foi estudada com base na variação do pH, percentual de ouro e

temperatura e tempo de calcinação. Todos esses resultados são apresentados na Figura 2.30. O efeito do pH foi notório na avaliação catalítica uma vez que o catalisador preparado com a mesma carga de ouro com temperatura de calcinação de 300 °C por 3h apresentou diferentes temperaturas de máxima conversão de CO (T_{100%}). Os catalisadores com pH de 6, 7, 8, 9 e 10 tiveram suas temperaturas respectivamente em 210, 150, 170, 170 e 190 °C, enquanto que o catalisador preparado com pH 5 atingiu a máxima conversão de 66% na temperatura de 200 °C. As analises de DRX confirmaram que as amostras preparadas com pH < 7, apresentaram grau de dispersão menor do que as amostras preparadas com pH \geq 7 resultando numa atividade inferior para as amostras com pH 5 e 6. HARUTA et al. (1996) relataram em seus estudos que acima do pH 6 a espécie Au transforma-se de Au Cl^{4-} para Au(OH)_n Cl^{-}_{4-n} (n=1-3), afetando na atividade catalítica. No presente estudo o catalisador com pH 7 apresentou o melhor desempenho na conversão de CO. A avaliação do teor de Au sobre o suporte Ce_{0.8}Zr_{0.2}O₂ apresentou uma relação direta da temperatura de máxima conversão (T100%) com a quantidade de ouro depositada. As amostras com 0,2, 0,5, 1, 2, 4 e 6% de Au apresentaram $T_{100\%}$ respectivamente em 200, 190, 150, 140, 140 e 150 °C. A amostra com 0,1% não atingiu a conversão máxima. Conforme FU et al. (2003) existe uma forte interação das partículas de ouro com o suporte, sendo responsável pela alta atividade catalítica. Com isso, a amostra com teor de 2% de Au foi selecionada como tendo o melhor desempenho, uma vez que apresentou bom estado de dispersão. Neste estudo a aglomeração de partículas de ouro teve efeito negativo. Finalizando o estudo foram avaliadas a temperatura e o tempo de calcinação. Observou-se que altas temperaturas e tempos de calcinação têm efeito negativo sobre a atividade catalítica, concordando com os resultados apresentados por ZHU et al. (2006), os quais mostraram que em altas temperaturas de calcinação ocorre o processo de aglomeração das partículas de ouro, causando efeito negativo sobre a atividade catalítica. Foi encontrado como sendo a faixa ótima de trabalho a temperatura de 300 °C por 3h, onde o catalisador obteve como $(T_{100\%} = 150 \text{ °C})$. Concluindo este estudo, pode-se notar através da Figura 2.30 que o catalisador com 2% Au/Ce_{0.8}Zr_{0.2}O₂ preparado com pH 7 e calcinado a 300 °C por 3h exibiu o melhor comportamento para o estudo da oxidação do CO.

Figura 2.30 - Atividade catalítica para oxidação do CO do catalisador $Au/Ce_{0,8}Zr_{0,2}O_2$ relacionando a variação de pH, percentual de Au, temperatura e tempo de calcinação (WANG *et al.*, 2007b).

O catalisador de ouro também foi estudado na reação PROX por SANGEETHA e CHEN (2009) utilizando como suporte CeO_2 -TiO₂. O suporte foi preparado pelo método de impregnação úmida e o catalisador de ouro pelo método de deposição precipitação utilizando-se uma solução de HAuCl₄. A reação PROX foi avaliada utilizando a seguinte composição de gases (CO:O₂:H₂:He = 1:1:49:49). Os resultados de DRX e TEM mostraram que as partículas de ouro apresentam alta dispersão sobre os suportes e o tamanho de partícula foi inferior a 3 nm. A influência da taxa Ce/Ti sobre a conversão e a seletividade na reação PROX são mostradas na Figura 2.31. O catalisador Au/CeO₂-TiO₂ com (1:9) apresentou conversão máxima de CO na temperatura ambiente e aumentou ate 100% conforme procedeu-se o aumento de temperatura. O aumento da taxa Ce/Ti causou uma diminuição na conversão de CO na temperatura ambiente o que foi atribuído a quantidade de oxigênio disponível no suporte. Observa-se na Figura 2.31 que todos catalisadores apresentaram um aumento na conversão de CO ate a temperatura de 65 °C. A taxa 1:1 foi a melhor em relação a 2:8 e 3:7 para oxidação de CO provavelmente devido a melhor formação da fase oxido misto entre Ce e Ti. Com relação a seletividade todos catalisadores apresentaram uma diminuição conforme procedeu-se o aumento de temperatura. Com isso, o catalisador Au/CeO₂-TiO₂ (1:9) apresentou a melhor conversão de CO (94%) e seletividade de 91% a 25°C. Esses resultados foram atribuídos ao pequeno tamanho de partículas de Au e a natureza do íon Ce^{4+} .

Figura 2.31 – Influência da taxa Ce/Ti no catalisador Au/CeO₂-TiO₂. (\Box) CeO₂-TiO₂ (1:1); (\circ) CeO₂-TiO₂ (10:90); (\blacktriangle)CeO₂-TiO₂ (20:80); (\diamond) CeO₂-TiO₂ (30:70); (\blacksquare) TiO₂ (Degussa); (*) CeO₂ (Degussa) (SANGEETHA e CHEN, 2009).

Da mesma forma NAKNAM et al. (2009) estudaram o catalisador Au/ZnO-Fe₂O₃ preparados por fotodeposição com UV-vis. Os resultados de TEM mostraram partículas de Au com tamanhos na faixa de 3-5 nm. Os espectros DR/UV-vis indicaram a presença dos sítios ativos de Au^{δ^+} e Au⁰ sobre o suporte. A mistura reacional utilizada continha 1% CO, 1% O₂, 40% H₂, (0-10%) CO₂ e (0-10%) H₂O e balanço com He. Os resultados mostram que o catalisador 1% Au/ZnO-Fe₂O₃ com razão (5:1) apresentou 100% de conversão de CO na faixa de temperatura de 30-50°C. Os autores sugerem que o oxido de ferro apresenta capacidade de dissociar o O_2 para oxidar o CO e H₂. Para esta reação a alta atividade catalítica do catalisador Au/Fe₂O₃ está relacionada à sua fase suporte, estrutura microcristalina e ao seu estado de oxidação conforme já relatado anteriormente por SCIRÉ *et al.* (2008). HUTCHINGS *et al.* (2006) também mostrou que o Fe₂O₃ atua como sitio ativo nesta reação juntamente com as espécies Au. Neste caso o catalisador de Au causa uma transformação das espécies desordenadas dos nanocristais de oxihidróxido de ferro para hematita. Os resultados de DRX mostram que ocorreu a formação de uma fase ZnFeO₄ na estrutura do oxido misto ZnO-Fe₂O₃ e que Fe₂O₃ foi incorporado nos vértices do óxido ZnO resultando no aumento da mobilidade do oxigênio da rede e na estabilidade térmica. A adição de Fe₂O₃ também influência no estado eletrônico do suporte.

2.7 ÓXIDO MISTO (Fe₂O₃ - ZrO₂)

O sistema Fe₂O₃-ZrO₂ não apresenta na literatura nenhum trabalho referente à sua aplicação na reação seletiva do CO, mas têm importante aplicação como catalisador na isomerização de hidrocarbonetos, hidrogenação do CO, síntese de Fischer-Tropsch e síntese da amônia (POPOVIC *et al.*, 1996). Neste sistema, a zircônia encontra-se na fase monoclínica em temperatura ambiente, tetragonal na faixa de temperatura 1147–2367 °C e cúbica acima do ponto de fusão, cerca de 2680 °C. Foram encontrados trabalhos que discutem sobre o seu método de preparo, razão molar Fe/Zr, estrutura cristalina e efeitos de tratamento térmico (STEFANIC *et al.*, 1999, 2000 e 2001). WU *et al.* (1993) estudaram esse óxido misto na reação de desidrogenação do etilbenzeno, bem como avaliaram as propriedades ácidas e básicas, área superficial, volume de poros e distribuição do tamanho de poros.

POPOVIC *et al.* (1996) avaliaram a existência de soluções sólidas termodinamicamente estáveis utilizando uma série de amostras que foram preparadas por precipitação através de soluções aquosas dos seus correspondentes nitratos de zircônio e ferro, que foram misturados de acordo com a razão molar Fe/Zr desejada. A precipitação foi realizada adicionando-se uma solução 25% NH₄OH até atingir pH 10,4. O precipitado formado foi separado da fase líquida usando-se uma centrifuga em alta velocidade. Após a separação do precipitado, procedeu-se a etapa de lavagem com água destilada até pH neutro e secagem por 12h em estufa na temperatura de 90 °C. A seguir

as amostras foram calcinadas da seguinte maneira: 1h a 200 0 C, 1h a 300 0 C, 1h a 400 0 C, 1h a 500 0 C e 2h a 600 0 C. As amostras em pó foram prensadas em pellets e aquecidas a 900 0 C, por 2h, e então, novamente prensadas e aquecidas, por 2h, a 1100 0 C. A composição molar inicial das amostras e os resultados das análises de fases (DRX) são apresentados na Tabela 2.6. Observou-se que na região de $0 \le x \le 0,015$ a fase Z (m-ZrO₂) foi dominante. Já na região de $0,03 \le x \le 0,985$ ambas as fases Z (m-ZrO₂) e F (α -Fe₂O₃) estavam presentes e na região de $0,995 \le x \le 1$ apenas a presença da fase F (α -Fe₂O₃) foi identificada.

Amostras	Fração molar Fe ₂ O ₃ , x	DRX		
ZF0	0	m-ZrO ₂		
ZF1	0,005	Z		
ZF2	0,015	Z		
ZF3	0,030	Z + F		
ZF4	0,050	Z + F		
ZF5	0,100	Z + F		
ZF6	0,200	Z + F		
ZF7	0,400	Z + F		
ZF8	0,600	F + Z		
ZF9	0,800	F + Z		
ZF10	0,900	F + Z		
ZF11	0,950	F + Z		
ZF12	0,970	F + Z		
ZF13	0,985	F + Z		
ZF14	0,995	F		
ZF15	1	α-Fe ₂ O ₃		

Tabela 2.6 – Composição molar e DRX (POPOVIC et al., 1996).

Onde: $Z = m-ZrO_2 e F = \alpha - Fe_2O_3$

STEFANIC *et al.* (1999) estudaram o sistema Fe_2O_3 -Zr O_2 com fração molar de Zr O_2 variando na faixa de 0,7 - 0,99, preparados a partir de seus sais precursores conforme a metodologia descrita por POPOVIC *et al.*(1996). A calcinação procedeu-se nas temperaturas de 500 0 C, 800 0 C e 1100 0 C por 2h. Na Tabela 2.7 são apresentadas a fração molar das amostras e os resultados de DRX. Os difratogramas da Figura 2.32 para as amostras ZF1t1, ZF2t1, ZF3t1 e ZF4t1 a 500 $^{\circ}$ C indicam a presença dos picos de difração referente às fases m-Zr O_2 (monoclínica) e dos metaestáveis t-Zr O_2 (tetraédrica) ou c-Zr O_2 (cúbica). As intensidades das fases t ou c-Zr O_2 aumentaram a

partir do aumento da fração molar de Fe₂O₃. O espectro de Raman confirmou a ausência ou pouca intensidade da fase t-ZrO₂ nas bandas a 267 e 148 cm⁻¹, indicando que as linhas de difração observadas referem-se apenas a fase c-ZrO₂, confirmando o estudo realizado por INWANG *et al.* (1995), os quais também encontraram um polimorfo cúbico para o sistema ZrO₂-Fe₂O₃. As amostras calcinadas a 800 0 C apresentaram a mesma dependência com relação ao conteúdo de ferro e nenhum sinal da fase t-ZrO₂ nas bandas do espectro de Raman foram detectadas. As amostras calcinadas a 1100 0 C apresentaram a fase m-ZrO₂ como dominante. Com relação ao volume fracional das amostras calcinadas a 500 e 800 0 C, observou-se um aumento da fase c-ZrO₂, enquanto que a 1100 0 C o conteúdo inicial de ferro teve pouca influência na formação dessa fase.

Figura 2.32 – Difratograma das amostras obtidas durante calcinação a 500 ^oC por 2h (STEFANIC *et al.*, 1999).

	3			
	Fração Molar	Fração Molar	Temperatura	Composição das fases
Amostras	ZrO_2	Fe ₂ O ₃	(°C)	(volume fracional ^a)
ZF1t1	0,99	0,01	500	$Z_{\rm m}(0,79) + Z_{\rm c}(0,21)$
ZF2t1	0,97	0,03	500	$Z_{\rm m}(0,50) + Z_{\rm c}(0,50)$
ZF3t1	0,90	0,10	500	$Z_{c}(0,63) + Z_{m}(0,37) + F$
ZF4t1	0,80	0,20	500	$Z_{c}(0,80) + Z_{m}(0,20) + F$
ZF5t1	0,70	0,30	500	$Z_{c}(0,98) + Z_{m}(0,02) + F$
ZF1t2	0,99	0,01	800	$Z_{\rm m}(0,96) + Z_{\rm c}(0,04)$
ZF2t2	0,97	0,03	800	$Z_{\rm m}(0,75) + Z_{\rm c}(0,25)$
ZF3t2	0,90	0,10	800	$Z_{c}(0,53) + Z_{m}(0,47) + F$
ZF4t2	0,80	0,20	800	$Z_{c}(0,74) + Z_{m}(0,26) + F$
ZF5t2	0,70	0,30	800	$Z_{c}(0,78) + Z_{m}(0,22) + F$
ZF1t3	0,99	0,01	1100	$Z_{\rm m}(0,99) + Z_{\rm c}(0,0,01) + F$
ZF2t3	0,97	0,03	1100	$Z_{\rm m}(0,99) + F + Z_{\rm c}(0,0,01)$
ZF3t3	0,90	0,10	1100	$Z_{\rm m}(0,99) + F + Z_{\rm c}(0,0,01)$
ZF4t3	0,80	0,20	1100	$Z_{\rm m}(0,98) + F + Z_{\rm c}(0,0,02)$
ZF5t3	0,70	0,30	1100	$Z_{\rm m}(0,98) + F + Z_{\rm c}(0,0,02)$
	•			

Tabela 2.7 – Fração molar das amostras e análise de DRX (STEFANIC et al., 1999).

^a relacionado ao volume de ZrO_2 e ($Z = ZrO_2$ e F = Fe₂O₃).

STEFANIC *et al.* (2000) estudaram as fases presentes no sistema Fe₂O₃-ZrO₂ durante sua calcinação com baixa pressão (4x10⁻³ Pa) e alta temperatura. Os resultados foram comparados com a análise de fases após calcinação e resfriamento sob fluxo de ar (10⁵ Pa). De acordo com os resultados apresentados na Tabela 2.8, observou-se que as amostras calcinadas na temperatura de 500 $^{\circ}$ C com fração molar de Fe₂O₃ \geq 20% apresentaram-se na fase amorfa. Já a amostra ZFO calcinada à 600°C apresentou a fase m-ZrO₂ como dominante tendo como segunda fase t-ZrO₂. A fase t-ZrO₂ aumentou conforme se deu o aumento da razão molar Fe₂O₃ para valores maiores do que 10%.

Amostras	x(ZrO ₂)	$x(Fe_2O_3)$	500 °C	600 °C	800 °C	1100 °C
ZF0	1	0	M + T	M + T	M + T	М
ZF1	0,99	0,01	T + M	M + T	M + T	М
ZF2	0,97	0,03	Т	Т	Т	M + H
ZF3	0,90	0,10	C ou T	C ou T	T + H	M + H
ZF4	0,80	0,20	Am + C	C + M	T + H	M + H
ZF5	0,70	0,30	Am	C + M	T + H + M	M + H
ZF6	0,50	0,50	Am + H	C + H + M	T + H + M	M + H

Tabela 2.8 – Análise de fases do sistema Fe₂O₃-ZrO₂ (STEFANIC *et al.*, 2000).

M, C, T e H se referem às fases m-ZrO₂, c-ZrO₂, t-ZrO₂ e α -Fe₂O₃ respectivamente; x é a fração molar e (Z = ZrO₂ e F = Fe₂O₃).

Os estudos de difração mostraram que as intensidades relativas à fase m-ZrO₂ diminuem com o aumento da fração molar de Fe₂O₃ e desaparecem no produto cristalizado para as amostras com fração molar superior a 10%, conforme Figura 2.33. Já a presença das intensidades relativas da fase t-ZrO₂ nas amostras ZF3, ZF4, ZF5, e ZF6 calcinadas à 800^oC indicaram que ocorreu transição como mostra a Figura 2.34. O índice percentual da fase M (m-ZrO₂) nos produtos cristalizados a 800 ^oC diminuiu com o aumento da fração molar de Fe₂O₃. As linhas de difração desaparecem nas amostras com 10% de Fe₂O₃ e reaparecem nos produtos cristalizados das amostras com fração molar de Fe₂O₃ e reaparecem nos produtos cristalizados das amostras com fração molar de Fe₂O₃ e reaparecem nos produtos cristalizados das amostras com fração molar de Fe₂O₃ e reaparecem nos produtos cristalizados das amostras com fração molar de Fe₂O₃ e reaparecem nos produtos cristalizados das amostras com fração molar de Fe₂O₃ e reaparecem nos produtos cristalizados das amostras com fração molar de Fe₂O₃ e reaparecem nos produtos cristalizados das amostras com fração molar de Fe₂O₃ e z0%. Esses resultados confirmam que a presença do cátion Fe³⁺ pode estabilizar ou desestabilizar o polimorfo ZrO₂ dependendo da temperatura de calcinação.

Figura 2.33 – Difratograma das amostras calcinadas a 600 0 C na presença de ar (~10⁵Pa) (STEFANIC *et al.*, 2000).

Figura 2.34 – Difratograma das amostras calcinadas a 800 $^{\circ}$ C na presença de ar (~10⁵Pa) (STEFANIC *et al.*, 2000).

Na Figura 2.35 são apresentadas às análises de difração das amostras ZF0, ZF1 e ZF3 (ver Tabela 2.8) obtidas durante a calcinação a baixa pressão (\sim 4x10⁻³ Pa) na faixa de temperatura de 500 a 1200 °C. A primeira fase cristalina da amostra ZF0 (0% Fe₂O₃) foi à fase C, a qual permanece estável acima de 1200 °C. O desenvolvimento de fase da amostra ZF1 (1%Fe₂O₃) foi similar, mas a 1000 °C a intensidade relativa referente à fase M apareceu e tornando-se intensa a 1200 °C. Similarmente ao caso das amostras com baixo percentual de Fe₂O₃, a amostra ZF4 com 20% Fe₂O₃ apresentou como primeiro produto de cristalização a fase C, na qual podemos observar na Figura 2.36. A 900 °C, as fases M e T aparecem. Já a amostra ZF5 apresentou um desenvolvimento de fase H, o qual aumentou conforme o aumento da temperatura, como pode ser visto na Figura 2.37. Depois do resfriamento em temperatura ambiente e exposição em ar (~10⁵ Pa) a maioria das amostras (com exceção da ZF6) apresentaram a fase M como dominante e a fase T como segunda fase, de acordo com os dados da Figura 2.38.

Figura 2.35 – Difratograma das amostras ZF0, ZF1 e ZF3 calcinadas a baixa pressão (\sim 4x10⁻³ Pa) em T = 500°C a 1200 ⁰C (STEFANIC *et al.*, 2000).

Figura 2.37 – Difratograma da amostra ZF5 calcinada a baixa pressão (\sim 4x10⁻³ Pa) (STEFANIC *et al.*, 2000).

Figura 2.36 – Difratograma da amostra ZF4 calcinada a baixa pressão (\sim 4x10⁻³ Pa) em T = 500°C a 1200 ⁰C (STEFANIC *et al.*, 2000).

Figura 2.38 – Difratograma das amostras após resfriamento de 1200 0 C até temperatura ambiente com ar (~10⁵ Pa) (STEFANIC *et al.*, 2000).

Em outro estudo com o mesmo sistema, STEFANIC *et al.* (2001) avaliaram os efeitos do tratamento térmico a 500 ^oC, 600 ^oC, 800 ^oC e 1100 ^oC por 2 horas dos precursores coprecipitados com soluções aquosas dos seus respectivos sais. A fração molar e análise de fases obtidas após calcinação e resfriamento são apresentadas na Tabela 2.9.

(STELTHIC OF W., 2001).									
Amostras	ZrO ₂	Fe ₂ O ₃	500 °C	600 °C	800 °C	1100 °C			
ZF0	1	0	$Z_t(0,62) + Z_m(0,38)$	$Z_{\rm m}(0,85) + Z_{\rm t}(0,15)$	$Z_{\rm m}(0,95) + Z_{\rm t}(0,05)$	Zm			
ZF1	0,99	0,01	$Z_t(0,99) + Z_m(0,01)$	$Z_{\rm m}(0,67) + Z_{\rm t}(0,33)$	$Z_{m}(0,95) + Z_{t}(0,05)$	-			
ZF2	0,97	0,03	Zt	Zt	$Z_{m}(0,84) + Z_{t}(0,16)$	$Z_m + F$			
ZF3	0,90	0,10	Zc	Zc	$Z_t + F$	$Z_m + F$			
ZF4	0,80	0,20	$A_m + Z_c$	Zc	$Z_t + F + Z_m$	-			
ZF5	0,70	0,30	A _m	Zc	$Z_t + F + Z_m$	$Z_m + F$			
ZF5A	0,65	0,35	-	$Z_c + F$	-	-			
ZF6	0,50	0,50	$A_m + F$	$Z_c + F$	$Z_t + F + Z_m$	$Z_m + F$			

Tabela 2.9 – Composição molar das amostras e análise de fases do sistema Fe₂O₃-ZrO₂ (STEFANIC *et al.*, 2001).

Após calcinação a 500 °C os produtos cristalizados com um conteúdo de ferro acima de 3% apresentaram as fases t-ZrO₂ ou c-ZrO₂ e m-ZrO₂ conforme apresentado na Figura 2.39. A 600 °C todas as amostras estão cristalizadas. O aumento do teor de ferro nas amostras causou um aumento das fases tetragonal e cúbica seguido pela diminuição da fase m-ZrO₂. A fase m-ZrO₂ desapareceu nos produtos cristalizados com 10% Fe₂O₃ e tornou a reaparecer nas amostras cristalizadas com percentual de Fe₂O₃ \geq 20% conforme exposto na Figura 2.40. A presença das fases t-ZrO₂ e α -Fe₂O₃ nos produtos cristalizados com teor de Fe₂O₃ \geq 10% indicaram que a calcinação a 800 °C causou uma significante diminuição na solubilidade do ferro seguido pela transição da fase c-ZrO₂ para t-ZrO₂. Na calcinação a 1100 °C apenas a presença da fase m-ZrO₂ foi dominante em todas as amostras. Esses resultados mostram que a presença de Fe₂O₃ pode estabilizar ou desestabilizar em altas temperaturas o polimorfo t-ZrO₂, conforme já tinha sido relatado anteriormente por STEFANIC *et al.* (2000).

Figura 2.39 – Difratograma das amostras calcinadas a 500 0 C (STEFANIC *et al.*, 2001).

Figura 2.40 – Difratograma das amostras calcinadas a 800 ⁰C (STEFANIC *et al.*, 2001).

Finalizando o estudo sobre o sistema Fe_2O_3 - ZrO_2 apresenta-se o trabalho desenvolvido por WU *et al.* (1993), referente à aplicação desse óxido na desidrogenação do etilbenzeno. Foram avaliadas as propriedades ácidas e básicas, área superficial, volume de poros e distribuição do tamanho de poros para estes catalisadores. A atividade aumentou até um máximo de 80% de ZrO_2 e então começou a decrescer. Os sítios ácidos e básicos foram medidos, bem como, a relação entre a área superficial e a composição de óxidos. Os resultados indicaram que elas aumentaram conforme a adição de ZrO_2 até um máximo de 80% de acordo com a Figura 2.41. Na Tabela 2.10 são apresentadas às propriedades físicas e a atividade catalítica para este sistema em estudo. Observamos que a acidez relativa e a basicidade dos óxidos mistos são quase a mesma. Com relação à distribuição do tamanho e volume de poros, observou-se que o diâmetro médio diminuiu conforme o aumento do teor de ZrO_2 no óxido misto.

		% ZrO ₂					Shell 105	
	0	20	40	50	60	80	100	
Qtdade ácido (mmol/g)	0.17	0.30	0.35	0.38	0.42	0.43	0.34	0.08
Qtdade base (mmol/g)	0.15	0.27	0.36	0.43	0.50	0.61	0.36	7.82
Área superficial (m²/g)	10	28	30	32	37	49	32	28
Volume de poros (c.c/g)	0.16	0.26	0.23	0.21	0.24	0.24	0.23	-
Diâmetro médio poros (Å)	280	95 170	145	100	90	70	70	-
Acidez relativa (mmol/m²)	0.017	0.011	0.012	0.012	0.011	0.009	0.011	0.003
Basicidade relativa (mmol/m ^z)	0.015	0.010	0.012	0.013	0.013	0.012	0.011	0.279
TOF relativo (mol% conv./m ²)	2.80	1.18	1.23	1.22	1.14	0.90	1.25	1.07
conv. (mol%)	28	33	37	39	42	44	40	30

Tabela 2.10 – Propriedades físicas do sistema Fe₂O₃-ZrO₂ (WU *et al.*, 1993).

As intensidades relativas referente às fases m-ZrO₂ (monoclínica) e c-ZrO₂ (cúbica) calcinadas a 700 0 C foram identificadas como 20 (deg) = 24,1 (m), 28,2 (vs), 31,5 (s), 34,3 (m), 50,2 (m) e 30,5 (vs), 35,4 (m), 50,7 (s), respectivamente. Pode-se observar que os cristalitos de c-ZrO₂ aumentaram conforme o aumento da carga de ZrO₂ na faixa de 20 – 80%. Observou-se também que a estrutura da ZrO₂ foi mudando de monoclínica pura para cúbica pura após adição de 20% de Fe₂O₃, sendo que o catalisador apresentou a melhor atividade com esta composição. Esses dados são apresentados na Figura 2.42.

Figura 2.41 – Quantidades de ácido e base e área superficial do sistema Fe_2O_3 -Zr O_2 com várias composições calcinadas a 700 ^{0}C (WU *et al.*, 1993).

Figura 2.42 – Difratograma do sistema Fe_2O_3 -Zr O_2 com várias composições calcinadas a 700 ^{0}C (WU *et al.*, 1993).

CAPÍTULO III

METODOLOGIA

Neste capítulo estão descritas a metodologia utilizada na preparação dos catalisadores e suportes, bem como, as técnicas de caracterização utilizadas para a determinação das suas propriedades físicas e químicas e a sua avaliação catalítica.

3.1 MÉTODOS DE PREPARO

A preparação dos catalisadores é uma das etapas de grande importância no estudo da catálise. Para o desenvolvimento deste trabalho, cinco catalisadores de platina suportados em óxidos mistos e óxidos metálicos foram preparados de acordo com o exposto na Tabela 3.1.

3.1.1 PREPARAÇÃO DOS SUPORTES

Óxido de Ferro (Fe₂O₃): O método de preparo consistiu na calcinação do nitrato de ferro III (VETEC) a 500 0 C, por 2h, utilizando taxa de aquecimento de 10 0 C.min⁻¹ sob fluxo contínuo de ar (120 mL.min⁻¹) em mufla programável.

Óxido de Zircônio (ZrO₂): O óxido de zircônio foi preparado pela calcinação do nitrato de zircônio (ALDRICH) a 500 0 C, por 2h, com taxa de aquecimento de 10 0 C.min⁻¹ sob fluxo contínuo de ar (120 mL.min⁻¹) em mufla programável.

Óxidos mistos (Fe_xZr_(1-x)O₂): Os óxidos mistos foram preparados a partir dos seus sais precursores (ZrO(NO₃).2H₂O e Fe(NO₃).9H₂O), os quais foram dissolvidos em água destilada, e as suas soluções foram misturadas conforme a razão molar Fe/Zr desejada. A precipitação foi realizada adicionando-se uma solução aquosa contendo 25% de NH₄OH até atingir pH 10,4. O precipitado formado foi separado da fase líquida através de filtração e lavagem com água destilada até obtermos pH neutro. As amostras obtidas foram secas a 90 $^{\circ}$ C, por 12h. A calcinação foi a 500 $^{\circ}$ C, por 2h, utilizando taxa de aquecimento de 2 $^{\circ}$ C.min⁻¹ em mufla programável (POPOVIC *et al.*, 1996).

3.1.2 PREPARAÇÃO DOS CATALISADORES

A adição de platina sobre os suportes foi realizada pelo método da impregnação seca, utilizando uma solução do ácido hexacloroplatínico (ACROSS) como sal

precursor de platina. Em seguida, as amostras foram secas em estufa por 12 h e calcinadas a 500 0 C, por 2 h, utilizando taxa de aquecimento de 5 0 C.min⁻¹ sob fluxo contínuo de ar (120 mL.min⁻¹) em calcinador de vidro pyrex.

	Métodos de Preparo	Método de adição de
Catalisadores	Do Suporte	Platina
Pt/ZrO ₂	Decomposição térmica do nitrato de zircônio (ALDRICH)	Impregnação seca do suporte
Pt/Fe ₂ O ₃	Decomposição térmica do nitrato de ferro III (VETEC)	Impregnação seca do suporte
Pt/Fe _{0,25} Zr _{0,75} O ₂	Co-precipitação do ZrO(NO ₃).2H ₂ O e Fe(NO ₃) ₃ .9H ₂ O	Impregnação seca do suporte
Pt/Fe _{0,5} Zr _{0,5} O ₂	Co-precipitação do ZrO(NO ₃).2H ₂ O e Fe(NO ₃) ₃ .9H ₂ O	Impregnação seca do suporte
Pt/Fe _{0,75} Zr _{0,25} O ₂	Co-precipitação do ZrO(NO ₃).2H ₂ O e Fe(NO ₃) ₃ .9H ₂ O	Impregnação seca do suporte

Tabela 3.1 – Nomenclatura e método de preparo utilizado.

3.2 CARACTERIZAÇÃO DOS SUPORTES E CATALISADORES

3.2.1 FLUORESCÊNCIA DE RAIOS-X (FRX)

Para determinação da composição química dos suportes e catalisadores (percentagem de platina, zircônio e ferro) foi utilizada a técnica de fluorescência de raios-X (FRX), em equipamento da marca Rigaku modelo RIX 3100, sendo a amostra analisada em forma de pastilha, utilizando as condições empregadas na Tabela 3.2.

Elementos	Voltagem	Corrente	Filtro	Atenuador	Fenda
	(kV)	(mA)		de	
				Intensidade	
Pt	45	70	-	1/1	Paralela
Zr	45	70	-	1/1	Paralela
Fe	45	70	-	1/1	Paralela

Tabela 3.2 – Condições empregadas na análise de FRX.

3.2.2 ANÁLISE TEXTURAL (BET)

Medidas de fisissorção de N_2 foram utilizadas para determinação das características texturais dos catalisadores e suportes, onde a área superficial específica foi obtida utilizando o método BET. A metodologia experimental consistiu, primeiramente, no pré-tratamento das amostras, realizando secagem na temperatura de 300 0 C sob vácuo de 5x10⁻³ torr, por um período de 24h. Em seguida, a análise foi efetuada na temperatura de -196 0 C em equipamento ASAP modelo 2000 da Micromeritics.

3.2.3 DIFRAÇÃO DE RAIOS-X (DRX)

A técnica de difração de raios-X foi utilizada para identificar as fases cristalinas presentes nos suportes. As análises foram realizadas em um difratômetro da marca Rigaku, modelo Miniflex, com radiação de CuK α (30kV e 15 mA), sendo avaliado o intervalo de 2⁰ < 2 θ < 90⁰, com passo de 0,05⁰ e um tempo de contagem de 1 segundo por passo.

3.2.4 REDUÇÃO à TEMPERATURA PROGRAMADA (TPR-H₂)

A técnica de redução à temperatura programada permite investigar através do perfil de redução a quantidade de hidrogênio consumido para reduzir os catalisadores, bem como, identificar as espécies precursoras da fase ativa e observar a redutibilidade de alguns suportes. A análise foi realizada num equipamento convencional equipado com um detector de condutividade térmica (TCD) e um reator de quartzo aquecido por um forno cerâmico que é controlado por um programador linear de temperatura Therma TH 90 DP 202-000. A amostra era submetida à secagem, que consistia em passar uma corrente gasosa de He a 250°C, por 30 min, com taxa de aquecimento de 10 °C.min⁻¹. Em seguida, foi então resfriada até a temperatura ambiente para posterior redução até a temperatura de 1000 °C, sob fluxo da mistura 1,59% H₂/Ar (v/v) com taxa de aquecimento de 10°C.min⁻¹.

3.2.5 QUIMISSORÇÃO DE H₂ e CO

As medidas de quimissorção são utilizadas de maneira a medir a capacidade de adsorção dos catalisadores além de fornecer uma medida do número de sítios ativos existentes na superfície do catalisador. A quimissorção das amostras (500 mg) foi realizada no equipamento ASAP 2000 da Micromeritics. O experimento consistiu em três etapas consecutivas, sendo elas, secagem, redução e análise. A Tabela 3.3 apresenta as condições experimentais realizadas nos catalisadores.

1 40 010	ene Empu	de enperime	no de quimboorçuo.	1	
Et Quir	apas da nissorção	Gás	Temperatura	Taxa de aquecimento	Tempo (min)
				(C/IIIII)	
1°	Secagem	Не	250 °C	10	30
2°	Redução	H ₂	500 °C	10	60
3°	Vácuo	-	35 °C	10	60
4°	Análise	H ₂ e CO	35 °C	10	-

Tabela 3.3 – Etapas do experimento de quimissorção.

3.2.6 DESSORÇÃO À TEMPERATURA PROGRAMADA DO CO E DA MISTURA REACIONAL

O emprego dessa técnica fornece informações sobre a caracterização da superfície catalítica, como a dispersão da fase ativa, natureza, morfologia dos sítios metálicos e interações metal-suporte. Para este estudo essa técnica é de grande importância, pois dará informações das interações do CO com os sítios ativos superfíciais, ajudando na compreensão da atividade, estabilidade e mecanismo reacional, uma vez que o CO é o principal reagente. O TPD de CO consistiu primeiramente das etapas de tratamento: secagem das amostras (~200 mg) a 250°C, por 30 min, sob fluxo de He (30 mL.min⁻¹), seguido de resfriamento até temperatura ambiente. Redução do catalisador a 500 °C, por 30 min, sob fluxo da mistura 10% H₂/Ar (30 mL.min⁻¹) utilizando taxa de aquecimento de 10 °C.min⁻¹. A limpeza da amostra foi realizada na temperatura ambiente. A seguir, foi realizada a adsorção da mistura 5% CO/He sob fluxo constante (30 mL/min) por 30 min. Após esta etapa, a limpeza do CO fisissorvido e em fase gasosa foi realizada sob fluxo de He, por 1h.

Finalizando esta etapa, foi então realizado o aumento linear de temperatura até 220 0 C com taxa de aquecimento 10 0 C.min⁻¹. Com o aumento da temperatura houve dessorção do gás quimissorvido. Verificou-se, então, a intensidade do pico de dessorção e a temperatura em que ela ocorreu. A análise foi realizada com auxílio de um espectrômetro de massas modelo Balser QMS 200, acompanhando os sinais relativos às razões m/e = 2, 12, 18, 28 e 44 referente às moléculas de hidrogênio, carbono, água, monóxido de carbono e dióxido de carbono. O TPD da mistura reacional com 60% H₂ + 1% O₂ + 1% CO + balanço com He foi realizado utilizando-se o mesmo procedimento, sendo que a adsorção em temperatura ambiente foi realizada com a mistura ideal utilizada na reação SELOX.

3.2.7 ANÁLISE DE ESPECTROSCOPIA NA REGIÃO DO INFRAVERMELHO POR REFLECTÂNCIA DIFUSA DO CO

As análises foram realizadas com o objetivo de verificar possíveis interações entre os metais e dos mesmos com os suportes, sendo para tal utilizado um espectrômetro Nicolet, modelo Nexus 470 (resolução 4 cm⁻¹ e detector MCT-A), equipado com um acessório de reflectância difusa (Spectra-Tech) com câmara para aquecimento até 800 °C e janelas de ZnSe. A metodologia iniciou-se pela secagem dos catalisadores a 250°C, por 30 min, seguido de resfriamento até temperatura ambiente. A redução foi realizada na temperatura de 500 °C, por 30 min, utilizando taxa de aquecimento de 10 °C.min⁻¹ sob fluxo da mistura 10% H₂/He. Em seguida, procedeu-se a limpeza das amostras com fluxo de He por 30 min, sendo então resfriada até a temperatura ambiente obtendo-se um espectro. A seguir, a amostra foi exposta a um fluxo da mistura 5% CO/He por 2 min e obtido um novo espectro. Logo após, fechou-se a câmara de reação e deixou-se entrar a mistura 5% CO/He por 2 min, esperou-se 5 min e um novo espectro foi obtido. Terminando esta etapa, foram realizados aquecimentos nas temperaturas de 50 °C, 100 °C e 220 °C, obtendo-se os respectivos espectros. A seguir, foi introduzido um fluxo da mistura por 5 min e posterior limpeza com He por 10 min na temperatura de 220 °C, obtendo-se novos espectros. Esse mesmo procedimento de analise foi realizado para as misturas $CO + O_2 + He$ (1:1:8 -10mL/min) e CO + O₂ + H₂ (1:1:30 - 40 mL/min) utilizando câmera fechada e fluxo de gás. Todas os espectros foram obtidos após 100 scans e resolução de 4 cm⁻¹. O espectro da amostra tratada após fluxo de hélio foi utilizado como background.

3.2.8 ESPECTROSCOPIA DE MÖSSABUER

A Espectroscopia de Mössbauer constitui-se numa técnica bastante útil na caracterização de compostos organometálicos de ferro, visto que dela são extraídas informações relevantes sobre a ligação química e estrutura molecular. Os Espectros Mössbauer realizados na Universidade de La Plata, na Argentina, foram obtidos usando um espectrômetro de aceleração constante de 512 canais com geometria de transmissão. Foi usada uma fonte de ⁵⁷Co em uma matriz de Rh 50mCi nominal. A calibração das velocidades foi realizada a cabo com uma lâmina de α -Fe de 12 µm de espessura. Todas as corridas isoméricas são relativas a este padrão a 25 °C. O esquema do equipamento utilizado está apresentado na Figura 3.1.

Figura 3.1 - Representação esquemática do espectrômetro Mössbauer.

Os testes realizados na temperatura de 30 K foram obtidos usando-se um sistema criogênico com ciclo fechado Displex DE-202. O espectro mössbauer obtido foi avaliado usando-se um programa comercial com restrição chamado Recoil conforme LAGAREC *et al.*, (1998). As linhas Lorenzianas foram consideradas iguais para cada componente no espectro. Os espectros foram dobrados para minimizar os efeitos geométricos. O espectro da amostra reduzida foi obtido em atmosfera ativada usando uma célula especialmente projetada para esta proposta a ser usada no sistema criogênico de acordo com MARCHETTI *et al.*, (1996).

3.2.9 REAÇÃO SUPERFICIAL COM PULSOS DA MISTURA REACIONAL

Está técnica foi empregada com o objetivo de avaliar a reação de oxidação seletiva do CO através da injeção de pulsos da mistura reacional, variando-se a temperatura na faixa compreendida entre 50 a 300 °C. O pré-tratamento das amostras (100mg) consistiu na secagem a 250°C, por 30 min, seguido de resfriamento até temperatura ambiente. Redução sob fluxo da mistura 10% H₂/Ar até 500 °C, por 30 min, com taxa de aquecimento de 10°C.min⁻¹. As amostras foram resfriadas sob fluxo de He até a temperatura ambiente. A mistura reacional continha 1% CO, 1% O₂, 60%H₂ e balanço de He. As amostras foram submetidas a pulsos da mistura reacional nas temperaturas de 50 °C, 100 °C, 150 °C, 200 °C, 250 °C e 300 °C. A análise foi realizada com auxílio de um espectrômetro de massas modelo Balser QMS 200, acompanhando os sinais relativos às razões m/e = 2, 12, 18, 28 e 44 referente às moléculas de hidrogênio, carbono, água, monóxido de carbono e dióxido de carbono.

3.3 TESTES CATALITICOS

Os testes catalíticos da reação de oxidação seletiva do CO foram realizados a pressão atmosférica num reator de vidro *pyrex* no formato em "U", em uma unidade acoplada a um cromatógrafo a gás VARIAN CP3800 com detector de condutividade térmica (TCD) e coluna capilar Varian CP-PoraBOND Q. As etapas se resumem em secagem, redução do catalisador e reação seletiva do CO propriamente dita. A reação foi estudada variando-se a temperatura de reação até atingir a conversão máxima de CO.

A amostra era submetida a um pré-tratamento que consistia em se passar uma corrente gasosa de He a 250°C, por 30 min, com taxa de aquecimento de 10°C.min⁻¹, de maneira a eliminar qualquer traço de umidade presente. A redução do catalisador foi realizada com uma mistura 10% H₂/He até 500 °C, por 30 min com taxa de aquecimento de 10 °C.min⁻¹. Foi realizada uma limpeza no catalisador com fluxo de He por 30 min na temperatura de redução. Após ativação catalítica, os canais do controlador de fluxo mássico correspondente à mistura gasosa 1% CO, 60% H₂, 1% O₂ e balanço com He foram abertos e, posicionava-se então, a válvula de seleção *by-pass*/reator em *by-pass*, onde eram feitos os devidos ajustes de fluxo para estabilização da carga. A massa de catalisador utilizada foi 100 mg e a vazão volumétrica de 100 mL.min⁻¹. A faixa de temperatura estudada foi de 30 até 220 °C. Eram feitas três injeções, com suas áreas

cromatográficas sendo utilizadas no cálculo da conversão do CO, O_2 e seletividade conforme as equações 3.1, 3.2 e 3.3. Em seguida, a válvula de seleção *by-pass/*reator era posicionada em reator para então ser realizada a etapa de reação. A Tabela 3.4 mostra as condições cromatográficas de análise.

conversão de CO (%) =
$$\frac{[CO]_{e} - [CO]_{s}}{[CO]_{s}} \times 100$$
(3.1)

conversão de O₂ (%) =
$$\frac{[O_2]_e - [O_2]_s}{[O_2]_s} \times 100$$
 (3.2)

Seletividade (%) =
$$\frac{0.5 \times ([CO]_e - [CO]_s)}{[O_2]_s - [O_2]_s} \times 100$$
 (3.3)

Tabela 3.4 –	Condições	de Análise	Cromat	ográficas.
	•			4 /

	toBrunous.
Cromatógrafo	Micro CG Varian modelo 3800
Coluna	CP-PoraBOND Q.
Gás de arraste	Hélio
Temperatura da coluna	250 °C
Pressão da coluna	20 psi isobárico
Temperatura do Injetor	50 °C
Tempo de Injeção	7 segundos
Tempo de análise	27 min

CAPÍTULO IV

RESULTADOS E DISCUSSÃO

4.1 CARACTERIZAÇÃO DOS MATERIAIS

4.1.1 FLUORESCÊNCIA DE RAIOS-X (FRX)

A composição química dos suportes e catalisadores foi determinada por análise de fluorescência de raios-X. Os respectivos resultados estão expostos nas Tabelas 4.1 e 4.2, respectivamente. Para os suportes, pôde-se observar que o teor real pretendido para o óxido de ferro foi alcançado, evidenciando a eficácia do método de preparo utilizado para este suporte. No caso do óxido de zircônio essa diferença de 4% em relação ao valor teórico foi atribuída à presença de HfO₂ no precursor. Para os óxidos mistos houve alguns valores discrepantes, fato este, que foi atribuído ao método de preparo, pois ocorrem perdas de massa, principalmente nas etapas de filtração, lavagem e ajuste do pH, bem como ocorrem erros na etapa de preparo das soluções dos respectivos nitratos de ferro e zircônio. O método utilizado para a adição de platina sobre os suportes mostrou ser eficaz para os óxidos metálicos e óxidos mistos, pois os teores reais foram próximos dos valores teóricos pretendidos, embora tenhamos um valor residual de cloro proveniente do precursor utilizado.

	Teor non	ninal (%)	Teor real (%)		
Suportes	Fe ₂ O ₃	ZrO ₂	Fe ₂ O ₃	ZrO ₂	
Fe ₂ O ₃	100	-	99,7	-	
ZrO ₂	-	100	-	96,2	
Fe _{0,25} Zr _{0,75} O ₂	25	75	23,1	75,5	
Fe _{0,5} Zr _{0,5} O ₂	50	50	46,1	53,1	
Fe _{0,75} Zr _{0,25} O ₂	75	25	69	29,4	

Tabela 4.1 – Resultados de composição química dos suportes

(%) = base molar de óxidos.

	Teor nominal (%)		Teor real (%)				
Catalisadores	Pt	Fe ₂ O ₃	ZrO ₂	Pt	Fe ₂ O ₃	ZrO ₂	Cl
1%Pt/Fe ₂ O ₃	1	99	-	1,07	98,2	-	0,47
1%Pt/ZrO ₂	1	-	99	1,06	-	96	-
1%Pt/Fe _{0,25} Zr _{0,75} O ₂	1	99		0,98	22,1	74,1	1,1
1%Pt/Fe _{0,5} Zr _{0,5} O ₂	1	99		1,1	44	51,2	2,02
1%Pt/Fe _{0,75} Zr _{0,25} O ₂	1		99	0,91	70,1	27,6	1,4

Tabela 4.2 – Resultados de composição química dos catalisadores.

(%) = base molar de óxidos.

4.1.2 ANALISE TEXTURAL (BET)

A análise textural foi realizada através da fisissorção de N_2 para quantificação da área superficial específica determinada pelo método BET. Os resultados obtidos para as diversas amostras estão expostos na Tabela 4.3.

Suportes	BET (m^2/g_{cat})	Catalisadores	BET (m ² /g _{cat})
ZrO ₂	62	1%Pt/ZrO ₂	57
Fe ₂ O ₃	14	1%Pt/Fe ₂ O ₃	14
Fe _{0,25} Zr _{0,75} O ₂	185	1%Pt/Fe _{0,25} Zr _{0,75} O ₂	164
Fe _{0,5} Zr _{0,5} O ₂	93	1%Pt/Fe _{0,5} Zr _{0,5} O ₂	75
Fe _{0,75} Zr _{0,25} O ₂	68	1%Pt/Fe _{0,75} Zr _{0,25} O ₂	68

Tabela 4.3 – Análise textural dos catalisadores e suportes.

Para o óxido de zircônio o valor encontrado foi de 62 m²/g, próximo aos valores encontrados na literatura. WU *et al.* (1993) prepararam o óxido de zircônio a partir da decomposição térmica do nitrato de zircônio a 700 °C por 2 h, obtendo uma área superficial específica igual a 32 m²/g_{cat}. Já SOUZA *et al.* (2001) prepararam este óxido pela decomposição térmica do hidróxido de zircônio a 600 °C por 2h e obtiveram uma área específica igual a $62m^2/g_{cat}$. Em outro estudo SOUZA *et al.* (2007) prepararam este óxido pela decomposição térmica do nitrato de zircônio a 500 °C por 2h e obtiveram uma área específica. KONOVA *et al.* (2004a) utilizaram o método da hidrólise do cloreto de zircônio com KOH calcinado a 500 °C por 3h e obtiveram ZrO₂ com área específica igual a 153 m²/g_{cat}. Finalmente, WOOTSCH *et al.* (2006) estudando o mesmo sistema utilizou ZrO₂ comercial (Rhodia Electronics na Catalysis) com área específica igual a 13 m²/g_{cat}.

Para o sistema ZrO₂, nota-se que, os óxidos calcinados nas temperaturas de 500 e 600 °C, com o mesmo tempo de calcinação preparados a partir da decomposição térmica de sais precursores diferentes, apresentaram valores de área iguais, evidenciando assim, que a escolha da temperatura de calcinação e do sal precursor foram os parâmetros responsáveis por este resultado. Já o sistema que utilizou como método de preparo a hidrólise de um sal precursor também diferente dos citados anteriormente, com tempo de calcinação maior, porém na mesma temperatura de 500 °C apresentou um valor de área duas vezes maior, confirmando que, para obtermos um óxido com alta área específica os parâmetros temperatura de calcinação, precursor e o tempo de calcinação influem de maneira decisiva neste resultado.

A partir dos resultados da Tabela 4.3, observa-se que o óxido de ferro apresenta uma área específica relativamente baixa. Pode-se destacar vários trabalhos relacionados ao óxido de ferro, como o de TRIPATHI *et al.* (1999), que encontraram uma área BET igual a 41 m²/g, após calcinação a 400 °C, por 4h. Já QIU *et al.* (2005), obtiveram uma área de 50 m²/g após calcinação a 350 °C por 1h utilizando FeCl₃.6H₂O como sal precursor. MENEZES *et al.* (2007) conseguiram um valor menor do que 10 m²/g após calcinação em diversas temperaturas (200, 300, 400, 500 e 600 °C) por 12h, utilizando FeCl₃.6H₂O como sal precursor. SHAHEEN *et al.* (2007) utilizaram Fe(OH)₂·FeCO₃ como precursor e obtiveram os seguintes valores para a área especifica BET utilizando três temperaturas de calcinação: a 350 °C a área foi de 51 m²/g, 550 °C de 40 m²/g e a 750 °C foi de 32 m²/g.

O suporte Fe_2O_3 apresentou como principais parâmetros o tempo e a temperatura de calcinação, visto que, utilizando tempo de 1h e temperatura de 350 °C, este óxido apresentou em ambos os casos o mesmo valor de área BET (50 m²/g), mesmo sendo preparado por sais precursores diferentes, parâmetro este, que não influenciou no resultado final encontrado para este suporte.

Com relação aos resultados obtidos para os suportes e catalisadores de platina suportados em óxidos mistos Fe/Zr, observou-se que o aumento da fração molar de zircônio aumentou a área específica e estes valores foram superiores aos encontrados na literatura. Este resultado poderia ser atribuído aos precursores empregados, bem como a menor temperatura de calcinação usada em relação à literatura. No trabalho realizado por WU *et al.* (1993), o preparo do óxido misto Fe/Zr utilizando os sais precursores

cloreto férrico e tetracloreto de zircônio a secagem foi a 110 °C por 4h e a calcinação a 700 °C, por 2h. Eles observaram que o aumento da composição molar de zircônio aumentava a área do suporte até atingir um valor máximo de 49 m²/g com 80 % de zircônio. Com isto, conclui-se, que neste caso todos os parâmetros escolhidos foram os responsáveis pelo maior valor de área encontrado.

4.1.3 DIFRAÇÃO DE RAIOS-X (DRX)

Para identificação das fases cristalinas dos suportes e catalisadores utilizou-se a técnica de difratometria de raios-X, cujos resultados são apresentados nas Figuras 4.1 e 4.2. Nas amostras ZrO_2 e 1% Pt/ZrO₂ observou-se a presença das fases cristalinas ZrO_2 monoclínica (JCPDS 371484) e cúbica (JCPDS 27997) enquanto que as fases cristalinas Fe₂O₃ cúbica (JCPDS 391346) e hexagonal (JCPDS 33664) foram identificadas nas amostras Fe₂O₃ e 1% Pt/Fe₂O₃. O ZrO₂ e 1% Pt/ZrO₂ são formados por uma mistura de estruturas cristalinas, sendo a fase monoclínica, com seus principais picos em (24,31°, 28,39°, 31,53°, 34,39°, 40,90°) e a fase cúbica com os principais picos em (30,32°, 35,36°, 50,31° e 60,18°). O Fe₂O₃ e 1%Pt/Fe₂O₃ também são formados por uma mistura de estruturas cristalinas, sendo composto pelas fases cúbica (33,54° e 62,73°) e hexagonal (24,37°, 35,81°, 41,03°, 49,70°, 54,29° e 64,17°), respectivamente. No presente trabalho não se pôde identificar a presença das linhas características do óxido de platina indicando que a mesma está bem dispersa ou o teor de platina está abaixo do nível de detecção do aparelho, estando de acordo com os resultados apresentados na literatura por AYASTUY *et al.* (2006).

Figura 4.1 – Difratograma do suporte ZrO₂ e catalisador 1% Pt/ZrO₂.

Figura 4.2 – Difratograma do suporte Fe₂O₃ e catalisador 1% Pt/Fe₂O₃.

O suporte e catalisador de platina com 25 % de ferro (Figura 4.3) não apresentaram picos (sistema amorfo), o que pode estar relacionado ao seu tamanho de partícula muito pequeno, as quais não puderam ser detectadas pelo aparelho. Estes resultados sugerem a formação de uma solução sólida de Fe/Zr e mais adiante poderão ser confirmados com as análises de espectroscopia de Mössbauer. Na literatura, STEFANIC et al. (2000) encontraram um sistema amorfo para este óxido misto calcinado a 500 °C com fração molar de óxido de ferro igual a 30%. Os difratogramas dos suportes e catalisadores a base de óxidos mistos Fe/Zr apresentados nas Figuras 4.4 e 4.5 mostram a presença das fases cristalinas Fe₂O₃ cúbica (JCPDS 391346) e hexagonal (JCPDS 33664), bem como a fase ZrO₂ cúbica (JCPDS 27997) sugerindo a formação de uma fase segregada de óxido de ferro e zircônio para todas as amostras com razão molar de 50% e 75% de ferro de acordo com os resultados da literatura apresentados por STEFANIC et al. (1999, 2000 e 2001). O óxido de ferro presente é formado por uma mistura de estruturas cristalinas, composto pela fase cúbica com seus principais picos em (33,33°, 60,3° e 62,7°) e hexagonal (24,37°, 35,75°, 41°, 49,70°, 54,29° e 64,17°). O óxido de zircônio apresenta os picos em 30,6° e 50,65°. Os resultados mostram que as intensidades da fase ZrO₂ diminuem conforme o aumento da quantidade ferro na amostra, concordando com o estudo feito por STEFANIC et al. (2000). Os resultados de espectroscopia de Mössbauer que serão apresentados num tópico posterior concordam com esses resultados. Nenhum sinal do pico de óxido de platina foi observado nestes catalisadores, fato que poderia ser explicado devido ao seu baixo teor nas amostras.

Figura 4.3 – Difratograma do suporte $Fe_{0.25}Zr_{0.75}O_2$ e catalisador 1% Pt/Fe_{0.25}Zr_{0.75}O₂.

Figura 4.4 – Difratograma do suporte $Fe_{0,5}Zr_{0,5}O_2$ e catalisador 1% Pt/Fe_{0,5}Zr_{0,5}O_2.

Figura 4.5 – Difratograma do suporte $Fe_{0,75}Zr_{0,25}O_2$ e catalisador 1% Pt/Fe_{0,75}Zr_{0,25}O_2.

4.1.4 REDUÇÃO À TEMPERATURA PROGRAMADA (TPR-H₂)

Este método tem como fundamento a medida do consumo de hidrogênio associado com a redução das espécies oxidadas presentes na amostra, quando esta é submetida a um regime de aquecimento sob condições de temperatura programada. A técnica utiliza uma mistura contendo hidrogênio (agente redutor) em um gás inerte mediante um detector de condutividade térmica. A posição relativa dos picos de redução nas análises de TPR permite uma análise qualitativa das diferentes espécies metálicas formadas. Pelo consumo de H₂ pode-se avaliar quantitativamente o grau de redução do metal, bem como uma possível redução subsequente de parte do suporte.

Os resultados obtidos através da quantificação dos picos de redução são apresentados nas Tabelas 4.4 e 4.5, onde o consumo teórico e experimental de H₂ para redução da platina foi calculado considerando a estequiometria $Pt^{4+} \rightarrow Pt^{\circ}$. Os cálculos de redução do óxido de ferro foram realizados considerando-se as seguintes equações: Na primeira etapa a redução da hematita a magnetita segundo a reação:

$$3 \text{ Fe}_2\text{O}_3 + \text{H}_2 \rightarrow 2 \text{ Fe}_3\text{O}_4 + \text{H}_2\text{O}$$
 (18)

A seguir formação de ferro metálico, conforme a reação:

$$Fe_3O_4 + 4 H_2 \rightarrow 3 Fe + 4H_2O$$
(19)

A estequiometria de redução considerada para o suporte ZrO_2 foi $Zr^{4+} \rightarrow Zr^{3+}$. Todos os valores de consumo de H₂ foram quantificados a partir da área calculada sob os picos de redução dos respectivos perfis para cada suporte e catalisador. Com base nos dados da Tabela 4.4 pode-se inferir que apenas o suporte ZrO_2 apresentou grau de redução muito baixo, ou seja, resultado este já esperado uma vez que esse suporte não apresenta tendência para redução. O consumo de H₂ nos óxidos mistos foi calculado com base na redução do Fe₂O₃, uma vez que a zircônia apresentou um grau de redução muito baixo comparado ao óxido de ferro.

Suportes	Consumo de H ₂	Consumo de H ₂	Grau de
	teórico (μmol/g _{cat})	no TPR (µmol/g _{cat})	Redução (%)
ZrO ₂	229,5	12,4	5,4 ^a
Fe ₂ O ₃	25,2 ^b e 201,6 ^c	22,4 ^b e 137,6 ^c	88,8 ^b e 68,2 ^c
$Fe_{0,25}Zr_{0,75}O_2$	93,7	89,4	95,4 ^d
$Fe_{0,5}Zr_{0,5}O_2$	202,6	194,8	96,1 ^d
$Fe_{0,75}Zr_{0,25}O_2$	225,5	64,6	28,6 ^d

Tabela 4.4 – Quantificação do consumo de H₂ no TPR dos suportes.

^a (Zr⁴⁺ \rightarrow Zr³⁺), ^b primeiro pico de redução (3 Fe₂O₃ + H₂ \rightarrow 2 Fe₃O₄ + H₂O), ^c segundo pico de redução (Fe₃O₄ + 4 H₂ \rightarrow 3 Fe + 4H₂O) e ^d (Fe₂O₃ + 3 H₂ \rightarrow 2 Fe + 3 H₂O).

Catalisadores	Consumo de H ₂	Consumo de H ₂	Grau de
	teórico (µmol/g _{cat})	no TPR (µmol/g _{cat.})	Redução (%)
1%Pt/ZrO ₂	108,5 ^a e 229,5 ^b	168,4 ^a e 61,9 ^b	155 ^a e 27 ^b
1%Pt/Fe ₂ O ₃	109,7 ^a	55,9 ^a	50,9 ^a
1%Pt/Fe _{0,25} Zr _{0,75} O ₂	100,4 ^a	94,7 ^a	94,3ª
1%Pt/Fe _{0,5} Zr _{0,5} O ₂	112,7 ^a	55,7 ^a	49,4 ^a
1%Pt/Fe _{0,75} Zr _{0,25} O ₂	93,3 ^a	48 ^a	51,4 ^a

Tabela 4.5 – Quantificação do consumo de H₂ no TPR dos catalisadores.

^a primeiro pico de redução (Pt⁴⁺ \rightarrow Pt°), ^b segundo pico de redução (Zr⁴⁺ \rightarrow Zr³⁺).

Com relação à redução do suporte ZrO_2 (Figura 4.6) este se manteve praticamente estável, apresentando um pequeno pico de redução em 738 °C correspondendo a uma redução de 5,4 % da zircônia. Esse baixo consumo poderia estar relacionado a uma reação com o oxigênio presente na estrutura do óxido de zircônio. Esta observação é consistente com os resultados encontrados por BOZO *et al.* (2000) e QUERINO *et al.* (2005) que verificaram que o ZrO_2 apresenta baixa redução nestas condições. Da mesma forma, DONG *et al.* (2002) mostraram que o ZrO_2 não apresenta nenhum pico de redução em temperaturas inferiores a 900 °C.

O catalisador 1% Pt/ZrO₂ (Figura 4.6) apresentou três principais picos de redução nas temperaturas de 273, 490 e 910 °C. O consumo de H₂ correspondente ao pico em 273 °C foi maior do que o necessário para redução completa da platina estando em conformidade com os resultados apresentados por SOUZA *et al.* (2001). Assim, o suporte já poderia estar sendo reduzido a partir de baixas temperaturas formando espécies subóxidas na interface com o metal. SOUZA *et al.* (2001) relataram que o

óxido de zircônio não apresenta consumo de H₂ durante o TPR, logo o consumo adicional de H₂ pode estar relacionado com a redução do oxido de zircônio na interface com metal. A platina quando é reduzida dissocia homoliticamente o H₂, criando espécies ativas que migram para a superfície da zircônia, facilitando a sua redução. Este primeiro pico é atribuído à redução da platina (Pt⁴⁺ \rightarrow Pt°). Já os outros dois picos em altas temperaturas podem estar relacionados à redução adicional do suporte na estequiometria Zr⁴⁺ \rightarrow Zr³⁺. HOANG *et al.* (1995) observaram que ocorre spillover de H₂ na superfície da zircônia com a Pt na temperatura de 550 °C. Uma parte do H₂ é consumida pela redução parcial da zircônia e a outra parte é adsorvida na superfície e dessorvida a 650 °C. Este fenômeno explica o fato de haver um consumo experimental maior do que o necessário para redução completa da platina nesse catalisador.

Figura 4.6 – Perfil de redução do suporte ZrO₂ e catalisador 1% Pt/ZrO₂.

O suporte Fe₂O₃ (Figura 4.7) apresentou um pico de redução em 430 °C e outro pico largo entre 500 e 950 °C. De acordo com SOUZA *et al.* (1998), os perfis de redução dos catalisadores apresentam picos característicos de redução da hematita à magnetita num primeiro estágio (3 Fe₂O₃ + H₂ \rightarrow 2 Fe₃O₄ + H₂O), seguido da formação de ferro metálico (Fe₃O₄ + 4 H₂ \rightarrow 3 Fe + 4 H₂O). A primeira etapa é exotérmica ocorrendo a cerca de 300 °C e a segunda é endotérmica ocorrendo em temperaturas mais altas. Destaca-se também o estudo feito por CHEN et al. (1996), os quais encontraram como temperaturas máximas de redução 400 e 600 °C. HEIDEBRECHT et al. (2008) utilizando diferentes taxas de aquecimento em seus experimentos encontraram as temperaturas máximas de redução em torno de 400 °C para a primeira etapa e 700 °C para a segunda. LIN et al. (2003) realizaram um estudo semelhante e observaram que a primeira etapa de redução ocorre a 300 °C enquanto que a segunda em 500 °C. JOZWIACK et al. (2007) observaram que o formato do segundo pico de redução era influenciado pelas taxas de aquecimento. Eles constataram que em baixas taxas (~0.58 °C.min⁻¹) o processo de redução do segundo pico ocorria na faixa de 450 – 480 °C, enquanto que, para altas taxas (~10,7 °C.min⁻¹) a faixa de temperatura era de 700 - 800 °C. Portanto, as temperaturas de redução para o suporte Fe₂O₃ apresentadas na Figura 4.7 estão de acordo com os dados apresentados pela literatura, bem como o perfil de redução, confirmando que para este sistema a redução pode estar ocorrendo em duas etapas distintas. Já o perfil de redução do catalisador 1% Pt/Fe₂O₃ (Figura 4.7) apresentou três picos de redução nas temperaturas de 112, 306 e 700 °C. Conforme já discutido anteriormente, esses dois últimos picos de redução referem-se à redução do suporte, enquanto que o pico na temperatura de 112 °C é atribuído à redução do óxido cloreto de platina [Pt(OH)xCly] e [PtOxCly]. O segundo pico indica que parte do óxido de ferro foi reduzido à temperatura mais baixa, devido à presença da Pt, sugerindo que a Pt catalisa a redução do óxido de ferro.

Figura 4.7 – Perfil de redução do suporte Fe₂O₃ e catalisador 1% Pt/Fe₂O₃.

Os suportes com 50% e 75% de ferro (Figuras 4.8 e 4.9) apresentaram perfis de redução semelhantes ao óxido de ferro puro, porém com deslocamento nos picos de redução para temperaturas mais altas. No suporte Fe_2O_3 o pico em torno de 630 °C que não estava visível devido ao grande consumo de H_2 foi possível identificá-lo para os suportes com 50 e 75% de ferro. Com relação aos perfis de redução da platina sobre esses suportes identifica-se a presença dos picos de redução em temperaturas próximas, bem como graus de redução semelhantes ao valor encontrado para o óxido de ferro puro conforme visto da na Tabela 4.5, confirmando que esses catalisadores são formados por uma mistura de óxidos de ferro e zircônio com diferentes estruturas cristalinas e não por uma solução sólida de Fe/Zr. Esses resultados de TPR estão em acordo com os dados de DRX apresentados nas Figuras 4.4 e 4.5. Cabe ressaltar também, que os perfis observados na literatura, para amostras contendo óxido de ferro não retornam a linha de base, sendo característico desse sistema.

 $\label{eq:Figura 4.8-Perfil de redução do suporte Fe_{0,5}Zr_{0,5}O_2 \ e \ catalisador \ 1\% \ Pt/Fe_{0,5}Zr_{0,5}O_2.$

Figura 4.9 – Perfil de redução do suporte $Fe_{0,75}Zr_{0,25}O_2$ e catalisador 1% Pt/Fe_{0,75}Zr_{0,25}O_2.

O suporte Fe_{0.25}Zr_{0.75}O₂ (Figura 4.10) foi o único que apresentou perfil de redução diferente em relação aos demais suportes já apresentando um pico de redução na temperatura de 220 °C, o que poderia ser atribuído a uma solução sólida formada entre Ferro e Zircônia, sendo que os outros picos localizados em 450 °C e o grande pico na faixa de 650 a 950 °C podem ser relacionados a redução do óxido de ferro de acordo com as respectivas equações 18 e 19. Para o catalisador 1% Pt/Fe_{0.25}Zr_{0.75}O₂ notamos um pico de redução em 240 °C, que corresponde à redução do óxido de platina. Quando comparado com o perfil de redução do seu óxido misto, indica que houve redução parcial do mesmo. Já a presença dos demais picos refere-se às etapas de redução do óxido de ferro. Os resultados apresentados na Tabela 4.5 para o grau de redução desse catalisador mostram que o valor encontrado foi muito superior ao catalisador com óxido de ferro puro, evidenciando assim a formação de uma solução sólida de Fe/Zr em acordo com os resultados de DRX. Posteriormente serão apresentados os resultados de espectroscopia de Mössbauer os quais mostrarão a presença ou não de íons Fe³⁺ inseridos na rede do óxido de zircônio confirmando a formação de um óxido misto para este catalisador.

Figura 4.10 – Perfil de redução do suporte $Fe_{0.25}Zr_{0.75}O_2$ e catalisador 1%Pt/ $Fe_{0.25}Zr_{0.75}O_2$.

4.1.5 DESSORÇÃO de CO à TEMPERATURA PROGRAMADA (TPD-CO)

O estudo da interação do CO com os sítios metálicos e com a interface metalsuporte é de fundamental importância para a compreensão do mecanismo da reação de oxidação seletiva do CO. Os resultados obtidos com o TPD de CO e da mistura reacional (1% CO, 1% O_2 , 60% H_2 e balanço He) para os catalisadores são mostrados nas Tabelas 4.6 e 4.7.

Catalisadores	Dessorcão de CO	Dessorcão de CO ₂	Dessorcão de H ₂		
	(µmolCO/g _{cat})	(µmolCO ₂ /g _{cat})	(µmolH ₂ /g _{cat})		
1% Pt/ZrO ₂	14,7 ^a	117,1	3,56		
1% Pt/Fe ₂ O ₃	-	-	-		
1% Pt/Fe _{0,25} Zr _{0,75} O ₂	10,1 ^a	102,3	-		
$1\% \text{ Pt/Fe}_{0,5}\text{Zr}_{0,5}\text{O}_2$	9,7 ^a	15,4	-		
$1\% \text{ Pt/Fe}_{0,75} \text{Zr}_{0,25} \text{O}_2$	4,0 ^a	13,8	-		

Tabela 4.6 – Quantificação das espécies dessorvidas no TPD de CO.

^a calculado considerando a remoção da contribuição do sinal m/e = 28 do CO_2 .

Catalisadores	Dessorcão de CO (µmolCO/g _{cat})	Dessorcão de CO ₂ (µmolCO ₂ /g _{cat})	Dessorcão de H ₂ (µmolH ₂ /g _{cat})	
1% Pt/ZrO ₂	6,1 ^a	57,1	28,7	
1% Pt/Fe ₂ O ₃	1,0 ^a	3,2	9,7	
1% Pt/Fe _{0,25} Zr _{0,75} O ₂	7,3 ^a	132,2	-	
$1\% Pt/Fe_{0,5}Zr_{0,5}^{o}_{2}$	1,6 ^a	5,0	17,2	
1% Pt/Fe _{0,75} Zr _{0,25} O ₂	1,5 ^a	10,6	104,7	

Tabela 4.7 – Quantificação das espécies dessorvidas no TPD da mistura reacional.

^a calculado considerando a remoção da contribuição do sinal m/e = 28 do CO_2 .

As análises de TPD de CO (Figura 4.11) mostram que o catalisador 1% Pt/ZrO_2 apresentou picos de dessorção de CO₂ nas temperaturas de 100 e 220 °C e um pico de dessorção de H₂ basicamente num único estágio na temperatura de 220 °C (isotérmico). Os picos de dessorção de CO foram observados nas temperaturas de 100 e 220 °C e podem estar associados com a adsorção do CO na temperatura ambiente.

ARANDA e SCHMAL (1997) mostraram que o CO adsorvido sobre a platina poderia interagir com os grupos hidroxila superficiais do suporte levando a formação de CO_2 e H₂. Esse mecanismo pode ser descrito através da equação 20 como uma reação de deslocamento gás-água modificada onde o grupo (OH) faz o papel da água. Através dessa equação podemos explicar o fato de termos a formação de H_2 durante o TPD-CO para este catalisador.

$$CO_{(ads)} + (OH)_{(ads)} \rightarrow CO_{2(g)} + \frac{1}{2} H_{2(g)}$$
 (20)

KONOVA *et al.* (2004a) e RIBEIRO *et al.* (2008a) estudando catalisadores Au/ZrO₂ observaram a formação de CO₂ em dois picos, sendo um a 120 °C atribuído à formação do CO₂ devido ao CO adsorvido sobre as espécies de Au o qual poderia interagir com o oxigênio presente na rede cristalina da zircônia levando a formação de CO₂ e vacâncias de oxigênio. O outro pico na temperatura de 300 °C foi atribuído à decomposição de espécies carbonatos presentes na superfície do suporte. Com isso, os picos de dessorção de CO₂ em 100 e 220 °C no catalisador 1% Pt/ZrO₂ seguem o mesmo mecanismo de dessorção observado pelos autores.

Figura 4.11 – Perfis de Dessorção de CO do catalisador 1% Pt/ZrO₂.

A análise de TPD da mistura reacional (Figura 4.12) do catalisador 1% Pt/ZrO₂ apresentou picos de dessorção de CO₂ nas temperaturas de 110 e 220 °C. Os picos de dessorção de CO foram observados nas temperaturas de 93 e 220 °C e um pico de dessorção de H₂ em 220 °C (isotérmico). O pico de dessorção de CO a 93 °C foi mais intenso quando comparado ao TPD de CO nesta mesma temperatura. Esses resultados mostram que o efeito da adsorção de CO, O₂ e H₂ sobre o catalisador não afetou a temperatura de dessorção de CO₂ e H₂, uma vez que não ocorreu nenhum tipo de deslocamento nos seus picos de dessorção. A quantidade de CO dessorvido no TPD da CO (14,7 µmolCO/g_{cat}) foi o dobro do valor encontrado durante o TPD da mistura reacional (6,1 µmolCO/g_{cat}). Esses resultados mostram que o CO e o H₂ competem entre si pelos sítios de platina e que neste caso existe uma preferência pelo H₂, uma vez que o valor foi 8 vezes maior em relação ao TPD de CO. Com relação ao perfil de dessorção de CO₂ ocorreu apenas um leve ombro na temperatura de 110 °C e um pico bem definido na temperatura de 220 °C o que indica que a dessorção do CO₂ ocorreu em uma única etapa praticamente ocorrendo pelo mesmo mecanismo descrito no TPD de CO.

Figura 4.12 – Perfis de Dessorção da Mistura Reacional (1% CO, 1%O₂, 60% H₂ e balanço He) do catalisador 1% Pt/ZrO₂.

No catalisador 1% Pt/Fe₂O₃, os resultados de TPD de CO (Figura 4.13A) mostraram que não houve quimissorção de CO na temperatura ambiente e, consequentemente, não foi observada a formação de CO₂ e H₂. Já o TPD da mistura reacional (Figura 4.13B) para este catalisador apresentou um pequeno pico de dessorção de CO₂ a 200 °C, um pico de CO em 210 °C e uma leve dessorção de H₂ em 220 °C (isotérmico) sendo que esses valores podem ser considerados insignificantes uma vez que o sinal foi muito baixo. O CO₂ formado poderia estar associado à reação de decomposição de CO (*Bouduard*) formando C e CO₂. O pico de CO é referente apenas ao CO que foi quimissorvido. Segundo MARTINS *et al.* (2001), a formação de H₂ em temperaturas mais altas poderia ser associada ao "*back spillover*".

Figura 4.13A – Perfís de Dessorção de CO do catalisador 1% Pt/Fe₂O₃.

Figura 4.13B – Perfis de Dessorção da Mistura Reacional (1% CO, 1% O_2 , 60% H₂ e balanço He) do catalisador 1% Pt/Fe₂O₃.

Os resultados obtidos no TPD-CO (Figura 4.14) do catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ apresentaram um grande pico de dessorção referente a formação de CO₂ em duas regiões de temperatura (140 °C e 220 °C) e um pico largo de dessorção de CO na temperatura entre 50 e 220 °C devido ao CO quimissorvido na etapa de adsorção na temperatura ambiente. Isso confirma que o CO₂ liberado pode vir do CO adsorvido sobre a platina, o qual se decompõe formando C e CO₂, segundo a reação de *Bouduard*. Outra hipótese é de que o CO poderia interagir com o oxigênio presente na rede cristalina do suporte, levando a formação de CO₂ e vacâncias de oxigênio, conforme descrito na equação a seguir:

$$CO_{(ads)} + [O]_R \to CO_{2(g)} + []_{(vacancia de oxigênio)}$$
(21)

Figura 4.14 – Perfis de Dessorção de CO do catalisador 1% Pt/Fe_{0.25}Zr_{0.75}O₂.

O TPD da mistura reacional (Figura 4.15) para este mesmo catalisador teve um largo pico de dessorção de CO na faixa de 50 a 220 °C e um pico de dessorção de CO_2 na temperatura de 195 °C sendo que nenhum pico de dessorção de H_2 foi observado. Neste caso, a presença de oxigênio favoreceu a oxidação da Pt⁰ e não adsorveu o H_2 .

Figura 4.15 – Perfis de Dessorção da Mistura Reacional (1% CO, 1%O₂, 60% H₂ e balanço He) do catalisador 1% $Pt/Fe_{0,25}Zr_{0,75}O_2$.

Conforme os dados apresentados nas Tabelas 4.6 e 4.7 a quantidade de CO₂ liberado no catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ durante TPD de CO foi de 102 μ molCO₂/g_{cat}, enquanto que no TPD da mistura reacional foi de 132 μ molCO₂/g_{cat}. Estes valores foram altos quando comparados com os outros catalisadores à base de óxidos mistos. Já a quantidade de CO dessorvida durante TPD de CO e TPD da mistura reacional foi baixa (10,1 e 7,3 μ molCO/g_{cat}), respectivamente. Isso mostra que além da decomposição do CO segundo a reação de *Bouduard*, este catalisador apresenta vacâncias com armazenamento de oxigênio da rede que reagem com CO adsorvido para aumentar a formação de CO₂, conforme equação 21, bem como a combustão de carbono formado na superfície com o oxigênio da rede.

Os catalisadores 1% Pt/Fe_{0,5}Zr_{0,5}O₂ e 1% Pt/Fe_{0,75}Zr_{0,25}O₂ apresentaram perfis de dessorção durante o TPD de CO e TPD da mistura reacional muito semelhantes entre si. O TPD de CO (Figura 4.16) do catalisador 1% Pt/Fe_{0,5}Zr_{0,5}O₂ apresentou um pico de dessorção de CO na temperatura de 80 °C e um pequeno ombro em 220 °C. A dessorção de CO₂ ocorreu a 100 °C e não houve formação de H₂.

Figura 4.16 – Perfis de Dessorção de CO do catalisador 1% Pt/Fe_{0,5}Zr_{0,5}O₂.

Já no TPD da mistura reacional (Figura 4.17), observou-se um ombro de dessorção de CO₂ em 160 °C, e praticamente não se observou CO. Por outro lado, houve um pico de dessorção de H₂ em 220 °C (isotérmico). A quantidade de CO dessorvida foi 10 vezes menor em relação à quantidade de H₂ conforme os valores apresentados na Tabela 4.7. Este resultado é bastante significativo, mostrando que a liberação de H₂ é devido ao "*back spillover*". Praticamente todo o CO reagiu com o O₂ na fase gasosa, ocorrendo fraca adsorção preferencial de CO, já que houve pouca formação de CO₂.

Figura 4.17 – Perfís de Dessorção da Mistura Reacional (1% CO, 1%O₂, 60% H₂ e balanço He) do catalisador 1% Pt/Fe_{0.5}Zr_{0.5}O₂.

Durante o TPD de CO no catalisador 1% $Pt/Fe_{0,75}Zr_{0,25}O_2$ (Figura 4.18A) observou-se um pico de dessorção de CO em 90 °C e um ombro a 220 °C, juntamente com um pico de dessorção de CO₂ em 105 °C, não ocorrendo formação de H₂. O comportamento foi semelhante ao caso anterior e as dessorções ocorreram em temperaturas próximas.

No TPD da mistura reacional (Figura 4.18B), observaram-se pequenos ombros de dessorção de CO e CO₂ em 100 e 85 °C, respectivamente. Neste catalisador ocorreu uma grande dessorção de H₂ em 220 °C (isotérmico). O comportamento observado foi

semelhante ao catalisador com 50% de ferro e a dessorção de H₂ ocorreu na mesma temperatura. Porém a quantidade de H₂ foi 10 vezes maior do que o CO₂ dessorvido conforme os valores apresentados na Tabela 4.7. O CO₂ formado para os dois catalisadores poderia estar associado à decomposição do CO em carbono e CO₂, bem como, pela reação entre CO e O₂ na fase gasosa. Já o H₂ poderia estar associado ao "*back spillover*" no catalisador 1% Pt/Fe_{0,75}Zr_{0,25}O₂, cujo comportamento foi semelhante ao catalisador 1% Pt/Fe_{0,5}Zr_{0,5}O₂.

Figura 4.18 – (A) Perfis de Dessorção de CO e (B) da Mistura Reacional (1% CO, 1%O₂, 60% H_2 e balanço He) do catalisador 1% Pt/Fe_{0,75}Zr_{0,25}O₂.

4.1.6 QUIMISSORÇÃO de CO e H₂

Na Figura 4.19 são apresentadas as isotermas de adsorção total e reversível de H₂ no catalisador 1% Pt/ZrO₂. As isotermas de adsorção de H₂ para os catalisadores 1% Pt/Fe2O3 e 1% Pt/FexZr(1-x)O2 não apresentaram resultados satisfatórios apresentando valores de volume adsorvido irreversível negativo. A Tabela 4.8 mostra os resultados de quimissorção de H₂ e CO após redução a 500 °C. A partir quimissorção de H₂ admitindo-se uma estequiometria linear ($H/Pt_s = 1$) calculou-se a dispersão e o diâmetro médio das partículas de platina (d_s) considerando partículas esféricas. Os valores da dispersão e do diâmetro de partícula para o catalisador 1% Pt/ZrO₂ foram de 41% e 2,7 nm que estão em acordo com os resultados obtidos por SOUZA et al. (2001) que encontraram dispersão de 34% e diâmetro de partícula igual a 3,3 nm. Da mesma forma WOOTTSCH et al. (2004) encontraram dispersão de 34% para este catalisador. Esses resultados mostram que os dados obtidos são todos coerentes com a literatura. O diâmetro de partícula de platina para os demais catalisadores não foi calculado, pois segundo SOUZA et al. (2001) a estequiometria de adsorção do CO sobre a platina pode variar de CO/Pt_s=1 (forma linear) a CO/Pt_s=1/2 (forma ponte). Como não foi possível realizadas as medidas de quimissorção de H₂ esses valores não puderam ser calculados.

Catalisadores	Consumo de H ₂ (µmol/gcat)	d _s (nm)	D (%)	Consumo Irreversível de CO (µmol/gcat)	Consumo Total de CO (µmol/gcat)	D (%)
1%Pt/ZrO ₂	10,6	2,7	41	19,9	65,5	38,9
1%Pt/Fe ₂ O ₃	-	-	-	0,5	4,32	1
1%Pt/Fe _{0,25} Zr _{0,75} O ₂	-	-	-	1,8	66,0	3,6
1%Pt/Fe _{0,5} Zr _{0,5} O ₂	-	-	-	0,5	49,4	1
1%Pt/Fe _{0,75} Zr _{0,25} O ₂	-	-	-	1,1	25,6	2,2

Tabela 4.8 – Quimissorção Irreversível de H₂ e CO após redução a 500 °C.

 $D = dispersão, d_s = diâmetro médio de partículas de Pt.$

Figura 4.19 – Isoterma de adsorção de H₂ para o catalisador 1% Pt/ZrO₂.

A isoterma de adsorção do CO para catalisador 1% Pt/ZrO₂ (Figura 4.20) mostra claramente que o volume adsorvido de CO irreversível foi significativo conforme a diferença entre as curvas de adsorção total e reversível. Dessa forma o valor de quimissorção de CO foi duas vezes maior em relação ao H₂ quimissorvido. Os valores obtidos da dispersão calculados a partir do H₂ e CO foram bastante semelhantes. O suporte ZrO_2 não apresenta adsorção irreversível de CO conforme SOUZA *et al.* (2001).

Figura 4.20 – Isoterma de adsorção de CO para o catalisador 1% Pt/ZrO₂.
As isotermas de CO para os catalisadores 1% Pt/Fe₂O₃ e 1% Pt/Fe_xZr_(1-x)O₂ são apresentadas nas Figuras 4.21 a 4.24. Nota-se que ocorre pouca adsorção irreversível de CO nesses catalisadores, pois a primeira isoterma (total) praticamente coincide com a segunda (reversível). Já os suportes apresentaram volume adsorvido de CO muito baixo ficando na faixa inferior a 10% do valor encontrado para os catalisadores de platina e puderam ser desprezados. Na Figura 4.22 as isotermas total e reversível para o suporte com 25% de ferro em sua composição mostram claramente essa diferença.

Figura 4.21 – Isoterma de adsorção de CO para o catalisador 1% Pt/Fe₂O₃.

Figura 4.22 – Isoterma de adsorção de CO para o catalisador 1% Pt/Fe_{0.25}Zr_{0.75}O₂.

Figura 4.23 – Isoterma de adsorção de CO para o catalisador 1% Pt/Fe_{0.5}Zr_{0.5}O₂.

Figura 4.24 – Isoterma de adsorção de CO para o catalisador 1% Pt/Fe_{0,75}Zr_{0,25}O₂.

Os catalisadores 1% Pt/Fe₂O₃ e 1% Pt/Fe_xZr_(1-x)O₂ apresentaram valores para dispersão muito baixo na ordem de 1 - 4% conforme visto na Tabela 4.8, indicando grandes diâmetros de partículas de Pt. Estes resultados indicam que a temperatura de redução (500 °C) afetou no tamanho de partículas. A literatura mostra que um catalisador de Au/Fe₂O₃ calcinado a 400 ⁰C apresentou nanopartículas da ordem de 10 nm já sob a forma metálica (SMIT *et al.*, 2006). Estes resultados foram confirmados

pelo TPD de CO nos diferentes catalisadores, indicando que o catalisador 1% Pt/Fe₂O₃ praticamente não dessorveu CO em toda a faixa de temperatura mostrando que a adsorção é totalmente reversível. Os resultados de TPD indicam comportamentos diferenciados para os óxidos mistos, em particular o catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ que apresentou mudanças na temperatura de dessorção, confirmando os resultados de quimissorção irreversível sobre Pt metálica que depende da dispersão. Estes resultados ainda mostram que a interação da Pt com os suportes depende das estruturas de ferro no estado oxidado ou reduzido, verificados por espectroscopia de Mössbauer, como discutiremos mais adiante.

4.1.7. ESPECTROSCOPIA NA REGIÃO DO INFRAVERMELHO POR REFLECTÂNCIA DIFUSA DO CO ADSORVIDO

- Adsorção de CO

O estudo da interação do CO com os catalisadores foi realizado utilizando-se a técnica de DRIFTS do CO adsorvido. Os resultados para os catalisadores 1% Pt/Fe₂O₃ e 1% Pt/Fe_{0,25}Zr_{0,75}O₂ são apresentados nas Figuras 4.25 e Figuras 4.26. A análise de DRIFTS com 1% Pt/ZrO₂ foi estudada por SOUZA *et al.* (2001). Escolheu-se então para análise de DRIFTS os catalisadores que apresentaram os resultados mais significativos durante a análise de TPD.

O CO adsorvido nos catalisadores 1% Pt/Fe₂O₃ (Figura 4.25) e 1% Pt/Fe_{0,25}Zr_{0,75}O₂ (Figura 4.26) foi avaliado pela análise de DRIFTS. A linha A representa o perfil obtido durante admissão de CO onde se pôde identificar a presença das bandas em 2169 e 2116 cm⁻¹ as quais se referem ao dublete característico de CO na fase gasosa (GAO *et al.*, 2008 e SMIT *et al.*, 2006) e no catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ a presença da banda 2358 cm⁻¹ foi devido à formação de CO₂ (BOCUZZI *et al.*, 2001 e RIBEIRO *et al.*, 2008a). Observa-se no catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ que a admissão de CO causou o aparecimento de diversas bandas em 1420, 1615 e 1715 cm⁻¹ todas na região entre 1300 – 1700 cm⁻¹, correspondentes à formação de diferentes formas de carbonatos (monodentado, bidentado) e/ou formiatos (HCOO)⁻ de acordo com TAKEGUCHI *et al.*, (2005), BOLLINGER *et al.*, (1996), SCHUMACHER *et al.*, (2003) e (2004).

A linha B mostra o espectro em câmara fechada a 30 °C onde nenhuma alteração foi identificada. As linhas C, D e E representam o aquecimento a 50, 100 e 220 °C em câmara fechada. Durante o aquecimento a 220 °C ocorreu o desaparecimento das bandas referentes ao CO gasoso e o aparecimento do dublete em 2358 cm⁻¹ atribuído à formação de CO₂ (BOCUZZI *et al.*, 2001 e RIBEIRO *et al.*, 2008a) para o catalisador 1% Pt/Fe₂O₃. Isso está em acordo com os resultados de TPD de CO (Figura 4.13A) uma vez que não ocorreu dessorção de CO.

As etapas de aquecimento para o catalisador 1% $Pt/Fe_{0,25}Zr_{0,75}O_2$ mostram o desaparecimento das bandas referentes ao CO gasoso a partir da temperatura de 100 °C e o aparecimento da banda 2358 cm⁻¹ atribuída à formação de CO₂ ocorrendo em todas as temperaturas. Neste catalisador apareceu uma banda em 3473 cm⁻¹ associada aos grupos OH de acordo com SMIT *et al.*, (2006). Esses resultados estão de acordo com o TPD de CO (Figura 4.14) onde um grande pico de dessorção referente à formação de CO₂ ocorreu em duas regiões de temperatura (140 °C e 220 °C). Isso confirma que o CO₂ liberado pode vir da interação do CO com o O₂ presente na rede cristalina da zircônia, levando a formação de CO₂ e vacâncias de oxigênio. Outra hipótese para formação de CO₂ é o CO oxidar os grupos ⁻OH levando a formação de espécies formiatos, as quais podem ser facilmente oxidadas pelo oxigênio adsorvido nas partículas de platina e parcialmente pelo oxigênio do suporte formando CO₂ e H₂O.

A linha F representa o perfil obtido com fluxo de CO a 220 °C, onde a banda de CO gasoso tornou a aparecer com pequena intensidade no caso do catalisador 1% $Pt/Fe_{0,25}Zr_{0,75}O_2$ e com alta intensidade para o catalisador 1% Pt/Fe_2O_3 . A banda de CO₂ somente foi identificada no catalisador 1% $Pt/Fe_{0,25}Zr_{0,75}O_2$. Nestes catalisadores a banda referente à adsorção de CO sobre Pt^0 na faixa de 2112 – 2106 cm⁻¹ (RASKÓ, 2003) não foi identificada. Isto pode ser atribuído à baixa dispersão da platina conforme os resultados obtidos com a quimissorção de CO (Tabela 4.8).

Na literatura, SMIT *et al.*, (2006) utilizando o catalisador Au/Fe₂O₃, mostraram que o CO pode oxidar os grupos ⁻OH levando a formação de espécies formiatos reativas as quais podem ser facilmente oxidadas pelo oxigênio adsorvido nas partículas de ouro e parcialmente pelo oxigênio do suporte formando CO₂ e H₂O. Esse processo é descrito pelas seguintes equações:

$$CO_{(g)} + OH_{(suporte)} \rightarrow HCOO_{(ad)}$$
 (22)

$$2\text{HCOO}_{(ad)}^{-} + \text{O}_{(ad)} \rightarrow 2\text{CO}_{2(g)}^{-} + \text{H}_2\text{O}_{(l)}$$
(23)

A água formada poderá se dissociar em quantidades constantes de grupos ⁻OH na superfície do óxido conforme mostra a reação a seguir:

$$Fe^{3+}O^{2-} + H_2O_{(1)} \rightarrow HO^{-}Fe^{3+} + OH$$
 (24)

Esse mecanismo descrito para formação de CO_2 não ocorreu no catalisador 1% Pt/Fe₂O₃ uma vez que não foram identificadas as bandas referentes à água (grupos ⁻OH 3687 cm⁻¹), (grupos ⁻OH fazendo pontes de hidrogênio em 3637 cm⁻¹) e também as bandas de espécies formatos na região de 1300 – 1700 cm⁻¹.

Figura 4.25 – DRIFTS de CO adsorvido para 1% Pt/Fe₂O₃. (A) fluxo 5% CO/He a 30 °C, (B) câmara fechada a 30 °C, (C) aquecimento em câmara fechada a 50 °C, (D) aquecimento em câmara fechada a 100 °C, (E) aquecimento em câmara fechada a 220 °C e (F) fluxo 5% CO/He a 220 °C.

Figura 4.26 – DRIFTS de CO adsorvido para a amostra 1% $Pt/Fe_{0,25}Zr_{0,75}O_2$. (A) fluxo 5% CO/He a 30 °C, (B) câmara fechada a 30 °C, (C) aquecimento em câmara fechada a 50 °C, (D) aquecimento em câmara fechada a 100 °C, (E) aquecimento em câmara fechada a 220 °C e (F) fluxo 5% CO/He a 220 °C.

- Adsorção de $CO + O_2 + He$

As espécies adsorvidas formadas ao passar fluxo de $CO + O_2$ após tratamento de redução foram avaliadas para os catalisadores 1% Pt/Fe₂O₃ (Figura 4.27) e 1% Pt/Fe_{0,25}Zr_{0,75}O₂ (Figura 4.28). A linha A mostra o espectro obtido durante admissão da mistura $CO + O_2$ + He sobre a superfície dos catalisadores. As bandas em 2169 e 2116 cm⁻¹ referentes ao CO na fase gasosa foram identificadas (GAO *et al.*, 2008 e SMIT *et al.*, 2006) somente no catalisador 1% Pt/Fe₂O₃. Esse comportamento foi semelhante à 1% Pt/Fe_{0,25}Zr_{0,75}O₂ adsorção de CO já descrita anteriormente para este mesmo catalisador. No catalisador ocorreu formação imediata de CO₂ e por isso as bandas de CO não foram identificadas. Observa-se que a admissão da mistura sobre o catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ causou o aparecimento de diversas bandas em 1420, 1615 e 1715 cm⁻¹ localizadas na região entre 1300 – 1700 cm⁻¹, correspondentes à formação de diferentes espécies de carbonatos (monodentado, bidentado) e/ou formiatos (HCOO)⁻ de acordo com TAKEGUCHI *et al.*, (2005), BOLLINGER *et al.*, (1996), SCHUMACHER *et al.*, (2003) e (2004).

As linhas B, C e D representam o tempo de contato em câmara fechada por 5, 15 e 30 min. na temperatura de 30 °C onde nenhuma alteração com relação às bandas de CO foi observada no catalisador 1% Pt/Fe₂O₃. Já no catalisador 1% Pt/Fe_{0.25}Zr_{0.75}O₂ nota-se a presença de CO₂ gasoso devido a reação imediata entre CO com O₂. As linhas E, F e G representam o aquecimento a 50, 100 e 220 °C em câmara fechada. Durante o aquecimento nas temperaturas de 100 e 220 °C ocorreu o desaparecimento das bandas referentes ao CO gasoso e o aparecimento da banda em 2358 cm⁻¹ atribuída à formação de CO2 (BOCUZZI et al., 2001 e RIBEIRO et al., 2008a). Como a câmara estava fechada todo o CO foi consumido em temperatura ambiente e, portanto, não seria possível observar as bandas de CO em temperaturas mais altas. Além disto, a banda de CO₂ também não iria se alterar. A linha H representa o perfil obtido com fluxo da mistura CO + O₂ na temperatura de 220 °C a qual apresenta apenas formação de CO₂ onde todo CO foi consumido e não há mais reação nesta temperatura. Esses resultados quando comparados ao DRIFTS de CO para estes catalisadores mostram claramente que houve uma forte influência do oxigênio durante a formação de CO2 uma vez que ele consumiu todo CO disponível o que se pode verificar pela ausência das bandas características desse composto durante a reação.

Figura 4.27 – DRIFTS de CO + O_2 adsorvido para 1% Pt/Fe₂O₃. (A) fluxo CO + O_2 a 30 °C, (B) câmara fechada a 30 °C por 5', (C) câmara fechada a 30 °C por 15', (D) câmara fechada a 30 °C por 30', (E) aquecimento em câmara fechada a 50 °C, (F) aquecimento em câmara fechada a 100 °C, (G) aquecimento em câmara fechada a 220 °C e (H) fluxo CO + O_2 a 220 °C.

Figura 4.28 – DRIFTS de CO + O_2 adsorvido para 1% Pt/Fe_{0,25}Zr_{0,75}O₂. (A) fluxo CO + O_2 a 30 °C (B) câmara fechada a 30 °C por 5', (C) câmara fechada a 30 °C por 15', (D) câmara fechada a 30 °C por 30', (E) aquecimento em câmara fechada a 50 °C, (F) aquecimento em câmara fechada a 100 °C, (G) aquecimento em câmara fechada a 220 °C e (H) fluxo CO + O_2 a 220 °C.

- Adsorção de $CO + O_2 + H_2 + He$

A avaliação das espécies adsorvidas durante a reação de oxidação seletiva do CO foi realizada da temperatura ambiente até 220 °C para os catalisadores 1% Pt/Fe₂O₃ (Figura 4.29) e 1% Pt/Fe_{0,25}Zr_{0,75}O₂ (Figura 4.30). A linha A representa o perfil obtido durante admissão da mistura sobre a superfície dos catalisadores onde apenas as bandas em 2169 e 2116 cm⁻¹ referentes ao CO na fase gasosa foram identificadas (GAO *et al.*, 2008 e SMIT *et al.*, 2006). Observa-se que a admissão da mistura sobre o catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ causou apenas o aparecimento de uma banda muito fraca na região entre 1300 – 1700 cm⁻¹, correspondente à formação de diferentes formas de carbonatos (monodentado, bidentado) e/ou formiatos (HCOO⁻) conforme TAKEGUCHI *et al.*, (2005), BOLLINGER *et al.*, (1996), SCHUMACHER *et al.*, (2003) e (2004). As linhas B, C e D representam o tempo de contato em câmara fechada por 5, 15 e 30 min. na temperatura de 30 °C onde não ocorre alteração nas bandas de CO gasoso.

As linhas E, F e G representam o aquecimento a 50, 100 e 220 °C em câmara fechada. O catalisador 1%Pt/Fe₂O₃ durante o aquecimento mostrou que as intensidades referentes às bandas de CO gasoso diminuiram devido à reação do CO com O₂ e a banda 2358 cm⁻¹ atribuída à formação de CO₂ foi aumentando. Neste caso não ocorreu à completa redução do CO conforme os espectros obtidos. A presença do O₂ na corrente de alimentação teve uma parte destinada à oxidação do CO e outra parte pode ter sido utilizada na oxidação do H₂. De acordo com os dados de TPD da mistura reacional (Figura 4.13B) este catalisador apresentou um leve pico de dessorção de CO₂ a 200 °C, o qual poderia estar associado à reação de decomposição de CO (*Bouduard*) formando C e CO₂. O CO₂ formado também pode estar associado à reação de desproporcionamento através de duas moléculas de CO adsorvidas em sítios vizinhos, uma vez que as bandas de CO estão diminuindo conforme procedeu o aumento da temperatura.

O catalisador 1% Pt/Fe_{0,25}Zr_{0,75} em 100 °C mostrou a formação de CO₂ (BOCUZZI *et al.*, 2001 e RIBEIRO *et al.*, 2008a), de uma banda em 2169 cm⁻¹ atribuída ao CO gasoso e uma banda em 2073 cm⁻¹ identificada como sendo CO adsorvido linearmente sobre as arestas do átomo de Pt de acordo com RASKÓ, (2003) e PILLONEL *et al.*, (2005). Em 220 °C foram identificadas às bandas de formação de CO₂ (2358 cm⁻¹), CO gasoso (2169 e 2116 cm⁻¹) e CO adsorvido no átomo de Pt (2050 cm⁻¹) conforme descrito por RASKÓ, (2003). Esses resultados estão de acordo com o TPD da mistura reacional (Figura 4.15) uma vez que houve um grande pico de formação de CO₂ em 195 °C. Isso mostra que além da decomposição do CO segundo a reação de *Bouduard*, este catalisador apresenta vacâncias com armazenamento de oxigênio da rede que reagem com o CO adsorvido aumentando a quantidade de CO₂.

A linha H representa o fluxo da mistura em 220 °C onde as bandas de CO gasoso apresentam aumento na sua intensidade e a banda no átomo de Pt (2050 cm⁻¹) permaneceu constante.

Figura 4.29 – DRIFTS de CO + O_2 + H_2 adsorvido para 1% Pt/Fe₂O₃. (A) fluxo CO + O_2 + H_2 a 30 °C, (B) câmara fechada a 30 °C por 5', (C) câmara fechada a 30 °C por 15', (D) câmara fechada a 30 °C por 30', (E) aquecimento em câmara fechada a 50 °C, (F) aquecimento em câmara fechada a 100 °C, (G) aquecimento em câmara fechada a 220 °C e (H) fluxo CO + O_2 + H_2 a 220 °C.

Figura 4.30 – DRIFTS de CO + O_2 + H_2 adsorvido para 1% Pt/Fe_{0,25}Zr_{0,75}O₂. (A) fluxo CO + O_2 + H_2 a 30 °C (B) câmara fechada a 30 °C por 5', (C) câmara fechada a 30 °C por 15', (D) câmara fechada a 30 °C por 30', (E) aquecimento em câmara fechada a 50 °C, (F) aquecimento em câmara fechada a 100 °C, (G) aquecimento em câmara fechada a 220 °C e (H) fluxo CO + O_2 + H_2 a 220 °C.

4.1.8 ESPECTROSCOPIA DE MÖSSBAUER

No efeito Mössbauer estão envolvidas transições nucleares decorrentes de absorção de raios gama, sendo a condição de ressonância entre a fonte e a amostra conseguida pelo efeito Doppler. Das análises dos espectros Mössbauer resultam dois principais parâmetros: o deslocamento isomérico (δ) e o desdobramento quadrupolar (Δ). O primeiro, δ , origina-se da interação eletrostática entre a carga distribuída no núcleo com os elétrons *s*, cuja probabilidade é finita na região nuclear. A magnitude do deslocamento isomérico depende do total da densidade de elétrons s ressonante sobre o núcleo do ferro, a qual está relacionada ao grau de covalência das ligações metalligante. O aumento da densidade de elétrons *s* está vinculado, por sua vez, com as ligações s e p existentes entre o átomo de ferro e seus ligantes. O desdobramento quadrupolar, Δ , mede o desvio da simetria cúbica ou esférica, das cargas externas ao núcleo e resulta da interação do momento quadrupolar nuclear com o gradiente de campo elétrico na região do núcleo (MURAOKA, 2004).

4.1.8.1 ESPECTROSCOPIA DE MÖSSBAUER SEM REDUÇÃO DAS AMOSTRAS

Na Figura 4.31 apresentamos os espectros de Mössbauer dos catalisadores 1% Pt/Fe_2O_3 e 1% $Pt/Fe_xZr_{(1-x)}O_2$. O sexteto vermelho corresponde ao α -Fe₂O₃ puro, o verde para o α -Fe₂O₃ com íons Fe³⁺ isomorficamente substituído por íons Zr^{4+} , o sexteto azul celeste corresponde a α -Fe₂O₃ com uma porcentagem mais elevada de íons Fe⁺³ isomorficamente substituído por íons Zr^{4+} e o dubleto azul aos íons Fe³⁺ paramagnéticos localizados na rede de ZrO₂.

Os parâmetros de Mössbauer obtidos à temperatura ambiente para os catalisadores não reduzidos estão listados na Tabela 4.9, com as respectivas distribuições de campos magnéticos hiperfinos (H), deslocamentos isoméricos (δ), interações quadrupolares (2 ϵ) e desdobramento quadrupolar (Δ). Todos os parâmetros hiperfinos foram obtidos através do método dos mínimos quadrados.

Figura 4.31 - Espectros de Mössbauer dos catalisadores 1% Pt/Fe_2O_3 , 1% $Pt/Fe_{0,25}Zr_{0,75}O_2$, 1% $Pt/Fe_{0,5}Zr_{0,5}O_2$ e 1% $Pt/Fe_{0,75}Zr_{0,25}O_2$ sem redução.

Espécies	Parâmetros	Pt/Fe ₂ O ₃	Pt/Fe _{0,75} Zr _{0,25} O ₂	Pt/Fe _{0,5} Zr _{0,5} O ₂	Pt/Fe _{0,25} Zr _{0,75} O ₂
	H (T)	$51,5 \pm 0,1$	-	-	-
α-Fe ₂ O ₃	δ (mm/s)	$0,37 \pm 0,01$	-	-	-
	2ε (mm/s)	$-0,22 \pm 0,01$	-	-	-
	%	100	-	-	-
α -Fe ₂ O ₃ com	H (T)	-	$50,6 \pm 0,1$	$50,9\pm0,1$	$50,5 \pm 0,2$
Zr ⁴⁺ ou	δ (mm/s)	-	$0,37 \pm 0,01$	$0,37 \pm 0,01$	$0,\!37\pm0,\!02$
pequenos	2ε (mm/s)	-	$-0,22 \pm 0,01$ $-0,22 \pm 0,01$		$-0,27 \pm 0,05$
cristais de α- Fe ₂ O ₃	%	-	74 ± 4	93 ± 1	17 ± 1
	H (T)	-	$47,0 \pm 0,8$	-	-
α -Fe ₂ O ₃ com	δ (mm/s)	-	$0,35 \pm 0,02$	-	-
alta	2ε (mm/s)	-	$-0,26 \pm 0,04$	-	-
quantidade de Zr ⁴⁺	%	-	20 ± 4	-	-
Fe ³⁺ em ZrO ₂	Δ	_	$1,12 \pm 0,06$	$1,01 \pm 0,06$	$1,\!07\pm0,\!01$
	δ (mm/s)	_	$0,34 \pm 0,04$	$0,38 \pm 0,04$	$0,34 \pm 0,01$
	%	-	6 ± 1	7 ± 1	83 ± 1

Tabela 4.9 - Parâmetros de Mössbauer dos catalisadores a 25 °C sem redução.

H: campo magnético hiperfino, δ : deslocamento isomérico (todos os isômeros deslocados são referenciados ao α -Fe a 25 °C), 2ϵ : interações quadrupolares e Δ : desdobramento quadrupolar.

No catalisador 1% Pt/Fe₂O₃ foi detectado apenas α -Fe₂O₃ em conformidade com os seus parâmetros hiperfinos de acordo com VANDENBERGHE *et al.*, (1990). Já os catalisadores 1% Pt/Fe_{0,25}Zr_{0,75}O₂ e 1% Pt/Fe_{0,5}Zr_{0,5}O₂ a 25 °C se ajustaram com um dubleto e um sexteto de distribuição dos parâmetros hiperfinos. O sexteto apresenta parâmetros hiperfinos típicos de α -Fe₂O₃. No entanto, os valores do campo magnético hiperfino diminuíram significativamente com relação ao valor da hematita no "bulk": 50,9 e 50,5 vs 51,5. Isto poderia ter duas origens:

- Pode ser que a presença do óxido de zircônio diminua o tamanho dos cristais de Fe₂O₃, o que provocaria uma diminuição no campo magnético hiperfino, devido ao fenômeno de excitações magnéticas coletivas (MORUP e TOPSOE, 1976). Pode ser que a hematita tenha os íons Fe⁺³ isomorficamente substituídos por íons Zr⁺⁴, uma vez que esta substituição também poderia causar uma diminuição do campo magnético hiperfino (STEFANIC *et al.*, 2001).
- 2) O dubleto poderia ser atribuído ao α-Fe₂O₃ superparamagnético ou aos íons Fe⁺³ paramagnéticos localizados na rede de ZrO₂ segregada. Considerando que o valor do desdobramento quadrupolar (Δ) é muito alto para tratar-se de α-Fe₂O₃ superparamagnético, a segunda hipótese parece ser a mais provável. Além disso, a percentagem deste dubleto aumenta com a diminuição da relação Fe/Zr, indicando que mais ZrO₂ foram segregadas e, por conseguinte, uma maior quantidade de ferro pode estar localizado na rede da zircônia. Esta atribuição concorda com os estudos realizados por STEFANIC *et al.*, (1999) e (2001). Uma melhor confirmação destes resultados pode ser obtida através da medição do espectro em baixa temperatura (30K): se o dubleto desaparecer e a área do sexteto crescer podemos obter a confirmação de α-Fe₂O₃ superparamagnético. No entanto, se a área do dubleto permanecer constante com a diminuição da temperatura, então, este sinal corresponderá ao íon Fe⁺³ paramagnético localizado na rede de ZrO₂.

Na Figura 4.32 apresenta-se o novo espectro de mössbauer a 30K para o catalisador 1% Pt/Fe_{0.25}Zr_{0.75}O₂ com respectivos parâmetros hiperfinos mostrados na Tabela 4.10. Esta amostra foi selecionada por ter apresentado uma alta área com relação ao seu dubleto (83%) nos testes realizados em temperatura ambiente, conforme dados apresentados na Tabela 4.9. Novamente duas interações foram usadas: um sexteto e um

dubleto, e conforme podemos ver suas porcentagens foram praticamente idênticas aquelas obtidas nos testes realizados em temperatura ambiente. Se tivéssemos a presença de pequenos cristais de α -Fe₂O₃ ocorreria um bloqueio magnético parcial ou total a 30K. Em conseqüência disso, a porcentagem do dubleto diminuiria e a área do sexto aumentaria. Com isso, conclui-se que o sexteto refere-se a α -Fe₂O₃ com íons Fe³⁺ isomorficamente substituídos por íons Zr⁴⁺ e que está condição poderia provocar uma diminuição do campo magnético hiperfino (STEFANIC *et al.*, 2001). O dubleto segue mostrando um valor de desdobramento quadrupolar (Δ) muito elevado para tratar-se de α -Fe₂O₃ superparamagnético, logo, refere-se a íons Fe³⁺ paramagnéticos localizados nos vértices do ZrO₂ de acordo com STEFANIC *et al.*, (1999 e 2001).

Figura 4.32 - Espectros de Mössbauer do catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ sem redução obtido a 30K.

Espécies	Parâmetros	Pt/Fe _{0,25} Zr _{0,75} O ₂	
α -Fe ₂ O ₃ with	H (T)	52.8 ± 0.2	
Zr^{4+}	δ (mm/s)	0.50 ± 0.02	
	2ε (mm/s)	$\textbf{-0.17} \pm 0.04$	
	%	22 ± 1	
2.	Δ	1.16 ± 0.01	
Fe^{3+} in ZrO_2	δ	0.46 ± 0.01	
	%	78 ± 1	

Tabela 4.10 - Parâmetros de Mössbauer do catalisador 1% Pt/Fe_{0.25}Zr_{0.75}O₂ a 30K.

H: campo magnético hiperfino, δ : deslocamento isomérico (todos os isômeros deslocados são referenciados ao α -Fe a 25 °C), 2 ϵ : interações quadrupolares e Δ : desdobramento quadrupolar.

Os parâmetros hiperfinos para o catalisador 1% Pt/Fe_{0,75}Zr_{0,25}O₂ a 25 °C se ajustaram com dois sextetos e um dubleto. A descrição do sexteto com maior campo magnético hiperfino e do dubleto são idênticos as amostras 1% Pt/Fe_{0,25}Zr_{0,75}O₂ e 1% Pt/Fe_{0,5}Zr_{0,5}O₂. O segundo sexteto apresentou valor de campo magnético hiperfino enormemente reduzido (47,0), com relação à hematita "bulk". Poderíamos pensar que, se os cristais de hematita fossem muito pequenos este sinal é o que corresponderia à superficie destes cristais (MANSILLA *et al.*, 1999). No entanto, esta possibilidade pode ser excluída, pois o valor de 2ε não é igual à zero (valor obtido para a camada superficial de cristais muito pequenos de hematita), mas 2ε = -0,26 mm/s, um valor praticamente idêntico ao de uma hematita "*bulk*". Por esta razão, é mais provável que seja uma segunda fração de hematita na qual há uma maior porcentagem de íons Fe⁺³ isomorficamente substituídos por Zr⁴⁺.

4.1.8.2 ESPECTROSCOPIA DE MÖSSBAUER COM REDUÇÃO DAS AMOSTRAS

Os parâmetros de Mössbauer obtidos à temperatura ambiente para os catalisadores reduzidos a 500 °C estão listados na Tabela 4.11, com as respectivas distribuições de campos magnéticos hiperfinos (H), deslocamentos isoméricos (δ), interações quadrupolares (2 ϵ) e desdobramento quadrupolar (Δ). Todos os parâmetros hiperfinos foram obtidos através do método dos mínimos quadrados.

Espécies	Parâmetros	Pt/Fe ₂ O ₃	Pt/Fe _{0.75} Zr _{0.25} O ₂	$Pt/Fe_{0.5}Zr_{0.5}O_{2}$	$Pt/Fe_{0.25}Zr_{0.75}O_2$
Fe ³⁺ em sítios	H (T)	$49,0 \pm 0,1$	$49,0 \pm 0,1$	49,0 ± 0,1	-
tetraédricos	δ (mm/s)	$0,27 \pm 0,01$	$0,30 \pm 0,02$	$0,29 \pm 0,01$	-
(A) de Fe_3O_4	2ε (mm/s)	$-0,01 \pm 0,01$	$-0,02 \pm 0,02$	$0,06 \pm 0,02$	-
	%	37 ± 1	36 ± 2	32 ± 2	-
Fe ^{"2.5} " em	H (T)	$46,0 \pm 0,1$	45,6 ± 0,1	$45,8 \pm 0,1$	-
sítios	δ (mm/s)	$0,\!67 \pm 0,\!01$	$0,65\pm0,01$	$0,65 \pm 0,01$	-
octaédricos (B) de Fe ₃ O ₄	2ε (mm/s)	$-0,01 \pm 0,01$	$0,01\pm0,01$	$-0,02 \pm 0,02$	-
	%	63 ± 1	54 ± 2	46 ± 3	-
Fe ²⁺ em ZrO ₂	Δ	-	-	$1,93 \pm 0,08$	-
	δ	-	-	$1,14 \pm 0,04$	-
	%	-	-	14 ± 2	-
Fe ³⁺ em ZrO ₂	Δ	-	$1,01 \pm 0,09$	$1,0 \pm 0,1$	$1,04 \pm 0,01$
	δ	-	$0,34\pm0,05$	$0,35 \pm 0,08$	$0,38 \pm 0,01$
	%	-	10 ± 1	8 ± 2	100

Tabela 4.11 – Parâmetros de Mössbauer dos catalisadores a 25 °C com redução.

H: campo magnético hiperfino, δ : deslocamento isomérico (todos os isômeros deslocados são referenciados ao α -Fe a 25 °C), 2 ϵ : interações quadrupolares e Δ : desdobramento quadrupolar.

Os tratamentos foram realizados em uma célula especialmente projetada a qual permite a aquisição dos espectros na atmosfera do tratamento sem que as amostras entrem em contato com o ar a qualquer momento. Com exceção da amostra 1% Pt/Fe_{0,75}Zr_{0,25}O₂, as outras três apresentaram dois sextetos hiperfinos cujos parâmetros são atribuídos ao íon Fe³⁺ localizado em sítios tetraédricos (sítios A – linha vermelha) e Fe^{"2,5+"} localizados em sítios octaédricos (sítios B – linha azul) de Fe₃O₄ (VANDENBERGHE *et al.*, 1990). À medida que o conteúdo de zircônia aumentou ocorreram dois fenômenos com o Fe₃O₄:

A quantidade total de Fe₃O₄ foi diminuindo: 100% para 1% Pt/Fe₂O₃, 90% para 1% Pt/Fe_{0.75}Zr_{0.25}O₂, 78% para 1% Pt/Fe_{0.5}Zr_{0.5}O₂ e 0% para 1% Pt/Fe_{0.25}Zr_{0.75}O₂. O Fe₃O₄ é cada vez menos estequiométrico: a relação das populações de sítio B/sitio A muda de 1,7 para 1% Pt/Fe₂O₃, 1,5 para 1% Pt/Fe_{0.75}Zr_{0.25}O₂ e 1,4 para 1% Pt/Fe_{0.5}Zr_{0.5}O₂. O valor desta relação determinado por Mössbauer para Fe₃O₄ estequiométrico é de 1,8. Isso significa que o catalisador sem zircônia obtém-se um Fe₃O₄ estequiométrico, porém quando o teor de Zr aumenta observa-se um Fe₃O₄ cada vez mais oxidado (maior percentual de íons Fe³⁺ com relação à composição estequiométrica). Por outro lado, na amostra 1% Pt/Fe_{0.75}Zr_{0.25}O₂ um dubleto pode ser atribuído igual ao seu precursor sem redução como sendo α -Fe₂O₃ superparamagnético ou a íons Fe³⁺ paramagnéticos localizados na rede do ZrO₂ (linha verde claro). Considerando que o valor do desdobramento quadrupolar é muito alto para ser α -Fe₂O₃ superparamagnético, a segunda hipótese parece mais provável. Esta atribuição concorda com o relatado por STEFANIC et al. (1999) e (2001). O percentual detectado é praticamente idêntico ao valor encontrado para o seu precursor e, portanto, estes íons Fe³⁺ difundidos na rede de ZrO₂ não poderiam ser reduzidos.

No catalisador 1% Pt/Fe_{0,5}Zr_{0,5}O₂ aparecem dois dubletos: um de acordo com os parâmetros característicos de Fe³⁺ tem a mesma origem como no caso anterior, mas o segundo tem parâmetros característicos de Fe²⁺ (linha verde escuro). Além disso, a porcentagem dessas duas espécies supera o valor de Fe³⁺ que estava difundido no interior da ZrO₂ no seu precursor sem redução. Por outro lado, pode-se concluir que esta fração de Fe²⁺ ingressou na rede de ZrO₂ durante as etapas de redução e que está localizada em uma região mais superficial acessível ao H₂ podendo reduzi-lo parcialmente. Finalmente na amostra 1% Pt/Fe_{0,25}Zr_{0,75}O₂ somente detectou-se o dubleto Fe³⁺ localizado na rede de ZrO₂ (linha verde claro). Aqui, é interessante recordar que o correspondente precursor sem redução tinha 83% de Fe³⁺ situado na rede de ZrO₂ e os restantes 17% correspondiam à hematita. Como não foi detectado qualquer tipo de redução pode-se especular que, durante o processo de tratamento térmico de redução, a velocidade de difusão de Fe³⁺ dentro da zircônia superou a velocidade de redução e, portanto, os átomos de ferro foram mantidos no interior da rede da zircônia sem a possibilidade de redução. Na Figura 4.33 são apresentados os perfis dos espectros de Mössbauer obtidos para estes catalisadores de platina suportados em óxidos mistos na forma reduzida.

Figura 4.33 - Espectros de Mössbauer dos catalisadores 1% Pt/Fe₂O₃, 1% Pt/Fe_{0,25}Zr_{0,75}O₂, 1% Pt/Fe_{0,5}Zr_{0,5}O₂ e 1% Pt/Fe_{0,75}Zr_{0,25}O₂ reduzidos.

4.1.9 REAÇÃO SUPERFICIAL com PULSOS da MISTURA REACIONAL

Os dados obtidos durante reação superficial para os catalisadores 1% Pt/ZrO₂ e 1% Pt/Fe₂O₃ são apresentados na Figura 4.34, onde nota-se um aumento da formação do CO₂ com a temperatura, apresentando um máximo em 150 °C para o catalisador 1% Pt/ZrO₂ e a 250 °C para o catalisador 1% Pt/Fe₂O₃ decrescendo posteriormente. O melhor desempenho foi com o catalisador 1% Pt/Fe_{0.25}Zr_{0.75}O₂ seguido do 1% Pt/ZrO₂. Os demais catalisadores foram bem menos ativos. Nota-se que o catalisador 1% Pt/Fe₂O₃ foi o menos ativo na oxidação seletiva por pulso. O comportamento da curva decrescente entre 150 °C e 200 °C pode ser explicado por uma reação secundária, provavelmente devido à decomposição do CO e formação de coque. Com o aumento de temperatura há combustão de carbono superficial, aumentando assim a formação de CO₂. O catalisador 1% Pt/Fe_{0.5}Zr_{0.5}O₂ apresentou queda de formação de CO₂ acima de 250 °C. Os catalisadores a base de óxidos mistos são influenciados pela relação Fe/Zr, uma vez que o aumento da quantidade de ferro levou a uma menor formação de CO₂. Esses dados podem ser confirmados com as análises de TPD da mistura reacional discutida no item 4.1.5, onde se pôde constatar que o catalisador com menor teor de ferro (25%) apresentou as melhores condições para o processo de oxidação seletiva do CO.

Figura 4.34 – Reação superficial com pulsos da mistura reacional. Carga reacional (1%CO, $1\%O_2$, $60\%H_2$ e balanço He), $O_2/CO = 1$, W = 100 mg e F = 100 mL/min.

A quantificação do CO_2 dessorvido através da injeção dos pulsos da mistura reacional durante a reação superficial é apresentada nas Tabelas 4.12 e 4.13. Observa-se que no catalisador 1% Pt/ZrO₂ a quantidade de CO₂ formada aumentou 6 vezes com o aumento da temperatura de 100 para 150 0 C, não variando muito nas demais temperaturas. No entanto, com o catalisador 1% Pt/Fe₂O₃ este aumento foi insignificante, porém contínuo, atingindo 3 vezes o maior valor em 250 0 C. Isto mostra claramente que a atividade do 1% Pt/ZrO₂ foi bem superior favorecendo a oxidação do CO, sem afetar a oxidação do H₂ presente, conforme os resultados já observados por TPD da mistura.

Temperatura	1% Pt/ZrO ₂	1% Pt/Fe ₂ O ₃		
(°C)	(µmolCO ₂ /gcat)	(µmolCO ₂ /gcat)		
50	-	-		
100	0,45	0,19		
150	3,04	0,24		
200	2,42	0,42		
250	2,65	0,70		
300	3,09	0,36		

Tabela 4.12 – Quantificação do CO₂ dessorvido para os catalisadores metálicos.

Com os catalisadores de Pt suportados em óxidos mistos (Tabela 4.12) observase uma quantidade de CO₂ diferenciada, dependendo da concentração de ferro presente. Comparando com o catalisador 1% Pt/ZrO₂ a uma temperatura de 150 ^oC observa-se um aumento de 1,4 vezes para o catalisador a base de óxido misto que contém 25% de Ferro e 17 vezes maior que o 1% Pt/Fe₂O₃. Por outro lado, decresce significativamente para os catalisadores de Pt suportados em óxidos mistos contendo 50% e 75% de ferro, porém bem superiores ao catalisador de 1% Pt/Fe₂O₃.

Temperatura	1%Pt/Fe _{0,25} Zr _{0,75} O ₂	1%Pt/Fe _{0,5} Zr _{0,5} O ₂	1%Pt/Fe _{0,75} Zr _{0,25} O ₂
(°C)	(µmolCO ₂ /gcat)	(µmolCO ₂ /gcat)	(µmolCO ₂ /gcat)
50	-	-	0,12
100	1,11	-	1,26
150	4,24	1,24	0,85
200	4,79	0,61	1,22
250	5,23	2,13	1,02
300	4,87	0,49	1,18

Tabela 4.13 – Quantificação do CO₂ dessorvido para os catalisadores de óxidos mistos.

Estes resultados são muito significativos e estão relacionados com a presença de vacâncias nos óxidos mistos e em acordo com os dados de Difração de Raios-X e de Espectroscopia de Mössbauer para o catalisador 1% $Pt/Fe_{0,25}Zr_{0,75}O_2$. Na realidade a análise de Mössbauer mostrou a presença de uma fase contendo o cátion Fe^{3+} na estrutura do ZrO_2 que deve ser amorfa, o que explicaria a ausência de picos cristalinos no DRX deste catalisador. A substituição de Fe^{3+} na estrutura do ZrO_2 poderia criar defeitos que seriam responsáveis pelas vacâncias de oxigênio e, portanto, uma maior redutibilidade deste catalisador em relação aos demais conforme os resultados de TPR. Embora a dispersão da platina tenha ficado na faixa de 1 – 3% em comparação com o 1% Pt/ZrO_2 esse resultado reforça o papel do suporte neste catalisador, que mostrou alta atividade apesar da baixa dispersão. Nos catalisadores com 50 e 75% de ferro os resultados de Mössbauer e DRX não mostraram a formação de óxidos mistos e sim de fases segregadas de óxidos de Fe₂O₃ e ZrO₂ o que contribuiu decisivamente na atividade desses catalisadores durante a reação superficial por pulsos.

4.2 TESTES CATALÍTICOS

A condição de regime cinético foi avaliada através da variação da velocidade espacial. O catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ foi avaliado e seus resultados são apresentados na Figura 4.35. Atinge-se a condição cinética para valores até em torno de W/F = 60 g.s/L. Esta condição foi escolhida para os demais testes cinéticos.

Figura 4.35 – Variação da Velocidade Espacial para o catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂. Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1 e W = 150 mg.

Na Figura 4.36 apresenta-se a influência da temperatura de reação sobre a conversão de CO para os diferentes catalisadores e na Figura 4.37 são mostradas as curvas de conversão de oxigênio em função da temperatura de reação. Nota-se que todos os catalisadores apresentam um pico de conversão máxima de CO o qual está relacionado à reação seletiva onde o O_2 disponível é usado para converter o CO da corrente de alimentação em CO₂ conforme Figura 4.36. Já na Figura 4.37 a temperatura de conversão máxima de O₂ coincide com a temperatura onde ocorre conversão máxima de CO, confirmando que após essa temperatura uma parte do oxigênio disponível foi usada para oxidar o CO e a outra usada na oxidação do H₂.

Figura 4.36 – Conversão de CO para os catalisadores. Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), $O_2/CO = 1$, W = 100 mg e F = 100 mL/min.

Figura 4.37 – Conversão de O₂ para os catalisadores. Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), $O_2/CO = 1$, W = 100 mg e F = 100 mL/min.

Os perfis de conversão de CO, O_2 e seletividade para o catalisador 1% Pt/Fe₂O₃ (Figura 4.38) mostram que na temperatura de 90 °C a conversão máxima de CO foi de 52 %, enquanto que a conversão de oxigênio foi de 96% e a seletividade para CO₂ em torno de 20%. A partir desta temperatura começou a ocorrer uma competição entre H₂ e CO pelo oxigênio causando com isso uma diminuição na conversão do CO, porém a conversão de oxigênio continuou aumentando até atingir 100% em 150 °C.

Figura 4.38 – Conversão de CO, O₂ e Seletividade para o catalisador 1% Pt/Fe₂O₃. Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1, W = 100 mg e F = 100 mL/min.

Na literatura os trabalhos referentes à aplicação do óxido de ferro na reação de oxidação do CO foram realizados por KHEDR *et al.* (2006), os quais estudaram o efeito da temperatura sobre as partículas de Fe₂O₃ e constataram que os cristalitos de Fe₂O₃ (~78 nm) apresentam eficiência de 90 e 98% nas temperaturas de 400 e 500 °C, respectivamente. Já HALIM *et al.* (2007) estudaram os diferentes fatores que afetam a oxidação do CO sobre partículas de Fe₂O₃, tais como, tamanho de cristalito e temperatura de reação e verificaram que nas temperaturas de 400 e 500 °C a conversão de CO atingiu valores de 90% e 98%, respectivamente para amostras com tamanho de cristalitos em torno de 75 nm, porém, na temperatura de 400 °C as amostras apresentaram os melhores desempenhos em virtude do fenômeno de sinterização do óxido de ferro em temperaturas relativamente altas.

SCIRÈ *et al.* (2008) estudaram o catalisador Au/Fe₂O₃ e compararam seus resultados com um catalisador comercial (AuRef). Todas as amostras calcinadas a 200 °C e reduzidas em atmosfera de H₂ a 150 °C apresentaram aumento na conversão de CO com o aumento da temperatura de reação, atingindo um máximo respectivamente de

95% para Au/Fe₂O₃ (DP) a 70 °C, 80% para AuRef a 90 °C e 45% para Au/Fe₂O₃ (CP) a 140 °C, vindo a diminuir com o aumento da temperatura. Com relação ao mecanismo de reação, todos os estudos mostraram que a reação de oxidação seletiva é de primeira ordem com relação ao CO. Estes resultados mostram que o óxido de ferro sem a presença de um metal nobre como agente ativo apresenta altos valores de conversão de CO, porém numa faixa de temperatura muito elevada. Assim pode-se concluir que a presença de um metal sobre a superfície desse óxido diminui de maneira significativa a temperatura em que ocorre a oxidação seletiva do CO.

Na Figura 4.39 apresenta-se os perfis de conversão de CO, O₂ e seletividade para o catalisador 1% Pt/ZrO₂. A máxima conversão de CO foi 75%, conversão de O₂ 98% e seletividade para CO₂ de 29% na temperatura de 150 °C. Já nas temperaturas maiores ocorreu o mesmo processo de competição entre H₂ e CO levando a uma diminuição na conversão de CO sendo que a conversão de oxigênio permaneceu constante (100%). RIBEIRO et al. (2008a) estudaram catalisadores Au/ZrO₂ obtendo 96% de conversão de CO já na temperatura de 50 °C. Da mesma maneira ROSSIGNOL et al. (2005), mostraram que a conversão máxima de CO foi de 55% com seletividade de 40%, porém na temperatura de 172 °C. Por outro lado, SOUZA et al. (2007) estudaram a oxidação seletiva de CO com o catalisador Pt/ZrO₂ e obtiveram conversão de CO de 62% a 130 °C. A atividade dos catalisadores suportados em óxidos redutíveis em baixas temperaturas pode estar relacionada à interação entre metal/suporte, devido à formação de sítios ativos para adsorção de CO na interface Pt-Zr observado por análise de infravermelho no trabalho de SOUZA et al., (2001) aumentando assim a atividade catalítica para a reação de oxidação do CO. Este resultado é consistente com os dados encontrados de conversão de CO para o catalisador 1% Pt/ZrO₂.

Figura 4.39 – Conversão de CO, O₂ e Seletividade para o catalisador 1% Pt/ZrO₂. Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1, W = 100 mg e F = 100 mL/min.

O catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ apresentou o mesmo comportamento, porém a conversão máxima de CO foi de 37%, a conversão de O₂ 100% e a seletividade para CO₂ 14%, na temperatura de 110 °C. Na Figura 4.40 nota-se que todo O₂ atingiu conversão de 100 % na mesma temperatura do pico de máxima conversão de CO, mas com o aumento da temperatura favoreceu-se a reação de oxidação de H₂. Os estudos realizados na literatura utilizando catalisadores de platina suportados em óxidos mistos do tipo Pt/Ce_{0,15}Zr_{0,85}O₂ mostraram que a conversão de CO foi de 57% e a seletividade de 58% na temperatura de 100 °C de acordo com WOOTSCH *et al.* (2004). No mesmo contexto, AYASTUY *et al.* (2006) encontraram valores para conversão de CO e seletividade na ordem de 69,1% na temperatura de 90 °C. Segundo os autores, a maior atividade e seletividade atribuída aos catalisadores suportados em óxidos redutíveis ocorrem devido ao processo redox na interface metal/suporte e a presença de vacâncias de oxigênio.

Figura 4.40 – Conversão de CO, O₂ e Seletividade para o catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂. Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1, W = 100 mg e F = 100 mL/min.

Os catalisadores de Pt a base de óxidos mistos com diferentes razões Fe/Zr, ou seja, do tipo Pt/Fe_xZr_(1-x)O₂ variando a composição molar de ferro de 50% e 75% apresentaram conversões muito baixas de CO. O catalisador com 50% de ferro (Figura 4.41) apresentou conversão máxima de CO em torno de 23%, conversão de O₂ de 94% e seletividade para CO₂ na ordem de 10% na temperatura de 70 °C. Já o catalisador com 75% de ferro (Figura 4.42) apresentou máxima conversão de CO de 12%, conversão de O₂ de 97% e seletividade para CO₂ de 5% a 70 °C. Pode-se notar que o aumento da temperatura favoreceu a reação paralela de oxidação do H₂ observado pela queda na conversão de CO e aumento na conversão de O₂. Este processo ocorreu devido à troca das moléculas de CO adsorvido por moléculas de H₂, tendo como consequência um decaimento na conversão de CO e um aumento da conversão de H₂. Dessa forma notase que o aumento da razão molar de ferro não favoreceu a oxidação do CO, uma vez que a conversão diminuiu.

WOOTSCH *et al.* (2004) estudaram o catalisador Pt/Ce_xZr_{1-x}O₂ com diferentes razões molares de Ce/Zr e concluíram que o catalisador Pt/Ce_{0,68}Zr_{0,32}O₂ apresentou os melhores resultados. A conversão de CO foi de 74%, com conversão de O₂ de 93% e seletividade para CO₂ de 79% na temperatura de 100 °C utilizando uma razão O₂/CO = 1. O catalisador Pt/Ce_{0,50}Zr_{0,50}O₂ apresentou conversão de CO de 69%, com conversão de O₂ de 99% e seletividade de 70% na temperatura de 100 °C, utilizando a mesma razão estequiométrica. Da mesma forma AYASTUY *et al.* (2006) encontraram valores para conversão de CO e seletividade na ordem de 77,3% na temperatura de 71 °C para o catalisador Pt/Ce_{0,68}Zr_{0,32}O₂. Já ROH *et al.* (2004) estudaram a mesma reação com o catalisador Pt/Ce_{0,8}Zr_{0,2}O₂ e obtiveram conversão de 78% de CO e seletividade de 96% a uma temperatura de 60 ^oC. Conclui-se então que o aumento da concentração de cério neste caso favoreceu a oxidação do CO em baixas temperaturas.

Figura 4.41 – Conversão de CO, O₂ e Seletividade para o catalisador 1% Pt/Fe_{0,5}Zr_{0,5}O₂. Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1, W = 100 mg e F = 100 mL/min.

Figura 4.42 – Conversão de CO, O₂ e Seletividade para o catalisador 1% Pt/Fe_{0,75}Zr_{0,25}O₂. Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1, W = 100 mg e F = 100 mL/min.

Na Tabela 4.14 apresenta-se os dados de conversão de CO e seletividade para CO_2 dos catalisadores de platina com base na conversão completa de oxigênio (100%). Os resultados encontrados mostram que os catalisadores 1% Pt/ZrO₂, 1% Pt/Fe₂O₃ e 1% Pt/Fe_{0,25}Zr_{0,75}O₂ apresentam as maiores conversão de CO quando o oxigênio foi totalmente consumido convertendo o CO em CO₂. Nota-se também que o catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ apresentou conversão de 37% na temperatura de 110 °C, a qual está na faixa de operação da reação de oxidação seletiva conforme WÖRNER *et al.*, (2003).

Catalisadores	T (°C)	X _{CO} (%)	S _{CO2} (%)
1% Pt/Fe ₂ O ₃	90	52	10
1% Pt/ZrO ₂	150	75	28
$1\% Pt/Fe_{0,25}Zr_{0,75}O_2$	110	37	14
$1\% \text{ Pt/Fe}_{0,5}\text{Zr}_{0,5}\text{O}_2$	70	23	10
$1\% \text{ Pt/Fe}_{0,75}\text{Zr}_{0,25}\text{O}_2$	70	12	5

Tabela 4.14 – Comparação de catalisadores para uma conversão máxima de O₂.

4.2.1 ATIVIDADE INTRÍNSECA (TOF)

Com os dados de quimissorção total e taxa de reação foram calculados os valores para atividade intrínseca (TOF) apresentados na Tabela 4.15 para os diferentes catalisadores na temperatura de 90 °C. Nota-se através destes valores que a atividade é distinta. Na literatura KURIYAMA *et al.* (2007) estudaram o catalisador K-Pt/Al₂O₃, obtendo um valor de TOF a 90 °C igual a 0,032 s⁻¹ para uma carga reacional de 0,2% CO, 0,2% O₂ e 75% H₂, portanto, uma carga bastante diluída com conversão de CO igual a 88%. No nosso caso, a carga utilizada foi de 1% CO, 1% O₂ e 60% H₂ sendo quase 10 vezes mais concentrada. O TOF para o catalisador 1% Pt/Fe₂O₃ não pode ser calculado na mesma temperatura dos demais, pois a conversão já era muito alta e o reator neste caso não poderia ser considerado diferencial. Com isso, este catalisador já demonstra alta atividade para remoção de CO em baixas temperaturas de acordo com o valor encontrado para o TOF.

	90 °C		
Catalisadores	X _{CO} (%)	TOF ^a (min ⁻¹)	
1% Pt/ZrO ₂	2,4	0,56 ^a	
1% Pt/Fe ₂ O ₃	8,6 ^b	8,75 ^{b,c}	
$1\% Pt/Fe_{0,25}Zr_{0,75}O_2$	7,6	0,5 ^c	
$1\% \text{ Pt/Fe}_{0,5}\text{Zr}_{0,5}\text{O}_2$	17,3	1,55 ^c	
1% Pt/Fe _{0,75} Zr _{0,25} O ₂	11,4	1,98°	

Tabela 4.15 – Conversão de CO e TOF para os catalisadores a 90 °C.

^a calculado com base no CO irreversível após redução a 500 °C, ^bcalculado a 70 °C e ^ccalculado com base no CO total após redução a 500°C.

4.2.2 SELETIVIDADE

Os resultados apresentados na Tabela 4.16 mostram que a seletividade com relação ao CO_2 para todos os catalisadores diminui como o aumento da temperatura. Isso ocorre devido à troca das moléculas de CO adsorvido por moléculas de H₂, causando aumento na conversão de oxigênio em favor da oxidação do H₂ afetando diretamente a conversão de CO. De um modo geral, o catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ apresentou a maior seletividade em relação ao CO₂ na temperatura de 90 °C. O

catalisador 1% Pt/Fe₂O₃ apresentou seletividade semelhante para todas as temperaturas e conversões diferentes. Nota-se que para conversões mais altas, onde efetivamente ocorre maior consumo de oxigênio, a seletividade para CO₂ diminui, favorecendo a oxidação de H₂. Neste sentido os catalisadores de Pt/Fe_xZr_(1-x)O₂ foram os que mais favoreceram a oxidação do CO em temperaturas mais baixas e conversões significativas.

	90 °C		110 °C		130 °C	
Catalisadores	S _{CO2}	X _{CO}	$S_{\rm CO2}$	X _{CO}	S _{CO2}	X _{CO}
	(%)	(%)	(%)	(%)	(%)	(%)
1% Pt/ZrO ₂	22,5	2,4	16,8	6,6	16,7	28,1
1% Pt/Fe ₂ O ₃	20,8	51,8	18	45,5	14	36,1
1% Pt/Fe _{0,25} Zr _{0,75} O ₂	55,9	7,6	14,3	37,2	9,4	24,4
1% Pt/Fe _{0,5} Zr _{0,5} O ₂	6,7	17,3	5,7	14,8	4,9	12,6
1% Pt/Fe _{0,75} Zr _{0,25} O ₂	4,3	11,4	4,7	12,4	3,1	8

Tabela 4.16 – Seletividade e conversão de CO para os catalisadores.

A literatura apresenta resultados de seletividade para catalisadores de Pt sobre diferentes óxidos mistos do tipo Ce-Zr e com diferentes concentrações de oxigênio. A influência da concentração de O_2 foi importante, sendo que a razão $O_2/CO = 1$ foi a mais significativa. Segundo WOOTSCH *et al.* (2004) essa diferença de seletividade é atribuída a competitividade de CO com os sítios metálicos e ao spillover de H₂ nos suportes. Não mostraram evidências claras do fenômeno de spillover, mas de acordo com os valores de quimissorção encontrados foram diferentes para Pt em óxidos mistos. No nosso caso, as dispersões sobre os óxidos mistos foram muito baixas. Devido à formação de partículas grandes o CO adsorvido é reversível. Nesse caso, pode-se admitir que o O_2 é preferencialmente adsorvido sobre o metal e que o CO reage na fase gasosa, sugerindo uma cinética do tipo Eley-Rideal. Diferentemente dos óxidos mistos propostos por WOOTSCH *et al.* (2004) há participação principal do metal ativo sobre a superfície, dependendo da sua dispersão.

A seletividade do catalisador sobre o óxido misto contendo 25% de ferro foi significativa ou maior que os suportes óxidos de ferro e zircônio, indicando que além da fase metálica, a interação do metal com o suporte pode influenciar sobre a adsorção de

 O_2 e CO, facilitando o spillover de H_2 no suporte, em acordo com os resultados apresentados por WOOTSCH *et al.* (2004).

RIBERIO *et al.* (2008a) mostraram que a dependência do diâmetro de partícula e as vacâncias de oxigênio no suporte são fundamentais para a adsorção seletiva de CO, H_2 e a migração de O_2 nas vacâncias do suporte. Estes resultados confirmam os dados de DRIFTS e TPD no presente caso, reforçando a prevalência dos sítios metálicos superficiais na reação seletiva de CO.

Com base nestas hipóteses o modelo de Eley-Rideal é o mais apropriado, independente do suporte. Este modelo está de acordo com os resultados de KURIYAMA *et al.* (2007) que através de diferentes analises superficiais observaram que na reação SELOX o CO é fracamente adsorvido. Sugerem ainda que a reação SELOX em baixas temperaturas indica menor adsorção de CO e que as espécies originadas de H₂ e O₂ (grupos $^{-}$ OH) presentes na superfície podem promover a oxidação do CO estando em acordo com os resultados discutidos por SMIT *et al.* (2006).

As análises de DRIFTS, TPD, TOF e Seletividade sugerem os seguintes mecanismos.

- a) Adsorção competitiva de O₂ e H₂ sobre o metal, independente do suporte.
- b) Adsorção fraca de CO sobre o metal constituído de grandes partículas nos óxidos mistos e sobre Fe₂O₃.
- c) Migração de O₂ nas vacâncias dos óxidos mistos, facilitando a oxidação de CO em baixas temperaturas e H₂ em altas temperaturas.
- d) Spillover de H₂ no óxido misto que depende da concentração de ferro.

4.2.3 ESTABILIDADE CATALÍTICA

Um dos parâmetros mais importantes para avaliar a estabilidade dos catalisadores de platina é o teste de estabilidade catalítica o qual foi realizado em função do tempo de reação após 48h de reação na temperatura de 110 °C. Os catalisadores 1% Pt/Fe₂O₃, 1% Pt/Fe_{0,25}Zr_{0,75}O₂ e 1% Pt/ZrO₂ foram avaliados e pôde-se mostrar que os mesmos não sofreram processo de desativação durante reação seletiva conforme os perfis apresentados na Figura 4.43.

Figura 4.43 – Estabilidade Catalítica para 1% Pt/Fe₂O₃, 1% Pt/Fe_{0,25}Zr_{0,75}O₂ e 1% Pt/ZrO₂. Carga reacional (1%CO, 1%O₂, 60%H₂ e balanço He), O₂/CO = 1, W = 100 mg e F = 100 mL/min.

CAPÍTULO V

CONCLUSÕES e SUGESTÕES

5.1 CONCLUSÕES

Com base nos resultados apresentados e discutidos no capítulo anterior, as principais conclusões deste trabalho são:

- O método utilizado no preparo dos suportes e catalisadores foi eficaz para os óxidos metálicos e óxidos mistos sendo confirmados por fluorescência de raios-X;
- Pelas análises de DRX o óxido de ferro é formado por uma mistura de estruturas cristalinas, sendo composto pelas fases cúbica e hexagonal. O óxido de zircônio é formado pelas fases cristalinas monoclínica e cúbica. Os óxidos mistos apresentaram a formação de uma solução sólida Fe/Zr no caso do catalisador com 25% de ferro e os demais com 50 e 75% apresentaram uma mistura de óxidos em sua estrutura;
- A adição de platina favoreceu a redução das espécies de ferro em temperaturas mais baixas, provavelmente devido a uma possível interação entre o metal e o suporte;
- O TPD de CO e da mistura mostram que o CO₂ formado para os diferentes catalisadores pode ser proveniente de diversas formas, tais como a reação de deslocamento gás-água modificada onde o grupo (OH) faz o papel da água. O CO₂ formado poderia estar associado à reação de decomposição de CO (*Bouduard*) formando C e CO₂ e também pela interação entre CO com o oxigênio presente na rede cristalina do suporte levando a formação de CO₂ e vacâncias de oxigênio;
- A quimissorção mostrou que os catalisadores de platina com ferro na estrutura do suporte apresentam dispersão e quimissorção irreversível de CO muito baixa. Os resultados evidenciam forte influência do suporte sobre a dispersão quando reduzido a 500 °C. Estes resultados foram confirmados pelo TPD de CO nos diferentes catalisadores, indicando que o catalisador 1% Pt/Fe₂O₃ praticamente não dessorveu CO em toda a faixa de temperatura mostrando que a adsorção é totalmente reversível;
- A análise de DRIFTS de CO mostra um mecanismo do tipo Eley-Rideal para o catalisador 1% Pt/Fe₂O₃. O catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ apresentou formação de CO₂ oriundo da interação entre CO e os grupos ⁻OH levando a formação de espécies

formiatos reativas as quais podem ser facilmente oxidadas pelo oxigênio adsorvido nas partículas de platina e parcialmente pelo oxigênio do suporte formando CO₂ e H₂O;

- O DRIFTS *in situ* confirmou que o CO₂ formado também pode estar associado à reação de desproporcionamento através de duas moléculas de CO adsorvidas em sítios vizinhos, uma vez que as bandas de CO estão diminuindo conforme se procedeu o aumento da temperatura, além das hipóteses descritas no TPD de CO;
- Os resultados de espectroscopia de Mössbauer mostraram que há presença de Fe³⁺ difundido na rede da zircônia no catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ evidenciando a formação de um óxido misto;
- Os catalisadores 1% Pt/Fe_{0,25}Zr_{0,75}O₂ e 1%Pt/ZrO₂ foram os mais ativos durante Reação Superficial através da injeção de pulsos;
- Pela análise dos testes catalíticos todos os catalisadores apresentam um pico de conversão máxima de CO o qual está relacionado à reação seletiva onde todo O₂ disponível é usado para converter o CO da corrente de alimentação em CO₂. Os catalisadores 1% Pt/ZrO₂, 1% Pt/Fe₂O₃ e 1% Pt/Fe_{0,25}Zr_{0,75}O₂ apresentaram as maiores conversões de CO;
- Com os dados de quimissorção e taxa de reação foram calculados os valores para atividade intrínseca (TOF) para os diferentes catalisadores onde se pode mostrar que catalisador 1% Pt/Fe₂O₃ foi o mais ativo em relação aos demais já em baixas temperaturas;
- A seletividade com relação ao CO₂ para todos os catalisadores diminui conforme o aumento da temperatura. De um modo geral o catalisador 1% Pt/Fe_{0,25}Zr_{0,75}O₂ apresentou a maior seletividade em relação ao CO₂ na temperatura de 110 °C. Com o aumento do teor de ferro nos óxidos mistos verifica-se maior capacidade de oxidação do hidrogênio, diminuindo a oxidação seletiva do CO. O catalisador 1% Pt/Fe₂O₃ também foi bastante seletivo comparado com o 1% Pt/ZrO₂.

5.2 SUGESTÕES

Como sugestões para trabalhos futuros pode-se propor:

- Determinação do tamanho de partículas dos catalisadores utilizando a técnica de MET;
- A avaliação da influência de diferentes pressões parciais de O₂, CO₂ e H₂O na corrente reacional acompanhado a reação utilizando as técnicas de DRIFTS e XPS *in situ*, que possibilitaria o conhecimento das espécies adsorvidas;
- Verificar o efeito da temperatura sobre a atividade para oxidação de CO e seletividade para CO₂ na presença de CO₂ e H₂O e ainda o efeito destes componentes nos testes de longa duração;
- Desenvolver um mecanismo reacional na presença de CO₂ e H₂O na corrente reacional.

REFERÊNCIAS BIBLIOGRÁFICAS

- ARANDA, D. A. G. e SCHMAL, M., "Ligand and geometric effects on Pt/Nb₂O₅ and Pt-Sn/Nb₂O₅ catalysts", *Journal of Molecular Catalysis*, v. 171, pp. 398-407, 1997.
- ARMOR, J.N., "The multiple roles for catalysis in the production of H₂" *Applied Catalysis A: General*, v.176, pp. 159-176, 1999.
- ATALIK, B. e UNER, D., "Structure sensitivity of selective CO oxidation over Pt/γ-Al₂O₃", *Journal of Catalysis*, v. 241, pp. 268-275, 2006.
- AYASTUY, J. L., GONZÁLEZ-MARCOS, M. P., GIL-RODRÍGUEZ, A., GONZÁLEZ-VELASCO, J. R. e GUTIÉRREZ-ORTIZ, M. A., "Selective CO oxidation over Ce_xZr_{1-x}O₂ supported Pt catalysts", *Catalysis Today*, v. 116, pp. 391-399, 2006.
- BARTON, D. G., e PODKOLZIN, S. G., "Kinetic Study of a Direct Water Synthesis over Silica-Supported Gold Nanoparticles", *Journal Physics and Chemistry B*, v. 109, pp. 2262-2274, 2005.
- BOCCUZZI, F., CHIORINO, A., MANZOLI, M., LU, P., AKITA, T. ICHIKAWA, S. e HARUTA, M., "Au/TiO₂ nanosized samples: a catalytic, TEM and FTIR study of the effect of calcinations temperature on the CO oxidation", *Journal of Catalysis*, v. 202, pp. 256-257, 2001.
- BOLLINGER, M.A., e VANNICE, M.A., "A kinetic and DRIFTS study of lowtemperature carbon monoxide oxidation over Au-TiO₂ catalysts", *Applied Catalysis B: Environmental*, v. 8, pp. 417-443, 1996.
- BOZO, C., GUILHAUME, N., GARBOWISK, E., e PRIMET, M., "Combustion of methane on CeO₂ – ZrO₂ based catalysts", *Catalysis Today*, v.59, n°1, pp. 33-45, 2000.
- BERGELD, J., KASEMO, B. e CHAKAROV, D. V., "CO oxidation on Pt(111) promoted by coadsorbed H₂O", *Surface Science*, v. 495, pp. L815-L820, 2001.
- CAO, J-L., WANG, Y., ZHABG, T-Y., WU, S-H., e YUAN, Z-Y., "Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/Ce_{0,8}Zr_{0,2}O₂ catalysts for low-temperature CO oxidation", *Applied Catalysis B: Environmental*, v. 78, pp. 120-128, 2007.
- CARRETTE, L., FRIEDRICH, K. A. e STIMMING, U., "Fuel Cells Fundamentals and Applications", *Fuel Cells*, v. 1, n° 1, pp. 5-39, 2001.
- CHANG, L-H., SASIREKHA, N., RAJESH, B., e CHEN, Y-W., "CO oxidation on ceria and manganese oxide supported gold catalysts", *Separation and Purification Technology*, v. 58, pp. 211-218, 2007.
- CHENG, T., FANG, Z., HU, Q., HAN, K., YANG, X., e ZHANG, Y., "Lowtemperature CO oxidation over CuO/Fe₂O₃ catalysts", *Catalysis Communications*, v. 8, pp. 1167-1171, 2007.
- CHEN, K., FAN, Y., HU, Z., HAN, K., e YAN, Q., "Study on the Reduction Behavior of Zirconia Supported Iron Oxide Catalysts by Temperature-Programmed Reduction Combined with *in Situ* Mo" ssbauer Spectroscopy", *Journal of Solid State Chemistry*, v. 121, pp. 240-246, 1996.
- CONTE, M., IACOBAZZI, A., M. RONCHETTI, M., e VELLONE, R., "Hydrogen economy for a sustainable development: state-of-the art and technological perspectives", *Journal of Power Sources*, v.100, pp. 171-187, 2001.
- DENKWITZ, Y., SCHUMACHER, B., KUCEROVÁ, G., e BEHM, J., "Activity, stability, and deactivation behavior of supported Au/TiO₂ catalysts in the CO oxidation and preferential CO oxidation reaction at elevated temperatures", *Journal of Catalysis*, v. 267, pp. 78-88, 2009.
- DONG, W. -S., ROH, H. -S., JUN, K. -W., PARK, S. -E., e OH, Y. -S., "Methane reforming over Ni/Ce-ZrO₂ catalysts: effect of nickel content", *Applied Catalysis A: General*, n° 226, pp. 63-72, 2002.
- FU, Q., KUDRIAVTSEVA, S., SALTSBURG, H., e FLYTZANI-STEPHANOPOULOS, M., "Gold–ceria catalysts for low-temperature water-gas shift reaction", *Chemical Engineering Journal*, v. 93, pp. 41-53, 2003.
- GAO, H., XU, W., HE, H., SHI, X., ZHANG, X., e TANAKA, K-I., "DRIFTS investigation and DFT calculation of the adsorption of CO on Pt/TiO₂, Pt/CeO₂ and FeO_x/Pt/CeO₂", *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, v. 71, pp. 1193-1198, 2008.
- HALIM, K. S. A., KHEDR, M. H., NASR, M. I., e EL-MANSY, A. M., "Factors affecting CO oxidation over nanosized Fe₂O₃", *Materials Research Bulletin*, v. 42, pp.731-741, 2007.

- HARUTA, M., UEDA, A., TSUBOTA, S., e TORRES SANCHEZ, R. M., "Lowtemperature catalytic combustion of methanol and its decomposed derivatives over supported gold catalysts", *Catalysis Today*, v. 29, pp. 443-447, 1996.
- HASEGAWA, Y., SOTOWA, K., KUSAKABE, K., e MOROOKA, S., "Selective oxidation of CO in H₂ by permeation through catalytically active zeolite membranes", *Journal of Chemical Engineering of Japan*, v. 35, pp. 1244-1251, 2002.
- HEIDRBRECHT, P., GALVITA, V. e SUNDMACHER, K., "An alternative method for parameter identification from temperature programmed reduction (TPR) data", *Chemical Engineering Science*, v.63, pp. 4776-4788, 2008.
- HOANG, D.L., BERNDT, H. e LIESKE, H., "Hydrogen spillover phenomena on Pt/ZrO₂", *Catalysis Letters*, v. 31, n° 2-3, 1995.
- HÖHLEIN, B., VON ANDRIAN, S., GRUBE, Th., e MENZER, R., "Critical assessment of power trains with fuel-cell systems and different fuels", *Journal* of Power Sources, v. 86, pp. 243-249, 2000.
- HUANG, C-Y., CHEN, Y-Y., et al., "The cleanup of CO in hydrogen for PEMFC applications using Pt, Ru, Co, and Fe in PROX reaction", Journal of Power Sources, v. 32(16), pp. 3873-3880, 2007.
- HUTCHINGS, G. J., HALL, M. S., CARLEY, A. F., LANDON, P., SOLSONA, B. E., e KIELY, C. J., "Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold", *Journal of Catalysis*, v. 81, pp. 71-81, 2006.
- INWANG, I. B., CHYAD, F. e McCOLM, I. J., "Crystallisation of Iron(III)-Zirconia co-gels", *Journal of Materials Chemical*, v. 5(8), pp. 1209-1213, 1995.
- JOSWIAK, W. K., KACZMAREK, E., MANIECKI, T. P., IGNACZAK, W., e MANIUKIEWICZ, W., "Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres", *Applied Catalysis A: General*, v. 326, pp. 17-27, 2007.
- KAHLICH, M. J., GASTEIGNER, H. A., e BEHM, R. J., "Kinetics of the selective CO oxidation in H₂-rich gas on Pt/Al₂O₃", *Journal of Catalysis*, v. 171, pp. 93-105, 1997.

- KHEDR, M. H., HALIM, K. S. A., NASR, M. I., e EL-MANSY, A. M., "Effect of temperature on the catalytic oxidation of CO over nano-sized iron oxide", *Materials Science and Engineering A*, v. 430, pp. 40-45, 2006.
- KHOUDIAKOV, M., GUPTA, M.C. e DEEVI, S., "Au/Fe₂O₃ nanocatalysts for CO oxidation: A comparative study of deposition-precipitation and coprecipitation techniques", *Applied Catalysis A: General*, v. 291, pp. 151-161, 2005.
- KIM, Y. H., PARK, E. D., LEE, H. C., LEE, D., e LEE, K. H., "Preferential CO oxidation over supported noble metal catalysts", *Catalysis Today*, v. 146, pp. 253-259, 2009.
- KONOVA, P., NAYDENOV, A., TABAKOVA, T., e MEHANDJIEV, D.,
 "Deactivation of nanosize gold supported on zirconia in CO oxidation", *Catalysis Communications*, v. 5, pp. 537-542, 2004a.
- KONOVA, P., NAYDENOV, A., VENKOV, CV., MEHANDJIEV, D., ANDREEVA,
 D., e TABAKOVA, T., "Activity and deactivation of Au/TiO₂ catalyst in CO oxidation", *Journal of Molecular Catalysis A: Chemical*, v. 213, pp. 235-240, 2004b.
- KOTOBUKI, M., WATANABE, A., UCHIDA, H., YAMASHITA, H., e WATANABE, M., "Reaction mechanism of preferencial oxidation of carbon monoxide on Pt, Fe, e Pt-Fe/mordenita catalysis", *Journal of Catalysis*, v. 236, pp. 262-269, 2005.
- KUDO, S., MAKI, T., YAMADA, M., e MAE, K, "A new preparation method of Au/ferric oxide catalysts for low temperature", *Chemical Engineering Science*, v. 65, pp. 214-219, 2009.
- KURYAMA, M., TANAKA, H., ITO, S-I., KUBOTA, T., MIYAO, T., NAITO, S., TOMISHIGE, K., e KUNIMORI, K., "Promoting mechanism of potassium in preferential CO oxidation on Pt/Al₂O₃", *Journal of Catalysis*, v.0, pp.1-10, 2007.
- LAGAREC, K., RANCOURT, D. G., "Mossbauer spectral analysis software". Version 1.0. Dep. of Phys. University of Otawa (1998).
- LI P., MISER, D. E., RABIEI, S., YADAV, R. T., e HAJALIGOL, M. R., "The removal of carbon monoxide by iron oxide nanoparticles", *Applied Catalysis B: Environmental*, v. 43, pp. 151-162, 2003.

- LIN, H-Y., CHEN, Y-W. e LI, C., RABIEI, S., YADAV, R. T., e HAJALIGOL, M. R., "The mechanism of reduction of iron oxide by hydrogen", *Thermochimica Acta*, v. 400, pp. 61-67, 2003.
- LIU, H., MA, L., SHAO, S., LI, Z., WANG, A., HUANG, Y., e ZHANG, T., "Preferential CO oxidation on Ce-Promoted Pt/γ-Al₂O₃ catalysts under H₂-rich atmosphere", *China Journal of Catalysis*, v. 28(12), pp. 1077-1082, 2007.
- LIU, X., KOROTKIKH, O. e FARRAUTO, R., "Selective catalytic oxidation of CO in H₂: structural study of Fe oxide-promoted Pt/alumina catalyst", *Applied Catalysis A: General*, v. 226 pp. 293-303, 2002.
- LUNSFORD, J. H., "Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century", *Catalysis Today*, v.63, pp.165-174, 2000.
- MANASILP, A. e GULARI, E., "Selective CO oxidation over Pt/alumina catalysts for fuel cell applications", *Applied Catalysis B: Environmental*, v.37, pp.17-25, 2002.
- MANSILLA, M. V., ZYSLER, R. D., ARCIPRETE, C., DIMITRIJEWITS, M. I., SARAGOVI, C., e GRENECHE, J. M., "Magnetic interaction evidence in œ-Fe₂O₃ nanoparticles by magnetization and Mössbauer measurements", *Journal of Magnetism and Magnetic Materials*, v. 204, n° 1, pp. 29-35, 1999.
- MARCHETTI, S. G., BENGOA, J. F., CAGNOLI, M.V., ALVAREZ, A. M., GALLEGOS, N. G., YERAMIÁN, A.A., e MERCADER, R. C., *Measurement Science and Technology*, vol. 7 pp. 758-762, 1996.
- MARQUES, P., RIBEIRO, N. F. P., SCHMAL, M., ARANDA, D. A. G., e SOUZA, M. M. V. M. "Selective CO oxidation in the presence of H₂ over Pt and Pt-Sn catalysis supported on niobia", *Journal of Power Sources*, v. 158, pp. 504-508, 2006.
- MARTINS, R. L., SOUZA, M.M.V.M., ARANDA, D. A., e SCHMAL, M., "FTIR evidences of the reactivity of spilt-over stored hydrogen: Transformation of Lewis acid sites into Brönsted sites on Pt/ZrO₂ catalyst", *Studies in Surface Science and Catalysis*, v.138, pp. 77-84, 2001.
- MENEZES, A, S., REMÉDIOS, C. M. R., SASAKI, J. M., DA SILVA, L. R. D., GÓES, J. C., JARDIM, P. M., e MIRANDA, M. A. R., "Sintering of

nanoparticles of α-Fe₂O₃ using gelatin", *Journal of Non-Crystalline Solids*, *v*. 357, *pp.1091-1094*, 2007.

- MINEMURA, Y., ITO, S., MIYAO, T., NAITO, S., TOMISHIGE, K., e KUNIMORI, K., "Preferential CO oxidation promoted by the presence of H₂ over K-Pt/Al₂O₃", *Chemical Communications*, v. 2005, pp. 1429-1431, 2005.
- MORUP, S. e TOPSOE, H., "Mössbauer studies of thermal excitations in magnetically ordered microcrystals", *Applied Physics*, v. 11, pp.63-66, 1976.
- MURAOKA, T. K., ZUTIN, K., ANANIAS, S. R., MAURO, A. E., NOGUEIRA, V. M., e RECHENBERG, H. R., "Investigação por Espectroscopia Mössbauer de compostos de Fe(0) contendo dissulfeto de carbono", *Eclética Química*, v. 29, n° 2, 2004.
- NAKNAM, P., LUENGNARUEMITCHAI, A, e WONGKASEMJIT, S., "Preferential CO oxidation over Au/ZnO and Au/ZnO-Fe₂O₃ catalysts prepared by photodeposition", *International Journal of Hydrogen Energy*, v. 34, pp. 9838-9846, 2009.
- PARK, E. D., LEE, D., e LEE, H. C., "Recent Progress in Selective CO removal in a H₂-rich stream", *Catalysis Today*, v. 139, pp. 280-290, 2009.
- PETTERSSON, L. J., e WESTERHOLM, R., "State of the art of multi-fuel reformers for fuel cell vehicles: problem identification and research needs", *International Journal of Hydrogen Energy*, v. 26, pp. 243-264, 2001.
- PILLONEL, P., DERROUICHE, S., BOURANE, A., GAILLARD, F., VERNOUX, P., e BIANCHI, D., "Impact of the support on the heat of adsorption of the linear CO species on Pt-containing catalysts", *Applied Catalysis A: General*, v. 278, pp. 223–231, 2005.
- POPOVIC, S., GRZETA, B., STEFANIC, G., CZSKO-NAGY, I., e MUSIC, S., "Structural properties of the system ZrO₂–Fe₂O₃", *Journal of Alloys and Compounds*, v. 241, pp. 10-15, 1996.
- QIU, J., YANG, R. LI, M., e JIANG, N., "Preparation and characterization of porous ultrafine Fe₂O₃ particles" *Materials Research Bulletin*, v. 40, pp. 1968-1975, 2005.
- QUERINO, P. S., BISPO, J. R. C. e RANGEL, M. C., "The effect of cerium on the properties of Pt/ZrO₂ catalysis in the WGSR", *Catalysis Today*, v. 107-108, pp. 920-925, 2005.

QUINET, E., PICCOLO, L., MORFIN, F., AVENIER, P., DIEHL, F., CAPS, V., e ROUSSET, J-L., "On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation", *Journal of Catalysis*, v. 268, pp. 384-389, 2009.

RAJARAM, R. R. e HAYES, J. W., "US 5993762", 1999.

- RASKO, J., "CO-induced surface structural changes of Pt on oxide-supported Pt catalysts studied by DRIFTS", *Journal of Catalysis*, v. 217, n°2, pp. 478-486, 2003.
- REN, S. e HONG, X., "CO selective oxidation in hydrogen-rich gas over platinum catalysts", *Fuel Processing Technology*, v. 88, pp. 383-386, 2007.
- RIBEIRO, N. F. P., MENDES, F. M. T., PEREZ, C. A. C., SOUZA, M. M. V. M., e SCHMAL, M., "Selective CO oxidation with nano gold particles-based catalysts over Al₂O₃ and ZrO₂", *Applied Catalysis A: General*, v. 347, pp. 62-71, 2008a.
- RIBEIRO, N. F. P., SOUZA, M. M. V. M. e SCHMAL, M., "Combustion synthesis of copper catalysts for selective CO oxidation", *Journal of Power Sources*, v. 179, pp. 329-334, 2008b.
- ROH, H-S., POTDAR, H. S., JUN, K-W., HAN, S. Y., e KIM, J-W., "Low temperature selective CO oxidation in excess of H₂ over Pt/Ce-ZrO₂ catalysts", *Catalysis Letters*, v. 93, N⁰ 3-4, pp. 203-207, 2004.
- ROSSIGNOL, C., ARRII, S., MORFIN, F., PICCOLO, L., CAPS, V., e ROUSSET, J-L., "Selective oxidation of CO over model gold-based catalysts in the presence of H₂", *Journal of Catalysis*, v. 230, pp. 476-483, 2005.
- SANGEETHA, P., e CHEN, Y-W., "Preferential oxidation of CO in H₂ stream on Au/CeO₂-TiO₂ catalysts", *International Journal of Hydrogen Energy*, v. 34, pp. 7342-7247, 2009.
- SCHUBERT, M. M., VENUGOPAL, A., KAHLICH, M. J., PLZAK, V., e BEHM, R. J., "Influence of H₂O and CO₂ on the selective CO oxidation in H₂-rich gases over Au/α-Fe₂O₃", *Journal of Catalysis*, v. 222, pp. 32-40, 2004.
- SCHUMACHER, B., PLZAK, V., KINNE, M. e BEHM, R. J., "Higly active Au/TiO₂ catalysts for low-temperature CO oxidation: preparation, conditioning and stability", *Catalysis Letters*, v. 89, pp. 109-114, 2003.
- SCHUMACHER, B., DENKWITTZ, Y., PLZAK, V., KINNE, M. e BEHM, R. J., "Kinetics, mechanism, and influence of H₂ on the CO oxidation reaction on a Au/TiO₂ catalyst", *Journal of Catalysis*, v. 224, pp. 449-462, 2004.

- SCIRÈ, S., CRISAFULLI, C., MINICÒ, S., CONDORELLI, G. G., e DI MAURO, A., "Selective oxidation CO in H₂-rich stream over gold/iron oxide: An insight on the effect of catalyst pretreatment", *Journal of Molecular Catalysis A: Chemical*, v. 284, pp. 24-32, 2008.
- SEBASTIAN, V., IRUSTA, S., MALLADA, R., e SANTAMARÍA, J., "Selective oxidation of CO in the presence of H₂, CO₂ and H₂O, on different zeolitesupported Pt catalysts", *Applied Catalysis A: General*, v. 366, pp. 242-251, 2009.
- SHAHEEN, W. M., "Effects of thermal treatment and doping with cobalt and manganese oxides on surface and catalytic properties of ferric oxide", *Materials Chemistry and Physics*, v. 101, pp. 182-190, 2007.
- SIRIJARUPHAN, A., GOODWIN Jr., J. G., RICE, R. W., WEI, D., BUTCHER, K. R., ROBERTS, G. W., e SPIVEY, J. J., "Effect of metal foam supports on the selective oxidation of CO on Fe-promoted Pt/γ-Al₂O₃", *Applied Catalysis A: General*, v. 281, pp. 11-18, 2005.
- SIRIJARUPHAN, A., GOODWIN Jr., J. G., e RICE, R. W., "Investigation of the initial rapid deactivation of platinum catalysts during the selective oxidation of carbon monoxide", *Journal of Catalysis*, v. 221, pp. 288-293, 2004.
- SMIT, G., STRUKAN, N., CRAJÉ, M. W. J., e LÁZÁR, K., "A comparative study of CO adsorption and oxidation on Au/Fe₂O₃ catalysts by FT-IR and in situ DRIFTS spectroscopies", *Journal of Molecular Catalysis A: Chemical*, v. 252, pp. 163-170, 2006.
- SNYTNIKOV, P.V., SOBYANIN, V.A., BELYAEV, V. D., TSYRULNIKOV, P. G., SHITOVA, N. B., e SHLYAPIN, D. A., "Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts", *Applied Catalysis A: General*, v. 239, pp. 149-156, 2003.
- SON, I. H., "Study of Ce-Pt/γ-Al₂O₃ for the selective oxidation of CO in H₂ for application to PEFCs: Effect of gases", *Journal of Power Sources*, v. 159, pp. 1266-1273, 2006.

- SON, I. H., SHAMSUZZOHA, M., e LANE, A, M., "Promotion of Pt/γ-Al₂O₃ by new pretreatment for low-temperature preferencial oxidation of CO in H₂ for PEM fuel cells", *Journal of Catalysis*, v. 210, pp. 460-465, 2002.
- SON, I. H. e LANE, A.M., "Promotion of Pt/γ-Al₂O₃ by Ce for preferencial oxidation of CO in H₂", *Catalysis Letters*, v. 76, N⁰ 3-4, pp. 151-154, 2001.
- SONG, C., "Fuel processing for low-temperature and high-temperature fuel cells challenges, and opportunities for sustainable development in the 21st century", *Catalysis Today*, v. 77, pp. 17-49, 2002.
- SOUZA, M. V. M., RIBEIRO, N. F. P. e SCHMAL, M., "Influence of the support in selective CO oxidation on Pt catalysts for fuel cell applications", *International Journal of Hydrogen Energy*, v. 32, pp. 425-429, 2007.
- SOUZA, M. V. M., ARANDA, D. A. G. e SCHMAL, M., "Reforming of methane with carbon dioxide over Pt/ZrO₂/Al₂O₃ catalysts", *Journal of Catalysis*, v. 204, pp. 498-511, 2001.
- SOUZA, M. O. G., QUADRO, E. B. e RANGEL, M. C., "Propriedades texturais e catalíticas de óxidos de ferro contendo cromo e cobre", *Química Nova*, v. 21, n° 4, pp. 428-433, 1998.
- STEELE, B. C. H., e HEINZEL, A., "Materials for fuel-cell technologies", *Nature*, v. 414, pp. 345-352, 2001.
- STEFANIC, G., GRZETA, B., NOMURA, K., TROJKO, R., e MUSIC, S., "The Influence of the thermal treatment on phase development in ZrO₂ - Fe₂O₃ and HFO₂ - Fe₂O₃ systems", *Journal of Alloys and Compounds*, v. 327, pp. 151-160, 2001.
- STEFANIC, G., GRZETA, B. e MUSIC, S., "Influence of oxygen on the thermal behavior of the ZrO₂–Fe₂O₃ system", *Materials Chemistry and Physics*, v. 65, pp. 216-221, 2000.
- STEFANIC, G., MUSIC, S., POPOVIC, S., e NOMURA, K., "A study of the of ZrO₂– Fe₂O₃ system by XRD, ⁵⁷Fe Mössbauer and vibrational spectroscopies", *Journal* of Molecular Structure, v. 480-481, pp. 627-631, 1999.
- SUH, D. J., KWAK, C., KIM, J-H., KNOW, S. M., e PARK, T-J., "Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over metal added platinum catalysts", *Journal of Power Sources*, v. 142, pp. 70-74, 2005.

- TAKEGUCHI, T., MANABE, S., KIKUCHI, R., EGUCHI, K., KANAZAWA, T., MATSUMOTO, S., e UEDA, W., "Determination of dispersion of precious metals on CeO₂-containing supports", *Applied Catalysis A: General*, v. 293, pp.91-96, 2005.
- TANAKA, K., MORO-OKA, Y., *et al.*, ISHIGURE K., YAJIMA, T., OKABE, Y., KATO, Y., HAMANO, H., SEKIYA, S-I., TANAKA, H., MATSUMOTO, Y., KOINUMA, H., HE, H., ZHANG, C., e FENG,Q., "A new catalyst for selective oxidation of CO in H₂: Part 1, activation by depositing a large amount of FeO_x on Pt/Al₂O₃ and Pt/CeO₂ catalysts", *Catalysis Letters*, v. 92, N⁰ 3-4, pp. 115-121, 2004.
- THAMMACHART, M., MEEYOO, V., RISKSOMBOON, T., e OSUWAN, S., "Caralytic activity of CeO₂-ZrO₂ mixed oxide catalysts prepared via sol-gel tecnique: CO oxidation", *Catalysis Today*, v. 68, pp. 53-61, 2001.
- TRIPATHI, A. K., KAMBLE, V. S. e GUPTA, N. M., "Microcalorimetry, Adsorption, and Reaction Studies of CO, O₂, and CO + O₂ over Au/Fe₂O₃, Fe₂O₃, and Polycrystalline gold catalysts", *Journal of Catalysis*, v. 187, pp. 332-342, 1999.
- VANDENBERGHE, R. E., DE GRAVE, E., LANDUYDT, C., e BOWEN, L. H., "Some aspects concerning the characterization of iron oxides and hydroxides in soils and clays", *Hyperfine Interactions*, v. 53, pp. 175-196, 1990.
- WANG, S-P., WANG, X-Y., HUANG, J., ZHANG, S-M., WANG, S-R., e WU, S-H.,
 "The catalytic activity for CO oxidation of CuO supported on Ce_{0,8}Zr_{0,2}O₂
 prepared via citrate method", *Catalysis Communications*, v. 8, pp. 231-236, 2007a.
- WANG, S-P., ZHANG, T-Y., WANG, X-Y., ZHANG, S-M., WANG, S-R., HUANG, W-P., e WU, S-H., "Synthesis, characterization and catalytic activity of Au/Ce_{0,8}Zr_{0,2}O₂ catalysts for CO oxidation", *Journal of Molecular Catalysis A: Chemical*, v. 272, pp. 45-52, 2007b.
- WANG, J. B., LIN S-C., e HUANG, T-J., "Selective CO oxidation in rich hydrogen over CuO/Samaria-doped ceria", *Applied Catalysis A: General*, v. 232, pp. 107-120, 2002.
- WATANABE, H., UCHIDA, H., OHKUBO, K., e IGARASHI, H., "Hydrogen purification for fuel cells: selective oxidation of carbon monoxide on Pt– Fe/zeolite catalysts", *Applied Catalysis B: Environmental*, v. 46, pp. 595-600, 2003.

- WENDT, H., GÖTZ, M., e LINARDI, M., "Tecnologia de Células a Combustível", Química Nova, v. 24, pp. 538-546, 2000.
- WOOTSCH, A., DESCORME, C., ROUSSELET, S., DUPREZ, D., e TEMPLIER, C.,
 "Carbon monoxide oxidation over well-defined Pt/ZrO₂ model catalysts: Bridging the material gap", *Applied Surface Science*, v. 253, pp. 1310-1322, 2006.
- WOOTSCH, A., DESCORME, C. e DUPREZ, D., "Preferencial oxidation of carbon monoxide in the presence of hydrogen (PROX) over ceria-zirconia and aluminasupported Pt catalysts", *Journal of Catalysis*, v. 225, pp. 259-266, 2004.
- WÖRNER, A., FRIENDRICH, C. e TAMME, R., "Development of a novel Ru-based catalyst system for the selective oxidation of CO in hydrogen rich gás mixtures", *Applied Catalysis A: General*, v. 245, pp. 1-14, 2003.
- WU, J-C., LIU, D-S., e KO, A-N., "Dehydrogenation of ethylbenzene over TiO₂–Fe₂O₃ and ZrO₂–Fe₂O₃ mixed oxide catalysts", *Catalysis Letters*, v. 20, pp. 191-201, 1993.
- YAN, J., MA, J., CAO, P., e LI, P., "Preferencial oxidation of CO in H₂-rich gases over Co-promoted Pt/γ-Al₂O₃ catalyst", *Catalysis Letters*, v. 93, N⁰ 1-2, pp. 55-60, 2004.
- ZHU, B., GUO, Q., HUANG, X., WANG, S., ZHANG, S., WU, S., e HUANG, W., "Characterization and catalytic performance of TiO₂ nanotubes-supported gold and copper particles", *Journal of Molecular Catalysis A: Chemical*, v. 249, pp. 211-217, 2006.

APÊNDICE

1 - <u>PREPARO DO ÓXIDO MISTO Fe₂O₃-ZrO₂</u>

Exemplo para 15g do suporte $Fe_{0.5}Zr_{0.5}O_2$: $MM_{ZrO2} = 123,22 \text{ e } MM_{Fe2O3} = 159,69$ $m_{ZrO2} = 0,5 \text{ x } MM_{ZrO2} = 61,61g$ $m_{Fe2O3} = 0,5 \text{ x } MM_{Fe2O3} = 79,84g$ $m_{total \ de \ suporte} = m_{Fe2O3} + m_{ZrO2}$ $m_{total \ de \ suporte} = 141,45g$

Para preparar 15 de suporte devemos efetuar os seguintes cálculos: 141,45g de suporte $\rightarrow 61,61g$ de ZrO₂ 15g $\rightarrow x$ x = 6,53g de ZrO₂ 141,45g de suporte $\rightarrow 79,84g$ de Fe₂O₃ 15g $\rightarrow x$ x = 8,47g de Fe₂O₃

<u>Quantidade de ZrO(NO₃)</u>₂: 1 mol de ZrO(NO₃)₂ \rightarrow 1 mol de ZrO₂ 231,22 g/gmol \rightarrow 123,22 g/gmol massa de ZrO(NO₃)₂ \rightarrow 6,53g de ZrO₂ massa de ZrO(NO₃)₂ = 12,26g

<u>Volume de ZrO(NO₃)</u>: $V(mL) = 12,26/(2,19 \times 231,22)$ V(mL) = 24,20mL

<u>Quantidade de Fe(NO₃)₃</u>: 1 mol de Fe(NO₃)₃ \rightarrow 1 mol de Fe₂O₃ 404 g/gmol \rightarrow 159,69 g/gmol massa de ZrO(NO₃)₂ \rightarrow 8,47g de Fe₂O₃ massa de ZrO(NO₃)₂ = 21,42g <u>Volume de Fe(NO₃)</u>: $V(mL) = 21,42/(0,2 \times 404)$ V(mL) = 265,1mL

2 - <u>TPR de H₂</u>:

Cálculo do consumo de H₂ experimental:

 $\Delta H = (sinal do H_2/Ar)mV - (sinal do Ar)mV$ Tempo de consumo = (Área do gráfico)/(ΔH) Volume de H₂ consumido (mL) = Q * Tempo * (conc. H₂) / 60 Número de mols de H₂ consumidos = p*V / R*T Onde p = 1 atm; R = 0,082 atm.L/mol.K ; T = 298 K

3 - <u>TPD de CO</u>:

Tabela referente à calibração dos gases utilizados no cálculo das espécies dessorvidas.

Calibração dos gases	
Gases	Área Padrão
5% CO/He	3,60133E-10
CO do CO ₂	5,48734E-10
H ₂ puro	8,77705E-09
N ₂ puro	8,41163E-10
CO ₂ puro	5,68357E-09

22,32 μ mol \rightarrow Área padrão

 $X \rightarrow$ Área calculada

X = quantidade da espécie dessorvida no TPD

4 - CÁLCULO do TOF:

Exemplo para $X_{CO} = 2,4\%$ para o catalisador 1% Pt/ZrO₂ Reator Diferencial Massa de catalisador = 0,1096g CO quimissorvido = 19,9 µmolCO/g_{cat} $F_{A0} = F_T^*y_{CO} \rightarrow F_{A0} = (100^*0,01)/22400 = 4,464^*10^{-5} \text{ mol/min}$ $F_A - F_{A0} = F_{A0}.X_A \rightarrow 4,464^*10^{-5}.0,022 = 0,982 \text{ µmoles/min}$ de CO Taxa = 0,982 0,1009 Taxa = 9,82 µmoles CO/g_{cat}.min TOF = Taxa/CO_{quimissorvido} \rightarrow TOF = 9,82 / 19,9 = 0,49 min⁻¹